关于物理学教程下册考试答案
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
物理学教程下册答案(第二版)14-16
物理学教程下册答案(第二版)14-16第十四章波动光学14-1在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处,现将光源S向下移动到图中的S′位置,则()(A)中央明纹向上移动,且条纹间距增大(B)中央明纹向上移动,且条纹间距不变(C)中央明纹向下移动,且条纹间距增大(D)中央明纹向下移动,且条纹间距不变分析与解由S发出的光到达S1、S2的光程相同,它们传到屏上中央O处,光程差Δ=0,形成明纹.当光源由S移到S′时,由S′到达狭缝S1和S2的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O′处.使得由S′沿S1、S2狭缝传到O′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B).14-2如图所示,折射率为n2,厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,且n1<n2,n2>n3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是()A2n2eB2n2e2C2n2eD2n2e2n2题14-2图分析与解由于n1<n2,n2>n3,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差2n2e确答案为(B).2,这里λ是光在真空中的波长.因此正14-3如图(a)所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L变小,则在L范围内干涉条纹的()(A)数目减小,间距变大(B)数目减小,间距不变(C)数目不变,间距变小(D)数目增加,间距变小题14-3图分析与解图(a)装置形成的劈尖等效图如图(b)所示.图中d为两滚柱的直径差,b为两相邻明(或暗)条纹间距.因为d不变,当L变小时,θ变大,L′、b均变小.由图可得inn/2bd/L,因此条纹总数NL/b2d/n,因为d和λn不变,所以N不变.正确答案为(C)14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为()(A)3个(B)4个(C)5个(D)6个分析与解根据单缝衍射公式λ暗条纹2k2binθk1,2,...λ2k1明条纹2因此第k级暗纹对应的单缝处波阵面被分成2k个半波带,第k级明纹对应的单缝波阵面被分成2k+1个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B).14-5波长λ=550nm的单色光垂直入射于光栅常数d=bb1.0某10-4cm的光栅上,可能观察到的光谱线的最大级次为()(A)4(B)3(C)2(D)1分析与解由光栅方程dinkk0,1,...,可能观察到的最大级次为dinπ/21.82λkma某即只能看到第1级明纹,正确答案为(D).14-6三个偏振片P1、P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为30°,强度为I0的自然光入射于偏振片P1,并依次透过偏振片P1、P2与P3,则通过三个偏振片后的光强为()(A)3I0/16(B)3I0/8(C)3I0/32(D)0分析与解自然光透过偏振片后光强为I1=I0/2.由于P1和P2的偏振化方向成30°,所以偏振光透过P2后光强由马吕斯定律得I2化方向也成60°,则透过P3后光强变为I3I1co230o3I0/8.而P2和P3的偏振I2co260o3I0/32.故答案为(C).14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为()(A)完全线偏振光,且折射角是30°(B)部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C)部分偏振光,但须知两种介质的折射率才能确定折射角(D)部分偏振光且折射角是30°分析与解根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D).14-8在双缝干涉实验中,两缝间距为0.30mm,用单色光垂直照射双缝,在离缝1.20m的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm.问所用光的波长为多少,是什么颜色的光?分析与解在双缝干涉中,屏上暗纹位置由某d2k1决定,式中d′为双缝到d2屏的距离,d为双缝间距.所谓第5条暗纹是指对应k=4的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离某22.78mm,那么由暗纹公式即可求得波长λ.2d此外,因双缝干涉是等间距的,故也可用条纹间距公式某求入射光波长.应注d22.78mm.9d2k1,把k4,某22.78103m以及d、d′值代2d2意两个第5条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故某解1屏上暗纹的位置某入,可得λ=632.8nm,为红光.22.78d'103m,以及d、d′解2屏上相邻暗纹(或明纹)间距某,把某9d值代入,可得λ=632.8nm.14-9在双缝干涉实验中,用波长λ=546.1nm的单色光照射,双缝与屏的距离d′=300mm.测得中央明纹两侧的两个第五级明条纹的间距为12.2mm,求双缝间的距离.分析双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ某,则由中央明纹两侧第五级明纹间距某5-某-5=10Δ某可求出Δ某.再由公式Δ某=d′λ/d即可求出双缝间距d.解根据分析:Δ某=(某5-某-5)/10=1.22某10-3m双缝间距:d=d′λ/Δ某=1.34某10-4m14-10一个微波发射器置于岸上,离水面高度为d,对岸在离水面h高度处放置一接收器,水面宽度为D,且Dd,Dh,如图所示.发射器向对面发射波长为λ的微波,且λ>d,求接收器测到极大值时,至少离地多高?分析由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d,缝屏间距为D的双缝干涉相似,如图(b)所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2dinθλ/2,而不是2dinθ.题14-10图解由分析可知,接收到的信号为极大值时,应满足2dinθλ/2kλk1,2,...D2k14dhDtanDinD.4d取k=1时,得hmin14-11如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O改变为第五级明纹.假定=550nm,求:(1)条纹如何移动?(2)云母片的厚度t.题14-11图分析(1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P的光程差由其几何路程差决定,对于点O,光程差Δ=0,故点O处为中央明纹,其余条纹相对点O对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O,Δ≠0,故点O不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2)干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P(明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况.插入介质前的光程差Δ1=r1-r2=k1λ(对应k1级明纹),插入介质后的光程差Δ2=(n-1)d+r1-r2=k1λ(对应k1级明纹).光程差的变化量为Δ2-Δ1=(n-1)d=(k2-k1)λ式中(k2-k1)可以理解为移过点P的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解由上述分析可知,两介质片插入前后,对于原中央明纹所在点O,有21n21d5将有关数据代入可得d54.74106mn114-12白光垂直照射到空气中一厚度为380nm的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解根据分析对反射光加强,有2ne2kk1,2,...4ne2k1在可见光范围,k=2时,668.8nm(红光)k=3时,401.3nm(紫光)故正面呈红紫色.14-13利用空气劈尖测细丝直径.如图所示,已知λ=589.3nm,L=2.888某10-2m,测得30条条纹的总宽度为4.259某10-3m,求细丝直径d.分析在应用劈尖干涉公式d2nbL时,应注意相邻条纹的间距b是N条条纹的宽度Δ某除以(N-1).对空气劈尖n=1.。
物理学教程第二版下册问题详解
物理学教程下册答案第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).9-2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).9-3下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为 ()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析 2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1Lr Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r LQ r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R R R r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1xθe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+iE F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE ===9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b)所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布. 当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V Rr -==⎰当r ≥R 时()r R εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d xr r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2)电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15m) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J · kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗? 解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30C · m.这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK ⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题 9-27 图第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地题 10-2 图分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )d εq V d εq E 020π4,π4==(C )0,0==V E (D )R εq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关。
八年级物理学教程第二版下册答案(2)
八年级物理学教程第二版下册答案(2)2017年八年级物理学教程第二版下册答案二、填空题13.天空中的云五彩缤纷,常常引起人们美好的遐想,那么云是怎么形成的呢?当含有很多水蒸气的空气升入高空时,水蒸气遇冷____________成小水滴或____________小冰晶,被上升的气流顶起,从而形成了云。
(填物态变化的名称)14.夏天,把一大块冰放在塑料袋中,如图所示,过一段时间后,冰变成了水,这是_______现象,塑料袋没有漏水,但是在塑料袋外面却出现一层水珠,这是_______现象(以上两空均填物态变化名称)。
15.水是生命之源,它在生活中的用途非常广泛.我国北方地区冬季贮菜时,人们常在地窖里放几桶水,这是利用水的(填物态变化名称) 热,以防止地窖里的菜被冻坏;冬季在空调房间里,人们也常会放盆水,这是利用水的 (填物态变化名称)来提高房间里的.空气湿度。
16.去年冬季,盐城市大雾天气比往年频繁,而霜却比往年少见。
从物态变化分析,“雾”的形成属于____________现象,“霜”的形成属于____________现象;“霜比往年少见”说明我市去年冬季平均气温比往年____________(高/低)。
17.小明同学在探究固体熔化的活动中,作出了如图4所示的图像。
从图像可知,这种固体是(填“晶体”或“非晶体”),它的凝固点是。
18.如图所示,凉铁板上出现了大量的小水滴,小水滴是由壶嘴喷出的水蒸气_______形成的;要在铁板上产生更多的水滴,可以采取的措施有:________________________________________________。
高烧病人用冰袋降温是利用了_____________________。
19.根据右表所提供的数据(1标准大气压下)可知:(1)80℃的酒精是态;(2)在北方寒冷的季节里,最低气温可达一50℃,此时应选用(选填“酒精”或“水银”)做温度计的测温液体.三.简答题20.电风扇是一种常用家电,它在工作时涉及到很多物理知识,请你回答如下问题:⑴电风扇在工作过程中,能量主要是怎样转化的?实现这种转化的部件是什么?⑵当我们在炎热的夏天使用电风扇的时候,会感觉到凉爽.请你分析其中的原因.21.医生用普通体温计给感冒发烧的病人测量体温,从体温计的构造和使用情况来看,运用了哪些物理知识?请你写出其中的两个:22.炎热的夏天,床铺上的席子、地板、地坝等,到处都很热,让人受不了,请你用所学的物理知识,想出一种能使这些地方(其中一个地方)的温度有所降低的简易方法(不得使用空调器),并说明这样做的道理。
物理学教程(二)下册马文蔚_答案(第二版)9—13
第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ). 11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). 11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速.分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数. 解 通过分析结果可得环中的电子数 10104⨯==ecIl N 11-7 已知铜的摩尔质量M =63.75 g·mol -1 ,密度ρ =8.9 g · cm -3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍? 分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kT π8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kT v v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据 恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rlI j π2= 解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlI j 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0. 解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800=B 0 的方向垂直纸面向外. (b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-=B 0 的方向垂直纸面向里. (c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度RI μB π40=,磁感强度的方向依照右手定则确定. 点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加.解 根据磁场的叠加在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中, k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中, k j i B RI μR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l x I d π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200ln π2d π2d dd d Il x l x I μμ 11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR Ir μB =在导线外r >R ,I I =∑,因而rI μB 2π0=磁感强度分布曲线如图所示. 11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 1 22101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3 ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3 ()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B 依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 2 02π3=⋅r B03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNI μB 2π0≈ 11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πRIr μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR==⎰ 11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两 侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dBU B E H H v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m/s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k 11-21 从太阳射来的速度为0.80×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v 地磁北极附近的回转半径 m 2322==eB m R v 11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm , b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dl I I μF π22103= ()b d l I I μF +=π22104 故合力的大小为 ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dI μB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220== dεU C λE F E 022π2== 由0=+E B F F 可得dεU C d I μ02220π2π2= 解得A 105.4300⨯==μεCU I (2) 输出功率 W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i == 在圆心处,即质子所在处的磁感强度为02a i μB = 解 由分析可得,电子绕核运动的速率π2ma h =v 其等效圆电流 2020π4/π2ma he v a e i == 该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma he μa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理 ⎰∑=⋅f I d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流. 解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=f π2I r H对r <R 1221f ππr R I I =∑ 得 2112πR Ir H = 忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR Ir μB =对R 2 >r >R 1 I I=∑f得 rI H 2π2=填充的磁介质相对磁导率为μr ,有 ()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 ()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 3 0=-=∑I I If得 04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅=()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.第十二章 电磁感应 电磁场和电磁波 12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式 tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NS R R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?。
物理学教程 第二版习题答案
质点运动学习题一、选择题C B D D DB C B B D二.填空题1. v=A ωcos ωt , v=22y -A ω.2. v 0+Ct 3/3 , x 0+v 0t+Ct 4/12 .3. v M =h 1v/(h 1-h 2) .4. 4.19m, 4.13×10-3m/s, 与x 轴成60︒.5. B , (A 2/R )+4πB .6. g sin θ, g cos θ . 三.计算题1. 坐标如图,设V 、v 、u 分别为质点对地、质点对斜面、斜面对地的速度,有V =v +uV x =v x +u x = gy 2cos α+u V y =v y +u y = gy 2sin α当y=h 时 V=(V x 2+V y 2)1/2=[u 2+2gh +2u gh 2cos α]1/2 V 与x 轴的夹角 β=arcot(V y /V x )=arctg[gh 2sin α /(gh 2cos α+u )]2. 因 v 2/v 1=R ω2 /(R ω1)= k t 22/( k t 12)= t 22/ t 12 故 v 1= v 2 t 12/ t 22=8m/sa n =v 12/R=32m/s 2a t =d v/d t=d(R ω)/d t =d(Rkt 2)/d t =2Rkt=2Rkt 2/t=2v 1/t 1=16m/s 2所以 a=(a n 2+a t 2)1/2=35.8m/s 23. 由 a=d v/d t=(d v/d x )(d x/d t ) =v (d v/d x )=-kv 2有 d v/v =-k d x()⎰⎰-=xv v x k v v 0d d 0 ln(v/v 0)=-kx故 v=v 0e -kx5. (1)Bt A e B ν-=- 2(1)Bt A A y t e B B -=+- 牛顿定律习题一. 选择题C C B E A 二.填空题1. 460m, 5.5×103N.2.3. 1/cos 2θ. 三.计算题1.受力图、坐标、所设角α如图 对A 有 T 1-m A g=0 对B 有 f -T 1sin α=0N+T 1 cos α-m B g =0对O 有 T 2=2T 1 cos(α/2)因CO 的延长线是α的角分线,故α=60°,有 T 1 cos α= T 1 cos60°=m B g -N=10×10-80=20N 得 T 1=40N 有 m A = T 1/g=4kgf= T 1sin α=T 1sin60°=34.6NT 2=2T 1 cos(α/2)=2T 1 cos30°=69.3N动量守恒定律和能量守恒定律习题一.选择题 A A A C D C D C C D 二.填空题1. 2Qv , 水流入方向.2. F ∆ t 1/(m 1+m 2),F ∆ t 1/(m 1+m 2)+ F ∆t 2/m 2. 3. -F 0R 4. 12J. 5. mgl/50.6. kx 02; -kx 02/2; kx 02/2 .三.计算题1. 子弹与物体组成的系统水平方向动量守恒,设子弹刚穿出物体时的物体速度为v ' , 有 mv 0=mv+Mv 'v '=m (v 0-v )/M(1)绳中张力 T=Mg+M v ' 2/l = Mg+ m 2(v 0-v )2/( Ml )=26.5N (2)子弹所受冲量 I = m (v -v 0)=-4.7N·s 负号表示与子弹入射方向相反.2. (1) A =()r r GMm RhR d 2⎰+-=GMm [1/R -1/(R+h )]= GMm h /[R (R+h )](2)由动能定理 A=E k -E k0 有 GMm h /[R (R+h )]=mv 2/2 v= {2GM h /[R (R+h )]}1/28. 煤粉接触传送带时速度为v 0=gh 2,方向向下.取时间微元∆t , 落入传送带上的煤粉质量∆m=q m ∆t , 设传送带对煤粉的平均作用力为f , 按如图坐标, 由动量定理得A A gBB g(2)A gOx yf x ∆t =∆m (v 2x - v 1x )=∆m (v -0)= ∆mv (f y -∆mg )∆t ≈f y ∆t=∆m (v 2y - v 1y )=∆m [0-(-v 0)]= ∆mv 0 f x =q m v f y = q m v 0故 f=(f x 2+ f y 2)1/2= q m (v 2+ v 02)1/2 = q m (v 2+2gh )1/2=149N f 与x 轴夹角α=arctg((f y /f x )= arctg(v 0/ v ) =arctg(gh 2/ v )=57.4︒所以煤粉对传送带的作用力f '的大小为 f '=149N 方向与x 轴夹角为 α'=180︒+57.4︒=237.4︒四.证明题1.(1) P=Fv=mav=mv d v /d tP d t= mv d v⎰⎰=tvv mv t P 0d d有 Pt/m v 2=(2) Pt/m v 2==d x /d t d x =Pt/m 2d tx=⎰⎰=txt Pt/m x 0d 2d =(2/3)/m Pt 32=3/2)(98t m P/刚体转动习题一.选择题C A C C B A B D A B二.填空题1. 4s, -15m/s.2. 203. 3ML 2/4, mgL/2, 2g /(3L ) .三.计算题1.飞轮受绳的张力T 产生的力矩和阻力矩M μ , 重锤受绳的张力T 和重力mg .对飞轮和重锤分别用转动定律和牛顿定律列方程, 有 TR -M μ =J α=Ja/R mg -T=ma h=at 2/2得 mgR -M μ=( J/R+mR )2h/t 2当重锤质量分别为m 1和m 2时, 重锤下落时间分别为t 1和t 2 ,于是有 m 1gR -M μ=( J/R+m 1R )2h/t 12 m 2gR -M μ=( J/R+m 2R )2h/t 22 相减得 (m 1-m 2)gR=(2hJ/R )(1/t 12-1/t 22)+(2hR )( m 1/t 12-m 2/t 22)=2hJ (t 22-t 12)/(R t 12t 22)+2hR (m 1t 22 -m 2t 12)/( t 12t 22) 有 J=[(m 1-m 2)gR2 t 12t 22/[2h (t 22-t 12)]- R 2(m 1t 22 -m 2t 12)/(t 22-t 12)=1.06×103kg·m 22.(1)子弹击中圆盘的过程中,子弹和圆盘组成的系统对O 点的角动量守恒 mv 0R=( MR 2/2+mR 2)ω ω=2mv 0/[(M+2m )R ](2)求圆盘的摩擦阻力矩.取圆环微元d r,其摩擦阻力矩为 d M μ=μd mgr=μσ2πr d rgr=2πμσgr 2d r⎰=Rr gr M 02d 2πμσμ=2πμσgR 3/3=2μMgR/3(3) -M μ∆t=0-J ω ∆t=J ω /M μ=( MR 2/2+mR 2){2mv 0/[(M+2m )R ]}/(2μMgR/3) =3mv 0 /2μMg3. (1)定滑轮受绳的张力T 产生的力矩, 重物受绳的张力T 和重力mg .取初角速度ω 0的方向为坐标正向,对定滑轮和重物分别列方程,有 -TR =J α= (MR 2/2)αT -mg=ma= mR α得 α=-2mg/[(2m +M )R ]=-81.7rad/s 2负号表示方向与初角速度ω 0的方向相反 (2) ω 2-ω02=-ω02=2α ∆θ∆θ=-ω02/(2α)=ω02(2m +M )R /(4mg ) h=R ∆θ=ω02(2m +M )R 2/(4mg )=6.12×10-2m(3) 物从最大高度回到原位置定滑轮转角∆θ'=-∆θ=-ω02(2m +M )R /(4mg )有ω' 2=2α∆θ'=()mgR M m R M m mg -42)(242+-⋅+ω=ω02 所以当物体回到原位置时 ω' =ω0=10.0rad/s 方向与初角速度ω 0的方向相反振动习题一. 选择题B C D A B B B B B A二.填空题1. A cos(2πt /T -π/2); A cos(2πt /T +π/3).2. 9.9×102J.3. ⎜A 2-A 1⎜; x=⎜A 2-A 1⎜cos(2πt /T +π/2). 三.计算题1.取水面为坐标原点,向上为x 正向,木块质心坐标为x .木块与水的密度分别为ρ与ρ',木块 受向下的重力l 3ρg 与向上的浮力l 2( l /2-x )ρ'g .平衡时木块质心坐标为a 有 l 2(l /2-a )ρ'g -l 3ρg=0a= l /2-l ρ/ρ'=-0.4l=-0.04m(1)木块质心坐标为x 时l 2(l /2-x )ρ'g -l 3ρg=ma= l 3ρd 2x/d t 2(l /2-x )ρ'g - (l /2-a )ρ'g =ma= l ρd 2x/d t 2 d 2x/d t 2+(x -a ) g ρ'/(ρ l ) =0令X= x -a 有 d 2X/d t 2+[ g ρ'/(ρ l )]X=0即木块作简谐振动X=A cos (ωt+ϕ0)其中ω=[ gρ'/(ρ l)]1/2=10.4rad/s(2)取放手时刻为t=0,有x0=-0.05m,X0=-0.01m;v0=0;得A=0.01m,ϕ0=π.X=A cos (ωt+ϕ0)= 0.01cos (10.4t+π) (SI)所以, 木块质心相对水面的振动方程为x=X+a=-0.04+ 0.01cos (10.4t+π) (SI)2.设杆向右摆动为角坐标θ正向.摆动过程中杆受重力矩和弹性力矩.当杆向右摆动θ角时, 重力矩和弹性力矩均与θ相反,有-(1/2)MgL sinθ-kL2sinθ=J d2θ/d t2当作微小振动时,sinθ≈θ, 且J=ML2/3,有d2θ/d t2+( Mg/2+kL) Lθ /J =0d2θ/d t2+[3( Mg+2kL)/(2ML)]θ=0杆作微小振动的周期T=2π/[3( Mg+2kL)/(2ML)]1/2=2π{(2ML) /[3( Mg+2kL)]}1/2波动习题一.选择题A B C B C二.填空题1. 0.1cos(4πt-π) (SI); -1.26m/s.2. π/3.3. R22/R12.4.三.计算题1. (1)原点处质点在t=0时刻y0=A cosϕ0=0 v0=-Aωsinϕ0>0所以ϕ0=-π/2.而T=λ/v=0.40/0.08=5(s)故该波的波动方程为y=0.04cos[2π( t/5-x/0.4)-π/2] (SI) (2) P 处质点的振动方程y P =0.04cos[2π( t/5-0.2/0.4)-π/2]= 0.04cos(0.4π t -3π/2) (SI)2. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =, φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A所以 244πππ-=-ν, ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s 波长λ = u /ν = 160 m波动表达式]21)16016(2cos[π-+π=x t A y (SI)3、解:(1) x = λ /4处)22cos(1ππ-=t A y ν , 22cos(22)y A t ν=+ππ∵y 1,y 2反相∴合振动振幅 A A A A s =-=2,且合振动的初相φ 和y 2的初相一样为2π. 合振动方程 )22cos(ππ+=t A y ν (2)x = λ /4处质点的速度)2cos(2)2 2sin(2/d d v ππππππ+=+-==t A t A t y νννν四.证明题1.(1) 设小球向右摆动为角坐标θ正向.摆动过程中小球受重力和弧形轨道的支持力. 重力的切向分力使小球获得切向加速度.当小球向右摆动θ角时, 重力的切向分力与θ相反,有-mg sin θ=ma t =mR d 2θ/d t 2当作小幅度运动时,sin θ ≈θ, 有d 2θ/d t 2+(g/R ) θ=0故小球作间谐振动 θ=θA cos(R g t +ϕ) (2)周期为 T=2π/ω=2π /R g =2πg R气体动理论习题一. 选择题 B A B D B二.填空题1. 1.33×105Pa.2. 5/3; 10/3. 3. 210K; 240K.三.计算题1. (1) 因T 等,有()2O k ε=()2H k ε=6.21×10-21Jm v k ε22==483m/s(2) T=2k ε/(3k )=300K2. 平均平动动能的总和E t =(3/2)(M/M mol ) RT=(3/2)(ρV /M mol )RT =7.31×106J 内能增加∆E=(i /2)(M/M mol ) R ∆T=(i /2)(ρV/M mol )R ∆T =4.16×104J2v 的增量∆(2v )=∆(mol 3M RT )=()[]T RT/M d 3d mol ∆T=()[]1mol 13T M R ∆T/2=0.856m/s4解:根据分析,当气体温度为T=273K 时,可得(1)氧分子的平均平动动能JkT kt 21107.523-⨯==ε氧分子的平均转动动能JkT kr 21108.323-⨯==ε (2)氧气的内能JRT i M m E 233101.727331.82510321042⨯=⨯⨯⨯⨯⨯='=-- (3)氦气的内能JRT i M m E 233104.327331.8231041042⨯=⨯⨯⨯⨯⨯='=-- 热力学基础习题一.选择题B B A B A A D C B B C 二.填空题1. 166J.2. (2),(3),(2),(3)3. 33.3%; 50%; 66.7%4. V 2; (V 1/V 2)γ -1T 1; (RT 1/V 2)(V 1/V 2)γ -1 三.计算题 1. (1)由V =p a ,得p=a 2/V 2,所以A=()()⎰⎰-==21212122211d d V V V V V /V /a V V aV p(2)由状态方程p 1V 1/T 1= p 2V 2/T 2知T 1/T 2=( p 1V 1)/( p 2V 2) = (V 1a 2/V 12)/( V 2 a 2/V 22) = V 2/V 12. 单原子分子i=3, C V =3R/2, C p =5R/2. ca 等温 T a =T cab 等压 V a /T a =V b /T b T b =(V b /V a )T a =(V b /V a )T c (1) ab 等压过程系统吸热为Q ab =(M/M mol )C p (T b -T a ) = (5R/2)(V b /V a -1) T c =-6232.5J bc 等容过程系统吸热为Q bc =(M/M mol )C V (T c -T b ) = (3R/2)(1-V b /V a )T c =3739.5J ca 等温过程系统吸热为Q ca =(M/M mol )RT c ln(V a /V c )= RT c ln2=3456J (2) 经一循环系统所作的净功 A= Q ab + Q bc + Q ca =963J循环的效率η=A/Q 1= A/( Q bc + Q ca )=13.4%3. (1) A da =p a (V a -V d )= -5.065⨯10-3J(2) ∆E ab =(M/M mol )(i /2)R (T b -T a )= (i /2)(p b -p a )V a =3.039⨯104J(3) A bc =(M/M mol )RT b ln(V c /V b )=p b V b ln(V c /V b )=1.05⨯104J A=A bc +A da =5.47⨯103J(4) Q 1=Q ab +Q bc =∆E ab +A bc =4.09⨯104J η=A/Q 1=13.4%静电场习题一、选择题 CBCCD BACBD 二、填空题 1. λ1d/(λ1+λ2).2. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右.3. -Q/ε0, -2Q r 0/(9πε0R 2), -Q r 0/(2πε0R 2).4. (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和5.)222(812310q q q R++πε.6. Ed cos α.7. -q/(6πε0R )8.. 25.9. R 1/R 2, 4πε0(R 1+R 2), R 2/R 1. 三、计算题1. 取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2) d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x =Q/(2π2ε0R 2)E y =⎰d E y = ()⎰-2/32/2024d sin ππεπθθR Q =0故 E=E x =()2022R Q επ 方向沿x 轴正向.取园弧微元d q=λd l=[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2) d E x =d E cos θ d E y =d E sin θE x =()/2220/2d cos d 4x E Q R ππθθπε-=⎰⎰=Q/(2π2ε0R 2) E y =⎰d E y =)/2220/2sin d 4Q R ππθθπε-⎰=0故 E=E x =()2022R Q επ 方向沿x 轴正向.2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φ ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b cxc ac -⋅=πελ=λa arctan[b /(2c )]/(πε0)λ2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2. 为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE == E 1=ρr 1/(2ε0) 方向垂直于轴指向外; 为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S 0224επQ E r =球内r<a Q=-ρ4πr 23/3 E 2= -πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3 E 2= -πa 3/(3ε0r 22) 负号表示方向指向球心. 对于O 点E 1=ρd/(2ε0), E 2= -πr 2/(3ε0)=0 (因r 2=0) 得 E O =ρd/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2= -πa 3/(12ε0d 2)得 E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.4. 课后9-85. 课后9-146. 课后9-207. 课后9-218. 解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R 23-R 13)]球内,球层中,球外电场依次为 E 1=0,E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2)故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E =0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2)=ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)]静电场中的导体和电介质一、 选择题 AACDD DBABCA 二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.4. 取向, 取向; 位移, 位移.5. 1/εr , 1/εr .6. 3.36×105N/C .7. ε0εr U 2/(2d 2) 三、计算题1. B 球接地,有 U B =U ∞=0, U A =U ABU A =(-Q+Q B )/(4πε0R 3) U AB =[Q B /(4πε0)](1/R 2-1/R 1)Q得Q B=QR1R2/( R1R2+ R2R3- R1R3)U A=[Q/(4πε0R3)][-1+R1R2/(R1R2+R2R3-R1R3)]= -Q(R2-R1)/[4πε0(R1R2+R2R3-R1R3)]2.球形电容器C=4πε0RQ1=C1V1=4πε0RV1 Q2=C2V2=4πε0RV2W0=C1V12/2+C2V22/2=2πε0R (V12+V22)两导体相连后C=C1+C2=8πε0RQ=Q1+Q2= C1V1+C2V2=4πε0R(V1+V2)W=Q2/(2C)= [4πε0R(V1+V2)]2/(16πε0R)=πε0R(V1+V2)2静电力作功A=W0-W=2πε0R (V12+V22)-πε0R(V1+V2)2=πε0R(V1-V2)2=1.11×10-7J4.稳恒磁场习题一、选择题BAAAB DBCBC CDBD二、填空题1.I1+ I2+ I3+ I4=02.所围面积,电流,法线(n).3. 0.4. 0.16T.5. μ0Qv /(8πl 2), z 轴负向.6. 环路L 所包围的电流, 环路L 上的磁感应强度,内外.7. μ0I , 0, 2μ0I .8. IBR .9. 10-2, π/2 10. 7.96×105A/m, 2.42×102A/m.三、计算题1.(1) 在距球心r 处沿电流方向取微元长度d r ,导电截面为2πr2.则此微元长度电阻为d R=ρd r/(2πr 2) 接地电阻为()[]⎰∞=adr r R 22πρ=ρ/(2πa )(2) j=I/S=I/(2πr 2)j 1/j 2=[I/(2πr 12)]/[I/(2πr 22)]= r 22/r 122. 取宽为d l 细圆环电流,dI =I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ20d sin d RNI B B =μ0NI/(4R )3. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1) 求磁场, 电流元在中心轴线上激发磁场的方向沿轴线, 且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=R Rxrx r r xr rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++R xrx r x r 0232222220d 4σωμ-()()⎰++R xrx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RR x r xx r 02222202σωμ=⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2) 求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/44. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度 的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2 方向如图.有 B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向5. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2 在平面①的上方向右,在平面①的下方向左; 电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左, 故有 B=B 1+B 2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反, 故有B=B 1-B 2=0I 1I 2 ①②6. 在圆环上取微元 I 2d l = I 2R d θ 该处磁场为 B =μ0I 1/(2πR cos θ) I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ/(2πcos θ)⎰-=222102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右电磁感应习题一、选择题 DBDAD CDCBA 二、填空题1. t I r r ωωπμcos 202210,22102Rr I r πμ . 2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.4. er 1(d B /d t )/(2m ),向右; eR 2(d B /d t )/(2r 2m ),向下. 5. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt . 6.ε=πR 2k/4,从c 流至b . 7. 0.8. ΦAB =ΦBA . 9. μ0I 2L /(16π)10. 1.33×102 W/m 2 , 2.51×10-6J/m 3.三、计算题1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里. 取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B =()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a bIlln 20πμ εi = -d Φm /d t=()dtdIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ= -5.18×10-8VI 1y负号表示逆时针2. (1) 导线ab 的动生电动势为 εi = ⎰l (v×B )·d l=vBl sin(π/2+θ)=vBl cos θ I i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为 F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θ mg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B el B mgR v θθθ222cos 2221cos sin --= (2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .3.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为 E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/Rεi =⎰⋅N Ml E i d =⎰N M i x E θcos d =()⎰-⋅RRr Rr x t B R 22d d d=⎰-+⋅RR Rx xt B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )RR-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅NMl E i d =⎰⋅-MNl E i d=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.4. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad a r r Il πμ2d 0+()⎰--a d a r d rIl πμ2d 0 +⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )] +[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )波动光学习题二.填空题1. 2πd sin θ /λ.2. 2π(n -1)e/λ; 4×104.3. D λ/dn .4. 1.40.5. λ/(2L ).6. 5λ/(2n θ).7. 916.8. 1×10-6.9. 遵守普通的折射;不遵守普通的折射. 10. 见图.三.计算题1. (1) 明纹坐标 x k =kD λ/a∆x=12k k x x -=(k 2-k 1)D λ/a=20D λ/a =0.11m(2) 零级明纹即光程差为零的明纹,玻璃片覆盖上一条缝后,δ= r 2-[r 1+ (n -1)e ]=0 r 2-r 1=(n -1)e设此处为不复盖玻璃片时的k 级明纹,应有 r 2-r 1= k λ所以有 (n -1)e = k λ故玻璃片复盖一缝后,零级明纹移至原来明纹的级次为k= (n -1)e/λ=6.96~72. 解:插入介质前的光程差1121r r k λ∆=-=(对应1k 级明纹)插入介质后的光程差2122(1)n d r r k λ∆=-+-= (对应2k 级明纹) 光程差的变化量为2121(1)()n d k k λ∆-∆=-=- 式中21()k k -为移过点P 的条纹数 (1) 插入介质后的光程差 212(1)n d r r ∆=-+-则新的中央明纹所在的屏上位置对应的光程差 212(1)0n d r r ∆=-+-=显然要求r 1<r 2, 即条纹上移。
基础物理学下册 答案
图17.1第十七章 真空中的静电场17-1 解: 设等边三角形的边长为a ,则由顶点到中心的距离为.123q q q q ===放在三角形中心的电荷为Q ,Q 与q 反号. Q 受其他三个电荷的合力为零,与Q 的大小无关.一个q 受其他三个电荷的合力大小为21322002cos302424q qQ F F aπεπε-=⨯⨯-⎫⎪⎝⎭)2034q Q a πε=-此合力为零给出Q =∴ 3Q q =17-2 解: 0m +=F g 0q m +=E g343R gmgq E Eρπ==()36548513141641098319210....-⨯⨯⨯⨯⨯=⨯ 1980210C .-=⨯图17.2图17.3图17.45e =17-3 解: 在带电环线上任取一长为d l 的电荷元,其电量d d q l η=.电荷元在O 点的场强为d E ,d E 沿两个轴方向的分量分别为d x E 和d y E .由于电荷分布对于Ox 轴对称,所以全部电荷在O 点的场强沿y 方向的分量之和为零.因而O 点的总场强E 应沿x 轴方向,并且 d x E E =⎰20d sin d d sin 4x l E E R ηθθπε==()d =d l R l R θθ=0sin d d 4x E Rηθθπε=000sin d cos 44E R R ππηθηθθπεπε==-⎰02R ηπε=02Rηπε=E i17-4 解: (1) 选半球球心的坐标原点O d d φ=⋅1E S 1d cos E S ϕ= 21d sin d d S R ϕϕθ= ∴ 21c o s s i n d dER φϕϕϕθ=⎰2220sin2d d 2ER ππϕθϕ=⎰⎰图17.522cos22R E πϕπ=-2R E π=(2) 半球面1S 和任意形状曲面2S 组成闭合曲面.由高斯定理得:12010i'qφφε+==∑内∵ 此时1S 的法向方向与原来相反 ∴211'R E φφπ=-=-∴ 221'R E φφπ=-=17-5 解: (1) 立方体的六个面组成闭合曲面,由高斯定理得 通过闭合曲面的电通量 0qφε=由于正立方体的六个侧面对于其中心对称,所以每个面通过的电通量为 12345606q φφφφφφε======(2) d =d d S φ⋅=⋅E S E n 由于正方体有三个面与E 垂直 ∴1230φφφ===∴ q 所在的三个面的电通量为零以q 为中心,小正方体的边长a 的二倍为边长做一正方体.则通过大正方体的电通量为qε.因为小正方体是大正方体的18,则通过小正方体其它三个面的总电通量为8qε.由于这三个面对电荷所在顶点是对称的,所以通过它们每个面的电通量为0013824q qεε⨯=图17.717-6 解: (1) 设想地球表面为一均匀带电球面,总面积为S .则它所带的总电量为 0d q ES εε=⋅=-⎰E S()212688510200431463710...-=-⨯⨯⨯⨯⨯⨯590210C .=-⨯(2) 从地面1400m 到地面的大气所带总电量为0d d S'Sq'q q 'εε=-=⋅-⋅⎰⎰E S E S 总00E'S'ES εε=-+ 0001.ES'ES εε=-+ ()001E S .S'ε=- 581110C .=⨯()5331881110431463714637103q'.V ...ρ⨯==⨯⨯-⨯ 12211410C m .-=⨯17-7 解: 根据电荷分布对壁的平分面的面对称性,可知电场分布也具有这种对称性.由此可选平分面与壁的平分面重合的立方盒子为高斯面.高斯定理给出 02q E S ε=内当2dD <时 2q DS ρ=内 0D E ρε=当2dD >时 q dS ρ=内 02d E ρε=方向垂直板面 0q > 向外 0q < 向内图17.917-9 解: (1) (a)1r R<时, Ⅰ区1d0⋅=⎰⎰E S2140E rπ⋅=1E=(b)12R r R<<时, Ⅱ区12dQε⋅=⎰⎰E S2124QE rπεε⋅=1224QErπε=1224Qrπε=E r(c)2r R>时Ⅲ区123dQ Qε+⋅=⎰⎰E S21234Q QE rπε+⋅=12324Q QErπε+=12324Q Qrπε+=E r(2) (a)2r R>时Ⅲ区()12332d d4r rQ QU rrπε∞∞+=⋅=⎰⎰E r r12120044rQ Q Q Qr rπεπε∞++=-=图17.10(b) 12R r R << Ⅱ区()22223d d R rR U r ∞=⋅+⋅⎰⎰E r E r221122200d d 44R rR Q Q Q r r rr πεπε∞+=+⎰⎰221120044R rR Q Q Q rrπεπε∞+=--120214Q Q r R πε⎛⎫=+ ⎪⎝⎭(c) 1r R <时, Ⅰ区 ()12121123d d d R R r R R U r ∞=⋅+⋅+⋅⎰⎰⎰E r E r E r2121122200d d 44R R R Q Q Q r r rr πεπε∞+=+⎰⎰2121120044R R R Q Q Q rrπεπε∞+=--1201214Q Q R R πε⎛⎫=+ ⎪⎝⎭17-10 解: (1) 情况(a)可以间接用高斯定理求解,情况(b)不可以.(2) 这是一个非对称分布的电荷,因而不能直接用高斯定理求定解.但半径为R 的球及半径为r 的空腔是球对称的.可以利用这一特点把带电体看成半径为R 的均匀带电ρ+的球体与半径为r 的均匀带电ρ-的球体迭加.相当于在原空腔处补上体电荷密度为ρ+和ρ-的球体.这时空腔内任一点P 的场强12=+E E E其中1E 与2E 分别是带ρ+的大球和带ρ-的小球在P 点的场强. 1E 与2E 都可用高斯定理求得.图17.11()1113ρε==E r OP r()2223'ρε=-=E r O P r()120033ρρεε=-=OO'E r r r 由上述结果可知在空腔内各点场强都相等,方向由O 指向O',这是均匀场.17-11 解: 如图选取高斯面 (1) r R <时210d d r l πρε⋅=⎰⎰E S210d 2d r lE r l πρπε⋅=102r E ρε=102r ρε=r E e r R >时220d d R l πρε⋅=⎰⎰E S220d 2d R lE r l πρπε⋅=2202R E r ρε=2202R rρε=r E e(2) 求电势,选圆锥面为等势面 r R <时 ()2200d d 24RRr rrr U r R r ρρεε=⋅==-⎰⎰E r图17.12图17-13r R >时2200d d ln 22RRr rrR R RU r r rρρεε=⋅==⎰⎰E r17-12 解: (1) 根据场强迭加原理,O 点的场强 012340=+++=E E E E E (2) 根据电势迭加原理, O 点的电势 01234U U U U U =+++ 044qrπε=99244010910510.--⨯⨯⨯⨯=⨯()328810v .=⨯(3) ()000A q U =-()93101028810..-=⨯⨯-⨯628810J .-=-⨯(4) W A ∆=- 628810J .-=⨯17-13 解: (1) 00104q q U R R πε⎛⎫=-= ⎪⎝⎭ 0143D q q U R R πε⎛⎫=-⎪⎝⎭06q Rπε=-()00D A q U U =-006q qRπε=图17-15图18.1(2) 0U ∞=()0D A q U U ∞=-- 006q qRπε=17-14 解:(1)68310100310V U Ed ∆==⨯⨯=⨯ (2)一次释放的能量为8931030910J W q U =∆=⨯⨯=⨯17-15 (1)00d P rU =⋅⎰E r00cos d E r θ=⎰0cos r E r = 0cos E r θ=- 0E z =-(2)将电荷由P 点移至O 点,电场力所做的功为()P O P O A W W q U U =-=- 0co s q E r θ=- 0q E z =- ∴ 0cos P W qE r θ=- 0q E z=- 第十八章 静电场中的导体和电介质18-1 解:(1)B,C 极接地,所以B,C 极为零电势。
物理学第五版下册习题答案
物理学第五版下册习题答案物理学第五版下册习题答案物理学是一门研究物质和能量之间相互作用的科学,它关注着自然界中的各种物理现象和规律。
而对于学习物理学的学生来说,习题是检验自己理解和掌握程度的重要手段。
在物理学第五版下册中,有许多习题需要进行解答。
本文将为大家提供一些物理学第五版下册习题的答案,并且对其中一些重要的概念和原理进行解释和探讨。
第一章:力和运动1. 一个物体以10 m/s的速度向东运动,受到一个向西的力,大小为5 N。
求物体在2秒后的速度是多少?答案:根据牛顿第二定律,F = ma,其中F是力,m是物体的质量,a是物体的加速度。
根据题目中的信息,我们可以得到物体的加速度为a = F/m = -5N/m(向西)。
根据加速度的定义,a = (v - u)/t,其中v是物体在2秒后的速度,u是物体的初始速度,t是时间。
代入已知数据,可以得到v = u + at =10m/s - 5N/m * 2s = 0m/s。
所以,物体在2秒后的速度为0m/s。
2. 一辆汽车以20 m/s的速度向北行驶,经过5秒后速度变为30 m/s。
求汽车受到的平均加速度是多少?答案:根据加速度的定义,a = (v - u)/t,其中v是汽车的最终速度,u是汽车的初始速度,t是时间。
代入已知数据,可以得到a = (30m/s - 20m/s)/5s =2m/s²。
所以,汽车受到的平均加速度是2m/s²。
第二章:牛顿定律和动量1. 一个物体的质量为2 kg,受到一个力,大小为10 N。
求物体的加速度是多少?答案:根据牛顿第二定律,F = ma,其中F是力,m是物体的质量,a是物体的加速度。
代入已知数据,可以得到a = F/m = 10N/2kg = 5m/s²。
所以,物体的加速度为5m/s²。
2. 一个物体的质量为3 kg,受到一个力,大小为15 N。
求物体的加速度是多少?答案:根据牛顿第二定律,F = ma,其中F是力,m是物体的质量,a是物体的加速度。
《大学物理教程》下册 第三版 (贾瑞皋 著)课后习题答案 科学出版社12
12 − 8 = 0 .4 A 1+ 2 + 2 +1+ 2 + 2
U ab = 12 − 0.4(2 + 1 + 2 ) = 10V
(2) U cd = U ab − 10V = 0
12-6
(
)
2
× 2.2 × 10 −5 = 1.2 × 10 2 W
12-1
(6) W = I 2 Rt = 2.3 × 10 3
(
)
2
× 2.2 × 10 −5 × 3600J = 4.2 × 10 5 J
(7) u =
j 1.4 × 10 2 = cm s = 1.0 × 10 − 4 cm s ne 8.5 × 10 22 × 1.6 × 10 −19
R = ∫ dR = ∫
ρdr ρ ⎛ 1 1⎞ = ⎜ − ⎟ 2 a 2πr 4π ⎝ a b ⎠
b
12-9
一长度为 l,内外半径分别为 R1 和 R2 的导体管,电阻率为 ρ 。求下列三种情况下管子
的电阻:(1)若电流沿长度方向流动;(2)电流沿径向流动;(3)如图所示,把管子切去一半, 电流沿图示方向流过。 [解] (1) 沿长度方向流动时, S = π R22 − R12 。沿长度方向厚度为 dl 的一层所具有的电 阻为
12-5
电缆的芯线是半径为 r1 =0.5cm 的铜线,在铜线外面包一层同轴的绝缘层,绝缘层的
外半径为 r2 =2cm, 电阻率 ρ = 1 × 1012 Ω ⋅ m 。 在绝缘层外面又用铜层保护起来(如图所示)。 (1) 求长 L=1000m 的这种电缆沿径向的电阻; (2)当芯线与铅层的电势差为 100V 时,在这电缆 中沿径向的漏电流是多大? [解] (1)在绝缘层内距轴线 r 处作一半径为 r、厚度为 dr、长为 L 的同轴圆柱形薄壳, 此 薄壳沿径向的电阻
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A)一定都是平衡态。
物理下册课后习题答案
物理下册课后习题答案物理下册课后习题答案物理是一门研究物质运动规律的科学,它在我们的日常生活中无处不在。
通过学习物理,我们能够更好地理解世界的运行方式,并能够应用物理原理解决实际问题。
下册物理课后习题是巩固和运用所学知识的重要环节,下面是一些常见习题的答案,希望能对你的学习有所帮助。
一、选择题1. 以下哪个选项描述了牛顿第一定律?a) 物体在没有外力作用下会保持静止或匀速直线运动。
b) 物体受到外力作用时会改变其速度。
c) 物体受到外力作用时会保持静止。
d) 物体在没有外力作用下会保持匀速直线运动。
答案:a) 物体在没有外力作用下会保持静止或匀速直线运动。
2. 以下哪个选项描述了牛顿第二定律?a) 物体受到的合力等于物体的质量乘以加速度。
b) 物体受到的合力等于物体的质量除以加速度。
c) 物体受到的合力等于物体的质量加上加速度。
d) 物体受到的合力等于物体的质量减去加速度。
答案:a) 物体受到的合力等于物体的质量乘以加速度。
3. 以下哪个选项描述了牛顿第三定律?a) 物体受到的合力等于物体的质量乘以加速度。
b) 物体受到的合力等于物体的质量除以加速度。
c) 物体受到的合力等于物体的质量加上加速度。
d) 任何两个物体之间的作用力和反作用力大小相等、方向相反。
答案:d) 任何两个物体之间的作用力和反作用力大小相等、方向相反。
二、填空题1. 牛顿第二定律的公式是_______。
答案:F = ma2. 一个质量为2kg的物体受到一个10N的力,求物体的加速度。
答案:a = F/m = 10N/2kg = 5m/s²3. 一个物体的质量为5kg,受到一个10N的力,求物体的加速度。
答案:a = F/m = 10N/5kg = 2m/s²三、解答题1. 描述物体在水平面上匀速直线运动的条件。
答案:物体在水平面上匀速直线运动的条件是物体受到的合力为零,即物体受到的外力和摩擦力相等且方向相反。
物理学教学教材第二版下册答案内容(新)
物理学教程下册答案第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).9-3下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1Lr Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则 ()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x eE θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能 eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27 图第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A)N上的负电荷入地(B)N上的正电荷入地(C)N上的所有电荷入地(D)N上所有的感应电荷入地题10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
物理学(第五版)下册答案
物理学(第五版)下册答案量E=1/2kA^2,动能K=E-2p=1/2kA^2-kA^2=-1/2kA^2,因为动能为负数,所以振动不可能通过平衡位置。
___:1.判断一个振动是否为简谐振动的方法是,观察质点离开平衡位置的位移x随时间t变化的规律,如果遵从余弦函数或正弦函数,则该质点的运动为简谐振动。
简谐振动的运动学方程为x=Acos(ωt+φ)。
2.从动力学的角度来看,简谐振动是指物体在线性回复力作用下在平衡位置做周期性往复运动。
其动力学方程为d^2x/dt^2=-ω^2x。
3.简谐运动的三要素是振幅、周期和初相位。
其中振幅和初相位由初始条件决定,周期由振动系统本身的性质决定。
选择题:1.C。
2.A。
3.B填空题:1.平衡,最大位置,±π/2;2.6,2;-π/2;3.π,1.5s,3s。
计算题:1.解答:(m1+m2)u=m2v,kA=(m1+m2)u^2,A=sqrt(2(m1+m2)k/u),ω=sqrt(k/(m1+m2)),φ=π/2.2.解答:(1) 振动方向如图所示,(2) 相位差Δφ=φd-φa=3π/2-π/4=5π/4,Δt=1s,ω=Δφ/Δt=5π/4,所以振动方程为x=Acos(5π/4t-π/6)。
3.解答:(1) ω=sqrt(k/m),T=2π/ω=2πsqrt(m/k),(2) 动量守恒m1v1+m2v2=(m1+m2)v,解得v=(m1v1+m2v2)/(m1+m2),由能量守恒E=1/2kA^2=1/2(m1+m2)v^2,解得A=sqrt(2E/k),代入式子得x=sqrt(2E/k)cos(sqrt(k/(m1+m2))t)。
4.答案:(1) A=0.02m,ω=π/2,所以ν=ω/2π=1/4 Hz,T=1/ν=4s,φ=-π/3;(2) 势能Ep=kx^2/2,总能量E=Ep+Ek=1/2kA^2,动能Ek=E-Ep=-1/2kA^2,因为Ek为负数,所以振动不可能通过平衡位置。
关于物理学教程下册考试答案
9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S SSE S E Φd d ;依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布. 解 依照上述分析,由高斯定理可得;R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=;R r >时,302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为re rR E 2033ερ= 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功. 解1 由题意Q 1 所受的合力为零;()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=;将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V36π411101==R q εV ;当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=;若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则 (2) 两个球面间的电势差9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度. 解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E解得1812120m C 101.2ln/π2--⋅⨯==R R U ελ(2) 解得两圆柱面之间r =0.05m 处的电场强度10-10 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ上式积分得R Rd ελU -=ln π0因此,输电线单位长度的电容RdεR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC 按键按下的最小距离为10-12 一片二氧化钛晶片,其面积为1.0 cm 2,厚度为0.10 mm .把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V 电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2) 电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q 极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ 晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3) 晶片内的电场强度为1-5m V 102.1⋅⨯==dUE10-13 如图所示,半径R =0.10 m 的导体球带有电荷Q =1.0 ×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10 m ,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm 、15 cm 、25 cm 处的D 和E ;(2) 离球心为r =5 cm 、15 cm 、25 cm 处的V ;(3) 极化电荷面密度σ′. 解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R 0π421=⋅rD ;01=D ;01=E ;R <r <R +d Q r D =⋅22π422π4r Q D =;202π4r εεQ E r =;r >R +d Q r D =⋅23π423π4r Q D =;203π4r Q E ε=将不同的r 值代入上述关系式,可得r =5 cm 、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外. r 1 =5 cm ,该点在导体球内,则01=rD ;01=r Er 2 =15 cm ,该点在介质层内,εr =5.0,则2822m C 105.3π42--⋅⨯==r QD r r 3 =25 cm ,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ;13220m V 104.1π43-⋅⨯==r Q E r ε (2) 取无穷远处电势为零,由电势与电场强度的积分关系得r 3 =25 cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r Er 2 =15 cm , r 1 =5 cm ,(3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0 ,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=;()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n-=-=;()282m C 104.6π41--⋅⨯-=-=-='R εQ εPσr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号.10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U.10-19 有一电容为0.50 μF 的平行平板电容器,两极板间被厚度为0.01 mm 的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量. 解 (1) 电容器两极板间的电势差V 190b max==d E U(2) 电容器存贮的最大能量J 1003.92132max e-⨯=CU W 10-21 一空气平板电容器,空气层厚1.5 cm ,两极间电压为40 k V ,该电容器会被击穿吗? 现将一厚度为0.30 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10 MV· m -1.则此时电容器会被击穿吗?解 未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=bE ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E> ,空气层被击穿,击穿后40 k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E 由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿. 10-22 某介质的相对电容率 2.8rε=,击穿电场强度为611810V m -⨯⋅ ,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大. 解 介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0 k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047 μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量. 解 由上述分析可得矩形平面的总磁通量11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B ;在导线内r <R , 2222ππR Ir r R I I ==∑,因而202πR Ir μB =;;在导线外r >R ,II =∑,因而rIμB 2π0=11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图解 由上述分析得r <R 1 ;22101ππ12πr R μrB =⋅;21012πR Ir μB =R 1 <r <R 2;;;I μr B 022π=⋅;;rI μB 2π02=R 2<r <R 3;;()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π;;2223223032πR R r R r I μB --=r >R 3;;;()02π04=-=⋅I I μrB ;;04=B 磁感强度B (r )的分布曲线如图(b).11-18 已知地面上空某处地磁场的磁感强度40.410T B-=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L,即质子所受的洛伦兹力远大于重力.11-21 从太阳射来的速度为0.80×108m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=;;()b d l I I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F合力的方向朝左,指向直导线.12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为tΦπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t时,线圈中的感应电动势.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN=-=ξ当s 100.12-⨯=t 时,V 51.2=ξ. 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r ISμN S NB ψ==则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.解1 由上分析,得()lB d ⋅⨯=⎰OPOP E v lαB lo d cos 90sin ⎰=v()()l θB θωlo d 90cos sin ⎰-=l ()⎰==LL B l l B 022sin 21d sin θωθω由矢量B ⨯v 的方向可知端点P 的电势较高.12-13 如图(a)所示,金属杆AB 以匀速12.0m s-=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μBπ20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B则1220ln π2R R h N μI ψL =若管中充满均匀同种磁介质,其相对磁导率为μr,则自感将增大μr倍.12-20 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1时,线圈A 中感应电动势的大小和方向.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R IμN B B200=,穿过小线圈A 的磁链近似为 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A(2)线圈A 中感应电动势的大小为V 1014.3d d 4-⨯=-=tIM E A 互感电动势的方向和线圈B 中的电流方向相同.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10-3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RSI n μμN ψR ψR qcr c c 110201Δ1=--=-= 由此得T 10.02110===SN Rq I n BCr μμ 相对磁导率1991102==I n S N Rq Crμμ12-23 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?解 (1) 密绕长直螺线管在忽略端部效应时,其自感lSN L 20μ=,电流稳定后,线圈中电流REI =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w mm(2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值REI m=按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t LR R E I e 1中,得 14-9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3m 双缝间距: d =d ′λ/Δx =1.34 ×10-4 m14-11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n 将有关数据代入可得m 1074.4156-⨯=-=n d λ14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色? 解根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k neλ在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3m ,求细丝直径d .解 由分析知,相邻条纹间距1-∆=N xb,则细丝直径为14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)解 根据分析,有 2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ=1.4 ×10-6m .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S SSE S E Φd d ;依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布. 解 依照上述分析,由高斯定理可得;R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=;R r >时,302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为re rR E 2033ερ= 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功. 解1 由题意Q 1 所受的合力为零;()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=;将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为9-18 一个球形雨滴半径为 mm ,带有电量 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?解 根据已知条件球形雨滴半径R 1= mm ,带有电量q 1= pC ,可以求得带电球形雨滴表面电势V36π411101==R q εV ;当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=;若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则 (2) 两个球面间的电势差9-23 两个很长的共轴圆柱面(R 1 =×10-2m ,R 2 = m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r = m 处的电场强度. 解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E解得1812120m C 101.2ln/π2--⋅⨯==R R U ελ(2) 解得两圆柱面之间r = 处的电场强度10-10 两线输电线,其导线半径为 mm ,两线中心相距 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x x d x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ上式积分得R Rd ελU -=ln π0因此,输电线单位长度的电容RdεR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为 mm 2,两金属片之间的距离是 mm .如果电路能检测出的电容变化量是 pF ,试问按键需要按下多大的距离才能给出必要的信号?解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC 按键按下的最小距离为10-12 一片二氧化钛晶片,其面积为 cm 2,厚度为 mm .把平行平板电容器的两极板紧贴在晶片两侧.(1) 求电容器的电容;(2) 当在电容器的两极间加上12 V 电压时,极板上的电荷为多少? 此时自由电荷和极化电荷的面密度各为多少? (3) 求电容器内的电场强度.解 (1) 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2) 电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q 极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ 晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3) 晶片内的电场强度为1-5m V 102.1⋅⨯==dUE10-13 如图所示,半径R = m 的导体球带有电荷Q = ×10-8C ,导体外有两层均匀介质,一层介质的εr =,厚度d = m ,另一层介质为空气,充满其余空间.求:(1) 离球心为r =5cm 、15 cm 、25 cm 处的D 和E ;(2) 离球心为r =5 cm 、15 cm 、25 cm 处的V ;(3) 极化电荷面密度σ′. 解 (1) 取半径为r 的同心球面为高斯面,由高斯定理得 r <R 0π421=⋅rD ;01=D ;01=E ;R <r <R +d Q r D =⋅22π422π4r Q D =;202π4r εεQ E r =;r >R +d Q r D =⋅23π423π4r Q D =;203π4r Q E ε=将不同的r 值代入上述关系式,可得r =5 cm 、15 cm 和25 cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1 =5 cm ,该点在导体球内,则01=rD ;01=r Er 2 =15 cm ,该点在介质层内,εr =,则2822m C 105.3π42--⋅⨯==r QD r r 3 =25 cm ,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ;13220m V 104.1π43-⋅⨯==r Q E r ε (2) 取无穷远处电势为零,由电势与电场强度的积分关系得r 3 =25 cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r Er 2 =15 cm , r 1 =5 cm ,(3) 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0 ,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=;()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n-=-=;()282m C 104.6π41--⋅⨯-=-=-='R εQ εPσr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号.10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为 ×10-9m ,两表面所带面电荷密度为± ×10 -3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U.10-19 有一电容为 μF 的平行平板电容器,两极板间被厚度为 mm 的聚四氟乙烯薄膜所隔开,(1) 求该电容器的额定电压;(2) 求电容器存贮的最大能量. 解 (1) 电容器两极板间的电势差V 190b max==d E U(2) 电容器存贮的最大能量J 1003.92132max e-⨯=CU W 10-21 一空气平板电容器,空气层厚 cm ,两极间电压为40 k V ,该电容器会被击穿吗? 现将一厚度为 cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为,击穿电场强度为10 MV· m -1.则此时电容器会被击穿吗?解 未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=bE ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6 -26 可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E> ,空气层被击穿,击穿后40 k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E 由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.10-22 某介质的相对电容率 2.8rε=,击穿电场强度为611810V m -⨯⋅ ,如果用它来作平板电容器的电介质,要制作电容为 μF ,而耐压为 k V 的电容器,它的极板面积至少要多大. 解 介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m = k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为 μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量. 解 由上述分析可得矩形平面的总磁通量11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B ;在导线内r <R , 2222ππR Ir r R I I ==∑,因而202πR Ir μB =;;在导线外r >R ,II =∑,因而rIμB 2π0=11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图解 由上述分析得r <R 1 ;22101ππ12πr R μrB =⋅;21012πR Ir μB =R 1 <r <R 2;;;I μr B 022π=⋅;;rI μB 2π02=R 2 <r <R 3 ;;()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π;;2223223032πR R r R r I μB --=r >R 3;;;()02π04=-=⋅I I μrB ;;04=B 磁感强度B (r )的分布曲线如图(b).11-18 已知地面上空某处地磁场的磁感强度40.410T B-=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯g v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L,即质子所受的洛伦兹力远大于重力.11-21 从太阳射来的速度为×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d = cm , b = cm ,l = m .解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=;;()b d l I I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F合力的方向朝左,指向直导线.12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t时,线圈中的感应电动势.解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN=-=ξ当s 100.12-⨯=t 时,V 51.2=ξ.12-9 如图所示,一长直导线中通有I = A 的电流,在距导线 cm 处,放一面积为 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在 ×10-2s 内把此线圈移至距长直导线 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为×10-2Ω,求通过线圈横截面的感应电荷.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r ISμN S NB ψ==则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ电动势的指向为顺时针方向. (2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB lo d cos 90sin ⎰=v()()l θB θωlod 90cos sin ⎰-=l ()⎰==LL B l l B 022sin 21d sin θωθω由矢量B ⨯v 的方向可知端点P 的电势较高.12-13 如图(a)所示,金属杆AB 以匀速12.0m s-=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.12-16 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNIμBπ20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψSR R ==⋅=⎰⎰S B则1220ln π2R R h N μI ψL =若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.12-20 如图所示,一面积为 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1时,线圈A 中感应电动势的大小和方向.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RIμN B B200=,穿过小线圈A 的磁链近似为则两线圈的互感为H 1028.6260-⨯===RSμN N I ψMA B A A (2)线圈A 中感应电动势的大小为V 1014.3d d 4-⨯=-=tIM E A 互感电动势的方向和线圈B 中的电流方向相同.12-22 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 = ×10 -2A ,在环上再绕一线圈C ,共10 匝,其电阻为 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为 ×10-3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RSI n μμN ψR ψR qcr c c 110201Δ1=--=-= 由此得T 10.02110===SN Rq I n BCr μμ 相对磁导率1991102==I n S N Rq Cr μμ12-23 一个直径为 m ,长为 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为 Ω.求:(1) 如把线圈接到电动势E = V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?解 (1) 密绕长直螺线管在忽略端部效应时,其自感lSN L 20μ=,电流稳定后,线圈中电流REI =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度m w 处处相等,3m J 17.4-⋅==SLW w mm(2) 自感为L ,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律⎪⎪⎭⎫ ⎝⎛-=-t L R R E I e 1,当电流稳定后,其最大值REI m=按题意⎥⎦⎤⎢⎣⎡=22212121m LI LI ,则R E I 22=,将其代入⎪⎪⎭⎫ ⎝⎛-=-t L RR E I e 1中,得 14-9 在双缝干涉实验中,用波长λ= nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为 mm ,求双缝间的距离.解 根据分析:Δx =(x 5 -x -5)/10 =×10-3 m 双缝间距: d =d ′λ/Δx = ×10-4 m14-11 如图所示,将一折射率为的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n 将有关数据代入可得m 1074.4156-⨯=-=n d λ14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为.试问该膜的正面呈现什么颜色? 解根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k neλ在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ= nm ,L = ×10-2m ,测得30 条条纹的总宽度为 ×10-3 m ,求细丝直径d .解 由分析知,相邻条纹间距1-∆=N xb,则细丝直径为14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ= 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对 nm 激光的折射率为)解 根据分析,有 2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ= ×10-6m .。