燃气锅炉烟气余热回收技术方案
余热回收技术
(三)气—汽式热管换热器
应用场合:应用热管作为传热元件,吸收较高温度的烟气余热用来产生蒸汽,所产生的蒸汽可以并倂入蒸汽管网(需达到管网压力),也可用于发电(汽量较大且热源稳定)或其他目的。对钢厂,石化厂及工业窑炉而言,这是一种最受欢迎的余热利用形式。
设备优点:
每支热管都是一个独立的传热单元,可根据不同的温度水平而设计;
烧结工序的余热利用:
烧结工序是高炉矿料入炉以前的准备工序。有块状烧结和球团状烧结两种工艺。块状烧结是将不能直接加入炉的炼铁原料,如精矿粉、高炉炉尘、硫酸渣等配加一定的燃料和溶剂,加热到1300~1500℃,使粉料烧结成块状。球团烧结则是将细磨物料,如精矿粉配加一定的黏结剂,在造球设备上滚成球,然后在烧结设备上高温烧结。两种烧结过程都要消耗大量的能源。据统计,烧结工序的能耗约占冶金总能耗的12%。而其排放的余热约占总能耗热能的49%。回收和利用这些余热,显然极为重要。烧结工序内废气温度分布示意图如下图。回收余热主要在成品显热及冷却机的排气显热两个方面。
(一)气—气式热管换热器
(1)热管空气预热器系列
应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。
设备优点:
*因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍;
*因为烟气在管外换热,有利于除灰;
隧道窑烟道气余热利用:
隧道窑余热回收主要用以加热空气作为烘干坯件的热源,也可作为助燃空气以提高窑炉本身的热效率,两者的选择可依据各工厂具体情况而定。其回收流程下图所示。
电瓷厂隧道窑冷却带余热利用:
将电瓷厂隧道窑冷却带400℃~450℃的废气抽出通过热管换热器换热,烟气温度降至300℃,再返回窑炉中烧成带作为气氛膜风使用。被加热的新鲜空气送入烘房,干燥电瓷坯件。
燃气锅炉烟气余热回收利用技术
燃气锅炉烟气余热回收利用技术摘要:随着能源价格的日益增长,以及环境污染的日趋严重,对燃气锅炉烟气余热进行回收已经成了一个越来越重要的话题,燃气锅炉烟气的余热回收技术是一种进行余热回收和热量再次利用的设计,这是针对锅炉尾部烟气的余热而实施的。
本文对锅炉烟气余热回收方式以及回收装置进行简单介绍,并对烟气余热回收技术进行了节能意义及经济效益评估,希望为该项工作的开展提供参考。
关键词:燃气锅炉烟气;余热回收;热泵技术应用燃气锅炉是工业生产中经常被运用的设备,燃气的燃烧会产生余热,余热是二次能源利用的一种。
锅炉的烟气排放是造成热能动力损耗的原因,而且直排烟气还会造成环境污染。
另一方面,如果不进行处理,锅炉排烟的温度远远超过100℃,造成烟气“白烟”。
如何积极的利用锅炉燃烧中产生的余热进行二次投入,对于提高锅炉的各项效率减少污染的排放率尤其重要。
同时烟气余热回收满足日益严格的环保“消白烟”要求。
1、锅炉烟气余热回收技术利用1.1锅炉烟气余热回收利用的难点及解决方法对锅炉的烟气余热进行回收的实际应用当中,存在一定程度的障碍,如果采用常规的换热器,一旦排烟温度比较低,则会导致锅炉尾部受热面中的烟气和工制存在着温差传热减小的趋势,导致传热面积被增大,由于布置的管道多而密,局限在有限的空间之内,会造成烟气流阻力大,以及金属消耗和动力消耗比较大,导致设备初期的投资大幅度增加[1]。
同时由于燃气锅炉节能器后烟气温度本身不高,进行回收困难。
热泵式烟气回收技术是这几年新兴的技术,很多地方环保局鼓励企业进行热泵烟气余热回收的技术改造。
烟气冷凝热回收原理是在燃气锅炉之后设置烟气冷凝热换热器,利用锅炉尾部的低温烟气的余热进行低温换热(在锅炉回水温度70℃时,锅炉的排烟温度从约90℃降低到40℃以下;在锅炉回水温度60℃时,锅炉的排烟温度从约90℃降低到30℃以下),通过系统循环水,置换出烟气的低温余热,同时,采用吸收式热泵技术吸收循环水的热量,转化为低温热水,通过补燃天然气进一步将锅炉回水加热到目标温度。
燃气锅炉烟气冷凝余热回收与低氮排放协同处理技术研究
燃气锅炉烟气冷凝余热回收与低氮排放协同处理技术研究一、引言燃气锅炉是目前工业和民用领域广泛使用的一种热能转换设备。
在燃烧过程中,燃气锅炉产生的烟气中含有大量的热能,传统锅炉只能利用一部分烟气中的热能,而将另一部分烟气中的热能排放到大气中,造成能源浪费和环境污染。
为了提高燃气锅炉的能量利用效率和环保性能,烟气冷凝余热回收与低氮排放协同处理技术应运而生。
二、燃气锅炉烟气冷凝余热回收技术燃气锅炉烟气冷凝余热回收技术包括两个主要过程:烟气冷却和冷凝。
烟气冷却通过增加锅炉的换热面积和调整烟气进出温度差,将烟气的温度降低到冷凝点以下。
冷凝过程中,烟气中的水蒸气在冷凝器中与冷却介质接触,迅速转化为液态水,释放出大量的潜热。
冷凝后的液态水可以回收利用,而在冷凝过程中释放的热能可以用于供暖和生产过程中。
三、燃气锅炉低氮排放技术燃气锅炉的燃烧过程中会产生一定量的氮氧化物(NOx),这种气体对环境具有很高的污染性。
因此,降低燃气锅炉的氮氧化物排放是一个重要的问题。
低氮排放技术主要包括燃烧优化、SNCR(Selective Non-Catalytic Reduction, 选择性非贵金属催化还原)和SCR(Selective Catalytic Reduction, 选择性催化还原)等方法。
燃气锅炉的燃烧优化主要是在燃烧控制系统中进行调整,通过优化燃烧过程中的空气燃料比、进气预热温度等参数,降低锅炉的燃烧温度和氮氧化物的生成量。
SNCR和SCR技术则主要是通过在燃烧过程中添加还原剂,将氮氧化物转化为无害物质。
SNCR是在燃烧过程中添加氨水或尿素等还原剂,通过与氮氧化物发生化学反应,将其还原为氨气和水。
SCR则是利用催化剂,将氨气与NOx反应生成氮和水。
四、烟气冷凝余热回收与低氮排放协同处理技术烟气冷凝余热回收与低氮排放技术可以进行协同处理,相互促进,进一步提高燃气锅炉的能量利用效率和环保性能。
首先,在烟气冷凝过程中,烟气中的水蒸气被冷凝为液态水,提供给低氮排放过程中的SNCR或SCR反应所需的还原剂。
烟气余热回收技术方案
烟气余热回收技术方案1. 背景介绍烟气是许多工业生产过程中产生的一种重要废气。
燃烧产生的烟气中含有大量的热量,如果不进行有效的回收利用,将会造成能源的浪费和环境的污染。
因此,烟气余热回收技术成为了重要的研究方向之一。
本文将介绍一种烟气余热回收技术方案,以实现高效能源利用和环境保护。
2. 技术原理该烟气余热回收技术方案基于换热原理,通过烟气与工艺流体之间的热量交换,实现热能回收。
具体的技术原理如下:1.烟气预处理:在烟气进入烟道前,对其进行预处理,去除大颗粒的烟尘和其他污染物,以确保烟气的净化程度和换热器的正常运行。
2.烟气与工艺流体换热:将烟气通过烟道引导至烟气换热器中,与工艺流体进行热量交换。
工艺流体可以是水、油等,在换热器内与烟气进行流体间的热交换,使烟气中的热量传递给工艺流体,从而实现热能的回收利用。
3.对工艺流体进行冷却:烟气中的热能传递给工艺流体后,工艺流体温度升高。
为了保证回收后的热能能够有效利用,需要对工艺流体进行冷却。
这可以通过使用冷却器或进行进一步的热量转移实现。
4.回收后的热能利用:冷却后的工艺流体可以用于供热、供暖或其他工业生产过程中的热能需求,从而实现能源的高效利用。
3. 技术优势该烟气余热回收技术方案具有以下优势:•高效能源利用:通过回收烟气中的热能,将原本浪费的能源转化为可用的能源,提高能源利用率。
•环境保护:减少煤、油等能源的消耗,降低二氧化碳等温室气体的排放,对环境具有积极的影响。
•经济效益:通过烟气余热的回收利用,降低了企业的能源消耗成本,提高了企业的经济效益。
•可持续发展:烟气余热回收技术是一种可持续发展的技术,有助于提高能源的可再生利用率,减少对自然资源的依赖。
4. 技术应用烟气余热回收技术可以应用于各个领域,包括但不限于以下几个方面:•工业生产:适用于钢铁、化工、电力等工业生产过程中产生的烟气,将烟气中的余热转化为工艺流体的热能需求,减少能源浪费。
•建筑供热:可将烟气余热应用于建筑供热系统中,为建筑提供温暖的供暖水源,减少传统能源的消耗。
燃气锅炉烟气余热回收技术方案
低温端5~10℃温差
板式冷凝换热
9
气液冷凝换热原理:
冷凝式气液板壳采用不对称结 构、强制换热流程通道的板壳 式换热器,换热器两侧流体通 道截面积相差近10倍。其中大 截面积通道用于通过体积流量 大的气体,来降低气体的压力 损失。小截面积通道用于通过 体积流量小的液体,来确保液 体换热所需的流速。
5
50℃ 40℃
6
三、 中大型烟气全热回收系统
“同为中大型燃气锅炉烟气全热深度回收系统”使锅 炉热效率提高15~17%以上。系统利用吸收式热泵和 冷凝式换热原理,将10t以上燃气锅炉或燃气热电厂的 烟气排放温度降低至30℃以下,回收利用燃气锅炉烟 气中的显热和潜热。同时,消除烟气中的粉尘及冒“白 烟”现象。
1
天然气燃烧热平衡图
节能空间
结论:可回收≥15%的热量,热效率提高≥ 17%
2
锅炉理论效率与排烟温度的关系
露点温度
结论:1、烟气温度降至60℃时,锅炉热效率可提高3~6%; 2、烟气温度再降至30℃以下时,热效率再提高8~10%。
3
二、小型烟气全热回收系统
同为小型燃气锅炉烟气全热回收节能产品,系 统热效率提高15~17%以上。该系统采用气液换热 冷凝器和热泵余热回收专利技术,将烟气温度降到 25℃以下,回收燃气锅炉烟气中的显热和潜热,用 于供暖、供应卫生热水或其它工艺生产应用,实现了 烟气全热(显热和潜热)的回收利用。
燃气锅炉 烟气余热回收技术方案
湖南同为节能科技有限公司
HuNan TOWNS Energy Technology CO.,LTD
0
一、燃气锅炉烟气节能分析
近年来,中大型燃气热水锅炉和天然气热电厂在集中供 暖地区作为供热热源得到大量的应用,同时小型燃气锅炉在人 民的生产生活中已经得到大量应用。
锅炉烟气余热回收方案
锅炉烟气余热回收方案引言在传统锅炉中,燃料的燃烧会产生大量的烟气,其中包含大量的热能。
然而,在传统的锅炉运行中,烟气中的余热往往被直接排放至大气中,导致能源的浪费和环境的污染。
为了充分利用和回收这部分烟气余热,提高能源利用效率和减少环境污染,研发锅炉烟气余热回收方案成为工程技术领域的热点之一。
本文将介绍几种常见的锅炉烟气余热回收方案及其工程应用。
1. 锅炉烟气余热回收原理锅炉烟气余热是指在锅炉燃烧过程中,未能被充分利用的热能。
烟气中的余热主要包括高温烟气和烟气中的水蒸气。
回收锅炉烟气余热的原理是通过烟气与工作介质(如水、空气等)的热交换,将烟气中的热能传递给工作介质,在回收烟气余热的同时实现能量的转换和利用。
2. 锅炉烟气余热回收方案2.1 烟气余热锅炉烟气余热锅炉是常见的一种烟气余热回收设备。
它通过在锅炉尾部增设余热回收器,在烟气经过锅炉尾部时,将高温烟气中的余热传递给工作介质,实现烟气余热的回收和再利用。
烟气余热锅炉可以将烟气中的余热转化为蒸汽、热水或其他工质,用于供热、发电或其他生产用途。
这种方案具有回收效果好、能源利用率高的优点,目前在工业领域得到广泛应用。
2.2 烟气换热器烟气换热器是另一种常见的烟气余热回收设备。
它通过在烟气管路上增设换热器,将烟气中的余热传递给工作介质,实现余热的回收和再利用。
烟气换热器可以将烟气中的高温热能转化为低温热能或其他形式的能量,例如热水、蒸汽等。
这种方案适用于烟气温度较高的情况,可以有效提高热能利用率和能源利用效率。
2.3 烟气余热发电系统烟气余热发电系统是将烟气余热转化为电能的一种方案。
它通过在锅炉系统中增设烟气余热发电装置,将烟气中的余热转化为蒸汽,并通过蒸汽发电机组发电。
这种方案适用于需要大量电能的场景,如工业厂房、发电厂等。
烟气余热发电系统可以充分利用烟气中的余热,提高能源利用效率,同时减少对传统能源的依赖,具有良好的经济和环境效益。
3. 烟气余热回收方案的应用案例3.1 石化行业在石化行业中,烟气余热回收方案得到了广泛应用。
余热回收技术
一、锅炉烟气余热回收简介:工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。
热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。
节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。
改造投资3-10个回收,经济效益显著。
(一)气—气式热管换热器(1)热管空气预热器系列应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。
设备优点:*因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍;*因为烟气在管外换热,有利于除灰;*因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀;*通过设计,可调节壁温,有利于避开露点腐蚀结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,见图1;热管倾斜放置型,烟气和空气反向垂直上下流动,见图2。
(二)气—液式热管换热器应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。
设备优点:*烟气侧为翅片管,水侧为光管,传热效率高;*通过合理设计,可提高壁温,避开露点腐蚀;*可有效防止因管壁损坏而造成冷热流体的掺混;结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置),如图3所示(三)气—汽式热管换热器应用场合:应用热管作为传热元件,吸收较高温度的烟气余热用来产生蒸汽,所产生的蒸汽可以并倂入蒸汽管网(需达到管网压力),也可用于发电(汽量较大且热源稳定)或其他目的。
对钢厂,石化厂及工业窑炉而言,这是一种最受欢迎的余热利用形式。
燃气锅炉烟气余热深度回收技术及应用分析方案
燃气锅炉烟气余热深度回收技术及应用分析1、概述燃气锅炉作为主要的采暖设备,燃烧产生的烟气温度通常很高,这些烟气含有大量的显热和潜热,如果不经处理直接排放到大气中会造成能量浪费。
排烟温度越高,排烟热损失越大,一般排烟温度升高15~20 ℃,就会使排烟热损失增加1%,如果能将这部分热量回收利用起来,不仅节约能源,而且提高了锅炉热效率。
目前,烟气余热回收技术主要有两种:热泵式烟气余热回收技术和换热器式烟气余热回收技术。
热泵式烟气余热回收技术前期投资成本高,所需安装空间较大;换热器式烟气余热回收技术一般仅在锅炉尾部烟囱上加装烟气余热回收装置,但受被加热介质温度等方面的限制,处理后的低温烟气温度仍然较高,大部分水蒸气汽化潜热未被回收利用,造成能源浪费和环境污染。
由于天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的体积分数较高,烟气可利用的热能中,水蒸气的汽化潜热所占份额相当大,若将烟气冷却到露点温度以下,并深度回收利用天然气燃烧时产生的水蒸气凝结时放出的大量潜热,可进一步提升燃气锅炉热效率。
2、冷凝热回收计算锅炉烟气显热的回收量主要体现在锅炉排烟的温降幅度,而潜热回收量主要体现在烟气中水蒸气的凝结量,即当排烟温度低于露点温度,有水蒸气凝结时,烟气的放热量应用烟气的焓差表示。
不同地区燃气成分不同,不同锅炉燃烧工况不同,所以燃烧产物即烟气的成分和状态各不相同,特别是烟气中水蒸气含量各异,使得烟气热回收潜力存在差异。
选取过量空气系数α=1.1,相应露点温度为 58.15℃的工况进行相关参数的计算。
根据供热系统实际运行工况,相对于锅炉本体排烟温度(一级余热回收装置进口烟温)为 110 ℃时,不同排烟温度下显热回收量、潜热回收量、水蒸气冷凝率以及锅炉热效率增量的计算结果。
由计算结果可知,排烟温度越低,水蒸气冷凝率越高,潜热和显热回收量也相应越高。
当排烟温度低于 60 ℃(接近烟气露点温度)时,回收总热量及锅炉热效率的变化值迅速增大,这主要是由于排烟温度低于露点温度,烟气中水蒸气的汽化潜热得以回收;当排烟温度继续降至40℃时,水蒸气冷凝率65% ,每燃烧 1 m3 天然气所回收的显热为 1 090 kJ,潜热为2650 kJ,锅炉热效率可提高10.17% 。
燃气锅炉燃烧中余热回收利用的措施
燃气锅炉燃烧中余热回收利用的措施摘要:随着新能源的流行,对燃气锅炉燃烧过程的余热进行回收是未来发展的必然趋势。
在对天然气基本特征进行介绍的基础上,分析了排烟温度对余热回收中的冷凝率和锅炉供热效率的影响情况,发现存在反比例关系,而空气含湿量对水蒸气露点温度具有促进作用,有利于水蒸气热量的冷凝回收。
关键词:燃气锅炉;燃烧余热;回收利用引言加热炉所具有的余热资本性最大限度的回收了所产生的余热资本,并且还提升了该余热资本的利用效率。
加热炉体系的应用充分表明了,该余热资本所具有的回收技能不仅提升了加热炉燃料的利用效率,还可以综合应用烟气以及蒸汽等余热资本,在获得经济效益的同时,也获得了明显的社会效益,所以可以被广泛的推行与使用。
1当前燃气锅炉烟气余热回收技术分析1.1利用蒸发器回收余热技术所谓的燃气锅炉烟气余热回收技术,在早期就是指把燃气锅炉中的燃气,进行再次过滤,获得里面的热能,对这些热能加以利用,达到节约资源,减少浪费的目的。
在温度比较低的时候由于烟气的温差都比较小,所以工作人员在这个时候需要不断的对排烟温度进行降温处理,以保证受热面的温度正常。
但由于早期的烟气余热回收工具的回收能力的有限,所以导致当烟气的温度超过了设备的露点温度的时候,也就是达到了零下160℃时,烟气的会收率被大幅度的降低,这也就导致了有很多烟气余热并没有被我们回收利用到,造成了很大的浪费。
但现在,随着科技技术的不断进步,燃气锅炉烟气余热回收技术经过不断的改良,产生了蒸发器回收余热技术,这种新技术比较传统的烟气余热回收技术,更加的容易操作、更加的稳定,而且还能够有效的提升烟气余热回收利用的效率,减少烟气中热能的损失。
蒸发器烟气余热回收技术可以在水蒸气之中对烟气进行分解,保障烟气中的热量得到更好的分解和释放。
由于蒸发器烟气余热回收装置与之前的烟气余热回收装置工作原理不相同,蒸发器的烟气余热回收技术由之前的单向对流热改进成了凝结式换热,设备中增添了很多的玻璃材料,为了在冷凝式锅炉烟气回收过程中出现严重的腐蚀问题,操作人员需谨慎操作,对冷凝液的腐蚀问题做好防护。
烟气余热回收技术方案
烟气余热回收技术方案1.引言:随着工业化的发展,许多工业过程会产生大量的烟气余热。
如果这些余热不加以利用,不仅对环境造成负面影响,还会浪费能源资源。
因此,烟气余热回收技术的研发和应用变得至关重要。
本文将探讨一些常见的烟气余热回收技术方案。
2.烟气余热回收技术方案:2.1烟气热交换器烟气热交换器是一种常见的烟气余热回收技术方案。
烟气热交换器的原理是通过传导、对流、辐射等方式,将烟气中的热量传递给工作介质(如水或空气),从而提高工作介质的温度。
具体来说,烟气经过烟气热交换器后,冷却,而介质则被加热,可以用于供暖、工业热水等。
2.2高温烟气直接回收在一些高温烟气的情况下,可以直接回收其中的热能。
例如,高温烟气可以用于直接发电或驱动蒸汽涡轮机,从而产生电力或机械功。
这种烟气直接回收技术方案不仅能够有效回收热能,还能够实现能源的多次利用。
2.3烟气余热利用系统烟气余热利用系统是一种集成化的烟气余热回收技术方案。
该系统由多个组件组成,包括烟气余热锅炉、热交换器、余热净化装置等。
其工作原理是将从工业烟气中回收的余热传递给工作介质,并进一步利用该余热进行供热、发电等用途。
2.4烟气余热发电系统烟气余热发电系统是一种通过回收烟气中的热能来发电的技术方案。
该系统在烟气热交换器中通过热能传递的方式将烟气中的热量传递给工作介质,使其达到足够高的温度和压力,从而驱动蒸汽涡轮机产生电力。
3.烟气余热回收技术方案的应用和优势:3.1工业领域应用3.2环境保护优势3.3节能效益4.结论烟气余热回收技术方案在工业生产和环境保护中具有重要的意义。
通过采用适当的技术方案,可以有效回收烟气中的热能,提高能源利用效率,降低能源消耗和环境污染。
值得注意的是,不同的行业和工艺过程可能需要采用不同的烟气余热回收技术方案,因此在具体应用中需要根据实际情况进行选择和调整。
烟气余热回收技术方案
烟气余热回收利用改造项目技术方案***节能科技有限公司二O一二年一、运行现状锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2。
1MW 锅炉2台(一用一备),供热面积4。
5万m2。
经监测,**锅炉房2台锅炉正常运行排烟温度在150—-170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃).锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显.二、技术介绍烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。
有着显著的节能效益。
主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。
对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。
这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。
普通天然气锅炉的排烟温度一般在120—-250℃,这些烟气含有8%-—15%的显热和11%的水蒸气潜热。
加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1。
66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用.从而达到节能增效的目的。
三、改造方案3.1、设备选型烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。
瑞典AIREC公司是世界上唯一一家钎焊式模块化非对称流量板式换热器的专业生产制造商,凭借独到的设计理念,雄厚的产品开发能力和多年行业丰富的实践经验使AIREC成为在非对称流量换热领域的真正领导者.irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。
燃气锅炉烟气余热回收技术及应用
创新观察—392—燃气锅炉烟气余热回收技术及应用朱 军(阿斯创钛业(营口)有限公司,辽宁 营口 115013)前言20世纪50年代,一种以天然气、煤气等可燃性气体为能源的锅炉诞生,这就是最初代的燃气锅炉。
从20世纪50年代燃气锅炉出现到20世纪末21世纪初,人们在使用的过程中并未对锅炉排放的烟气余热加以利用,导致了大量的热量白白损失。
近年来,随着我国科技的发展,在对烟气余热利用技术上有了较大提高,目前主要使用冷凝式烟气余热回收技术进行烟气余热的回收利用。
下文就冷凝式烟气余热回收技术的特点及应用形式进行分析阐述,并就部分问题提出建议,以期为我国的节能减排事业贡献自己的一份力量。
1 燃气锅炉烟气余热回收的主要原理天然气为燃气锅炉的主要燃料,其主要成分是含有碳、氢两种元素的甲烷,因甲烷燃烧会生成水(水蒸气形态),因此燃气锅炉相比于其他燃料的锅炉,其烟气中含水量相对较高,燃气锅炉烟气成分如表1所示。
表1燃气锅炉烟气成分%水汽化是个吸热反应,因此甲烷燃烧生成的水蒸气中含有大量的热能,水蒸气所含热能大约占天然气热能的10%,燃气锅炉运行过程中热能损失最多的地方就是烟气,若不增加和提高烟气回收利用技术的研究开发与利用,将直接降低锅炉的热效率。
就天然气锅炉而言,露点温度一般在55℃~60℃,烟气余热回收利用的原理是利用水蒸气冷凝成水,释放出汽化时吸收的热量,再利用换热器或热泵对这部分热能进行利用,达到烟气余热回收利用的目的。
目前烟气余热主要应用于供暖企业的回水加热、锅炉补水预热等方面,图1为一种典型的烟气余热回收利用流程示意图。
图1 一种一种典型的烟气余热回收利用流程示意图2 冷凝式烟气余热回收技术我国的能源消耗量为全球第一,占比达23.2%,但能源的利用率却只有33%,远低于日本的57%,美国的51%,我国在十一五规划纲要中提出了节能减排,因此人们就对燃气锅炉排放烟气的余热进行了研究利用,在提升锅炉热效率的同时达到了节能减排的目的。
锅炉烟气余热回收方案
长沙聚华热能科技有限公司 (4) 工程投资在六个月内收回.
锅炉烟气节能项目
7、工艺设计及说明
7.1 节能工艺的选定: 锅炉是蒸汽锅炉,锅炉仅有少量蒸汽冷凝回水,进锅炉水温在 30-40℃左右,所以 考虑加热锅炉补水来达到节能目的。 ⑴节能工艺流程框图: 烟气 70℃以下排放 5
9、节能经济效益分析 ........................................... 7
9.1 基本参数及计算 ..................................................... 7 9.2 热量平衡计算: ..................................................... 8
循环水泵的起停由换热器进烟温度及软水箱液位来控制液位到达高水位时循环泵起动到达中水位时循环泵停但二台换热器进口温度都没达到设定值时循环泵不起动锅炉都处于停炉状态只要有一台锅炉运行通过换热器进烟温度检测且液位到达液位循环泵都会自动运行
锅炉烟气余热回收工程
方
案
书
长沙聚华热能科技有限公司
2014 年 5 月
2、设计依据
(1) 有关法规与技术标准 《实用节能手册》 《高温烟气余回收节能系统技术条件》 《重力热管技术条件》 《供配电系统设计规范》 (GB50052-95) 《低压配电系统设计规范》 (GB50054-95) 其他相关的建设标准、规范文件 (2) 甲方单位提供的有关资料
9、节能经济效益分析
9.1 基本参数及计算 本项目热力计算的基本参数于下表所示: 指标 1Nm3 气燃烧产生的烟气量 标态下烟气密度 标态下烟气的比热容 天燃气低位发热值 天燃气价格 天燃气锅炉的效率 热量单位换算 原排烟温度 换热后烟温 具体计算过程如下: (1)烟气量计算 由于 1m3 天然气燃烧产生的理论湿烟气量:10.64Nm3, 燃油燃气锅炉过量空气系数为 1.05-1.20(取 1.1) , 则 1Nm3 天然气燃烧产生的实际湿烟气量为: Vy=10.64Nm3×1.1=11.604Nm3 符号 Vy ρy λy q Ρ η B W1 W2 单位 Nm3 kg/Nm3 KJ/Kg.℃ Kcal/Kg 元/Nm3 % KJ/Kcal ℃ ℃ 数量 11.6 1.232 1.17 8000.00 3 0.90 4.18 210.00 70.00
浅议燃气锅炉烟气余热回收技术
科学技术创新2019.35浅议燃气锅炉烟气余热回收技术赵兴罡(中油辽河工程有限公司,辽宁盘锦124010)1概述燃气锅炉技术诞生于二十世纪五十年代,是一种以天然气、煤气等可燃兴趣气体为主要原料运行并提供能源的锅炉,目前被广泛应用于发电行业、采暖行业和工业领域中。
经研究分析可知,燃气锅炉的排烟温度一般在200度至250度之间,这种高温度的烟气排放导致锅炉生产运行过程中产生大量的热量损失,如果能够将这部分热量加以回收和利用不但能够大大提升锅炉的运行效率还能从根本上促进绿色减排政策。
近年来,随着科技水平的不断提升,我国烟气余热回收技术也有了较大的改善,当前国内最主要的烟气余热回收技术包括两类,即利用换热器进行烟气余热回收的技术和利用热泵进行烟气余热回收的技术,本文对这两种烟气余热回收技术的特点和应用形式进行了总结,指出了当前燃气锅炉烟气余热回收过程中的关键性问题,为今后的探索和研究推广提供了一定的参考和借鉴。
2燃气锅炉烟气余热回收的基础理论燃气锅炉中最重要的燃料是天然气,天然气的主要组成成分为含氢量较高的甲烷,甲烷完全燃烧后烟气中的含水量通常要略高于其他燃料成分,为了更好的进行分析研究我们将天然气完全燃烧后烟气中的成分含量进行了提取和测量,具体如表1所示。
表1天然气完全燃烧后烟气成分%另外我们以城市内天然气锅炉燃烧为例,建设天然气烟气排放温度为200度,那么锅炉的热平衡中,热量损失最大的部分即为烟气排放时带走的热量,其中排气散热中不仅将烟气余热带走了,同时还将水蒸气中的潜热,据统计被带走的这部分热量能够达到天然气全部发热量的六分之一,因此锅炉排烟造成的热损失是影响锅炉燃烧效率的决定性因素。
经实践表明,烟气温度的高低与烟气可回收热量与锅炉的热效应成反比关系,即当烟气温度降低时可回收的热量和锅炉的热效应会迅速升高,换句话说为了尽可能的提升锅炉的运行效率应该将排气温度进行控制并保证在一定温度以下。
3燃气锅炉烟气余热回收技术发展3.1早期回收技术。
锅炉烟气余热深度利用技术使用计划方案
锅炉烟气余热深度利用技术使用计划方案一、实施背景锅炉是工业生产中常见的热能装置,其烟气中含有大量的余热能,未经利用就直接排放,造成了能源的浪费和环境的污染。
为了更好地节能减排,提高能源利用效率,深度利用锅炉烟气余热已成为当前工业生产中的重要课题。
二、工作原理锅炉烟气余热深度利用技术主要是通过烟气余热回收装置将烟气中的余热引导至余热回收系统,经过换热器进行传递,最终将余热转化为可用的热能源,用于加热水或发电等用途。
三、实施计划步骤1.实施前期准备:确定项目实施的目标、方案和资金预算等。
2.设计方案:根据实际情况,制定合理的余热回收装置和换热器的设计方案。
3.设备采购:根据设计方案,采购合适的余热回收装置和换热器。
4.设备安装:根据设计方案,进行余热回收装置和换热器的安装。
5.调试运行:进行设备的调试和运行,确保设备正常运行。
6.监测评估:对设备的运行情况进行监测和评估,及时解决问题。
四、适用范围锅炉烟气余热深度利用技术适用于各种类型的锅炉,如燃煤锅炉、燃气锅炉、生物质锅炉等。
五、创新要点1.设计合理的余热回收装置和换热器,提高余热回收效率。
2.采用先进的控制系统,实现设备的自动化控制,提高运行效率。
3.对设备的监测和评估,及时解决设备故障,提高设备的可靠性和稳定性。
六、预期效果1.提高能源利用效率,减少能源浪费。
2.减少环境污染,降低排放物的排放量。
3.减少企业的能源成本,提高经济效益。
七、达到收益1.降低能源成本,提高经济效益。
2.减少污染物排放,符合环保要求。
3.提高企业的社会形象和竞争力。
八、优缺点优点:能够充分利用锅炉烟气中的余热,提高能源利用效率,减少能源浪费和环境污染。
缺点:设备投资较大,需要一定的资金支持;设备的运行需要一定的技术支持。
九、下一步需要改进的地方1.提高设备的自动化控制水平,减少人工干预。
2.提高设备的可靠性和稳定性,减少设备故障率。
3.加强设备的监测和评估,及时发现和解决问题。
燃气锅炉的余热回收及其方法
燃气锅炉的余热回收及其方法燃气锅炉是热能转换设备的重要组成部分,工业和家庭常常使用燃气锅炉作为主要的供暖和热水加热设备。
在燃烧的过程中,燃气锅炉会产生大量余热,如果这些余热得不到充分利用,将会造成能源的浪费和环境的污染。
因此,对于燃气锅炉的余热回收和利用,不仅有益于节约能源、降低成本,同时也可以保护环境、减少污染。
1. 余热回收的概念和基本原理余热是指燃气锅炉在燃烧过程中产生的热量,大多数燃气锅炉的热效率一般在80%左右,而另外20%的热量就是余热。
如果不加以利用,这些余热将会成为一种浪费。
回收余热的基本原理是利用燃气锅炉废气中热量来加热其他物质,从而实现热能的转换。
余热回收的主要方法有直接回收、间接回收、混合回收等。
2. 直接回收的方法直接回收是指将燃气锅炉废气中的热量直接用于生产过程或者其他加热需求中,常见的直接回收方式包括排烟直接加热、排烟间接加热、烟气净化和余热锅炉。
2.1 拉伸和马管拉伸和马管是建在烟尘管道中的间接热交换器,利用废气与新鲜空气进行热交换,在排烟之前先将进入锅炉燃室的新鲜空气进行加热,从而降低燃料消耗和燃气锅炉排放的废气温度,减少能源的浪费,节约能源。
2.2 湿式除尘器湿式除尘器和干式除尘器是烟气净化的重要设备,通过对废气进行预处理后,可流入余热锅炉。
2.3 其他直接回收的方法在直接回收的方法中还有烟气余热锅炉、燃气轮机余热回收等,这些方法通过将烟气或废气中的热量传递给锅炉的水或其他介质,从而提高锅炉的效率和能源利用效率。
3. 混合回收的方法混合回收是指将废气与空气、水、蒸汽等介质混合后再进行热交换,从而实现热能转换的一种方法。
常见的混合回收方式有空气预热和水预热等。
3.1 空气预热空气预热是将废气与空气混合后通过热交换设备来回收余热,将预热后的空气送入燃气锅炉的燃烧器中,从而使燃料燃烧更充分,提高锅炉的效率。
3.2 水预热水预热是指将废气与水混合后通过热交换设备来回收余热,将预热后的水送入热水循环系统中,从而提高热水系统的效率,减少能源的浪费。
燃气锅炉的烟气余热回收技术及其能效分析
燃气锅炉的烟气余热回收技术及其能效分析研究问题及背景燃气锅炉是目前常用的供热设备之一,其运行过程中产生的烟气携带着大量的热能被排放到大气中,造成能源的浪费和环境污染。
因此,燃气锅炉的烟气余热回收技术成为了提高能源利用效率和减少环境污染的重要途径。
研究方案方法本研究选取一座工业厂房中的燃气锅炉为研究对象,通过实地调查和数据采集,获取燃气锅炉的运行参数和烟气排放特点。
首先,分析燃气锅炉的烟气组成和温度分布,确定烟气余热的回收途径。
其次,采用换热器进行烟气余热回收,设计合适的换热器结构和工艺参数。
然后,利用实际运行数据进行系统模拟和优化,评估烟气余热回收技术的能效和经济效益。
最后,对比分析不同回收方案的优劣,为燃气锅炉的烟气余热回收提供科学依据。
数据分析和结果呈现通过实地调查和数据采集,获取了燃气锅炉的运行参数,包括燃烧温度、烟气流速、燃气消耗量等。
分析燃气锅炉烟气的成分和温度分布,发现其中包含大量的热能。
选择合适的换热器结构和工艺参数,对燃气锅炉进行改造,实现烟气余热的回收。
通过模拟分析和优化设计,得出了不同回收方案的能效和经济效益,并对结果进行了可视化呈现。
结论与讨论通过研究,我们发现燃气锅炉的烟气余热回收技术可以显著提高能源利用效率和减少环境污染。
根据实际情况选择合适的回收方案,能够将烟气中的热能有效地回收利用,提高整体能效。
不同的回收方案对能效和经济效益的影响不同,需要综合考虑各种因素进行选择。
此外,还需要注意烟气余热回收技术的实施和维护成本,以确保回收效果的持续和稳定。
在未来的研究中,可以进一步探索燃气锅炉烟气余热回收技术的优化和创新。
例如,结合其他能源回收技术,如燃气涡轮发电和热泵等,进一步提高系统能效和经济效益。
此外,还可以研究烟气余热回收技术在其他领域的应用,如工业废气处理和汽车尾气净化等,拓展其应用范围和市场前景。
综上所述,燃气锅炉的烟气余热回收技术具有重要的应用价值和发展前景。
通过合理选择回收方案和优化设计,可以提高能源利用效率、减少环境污染,实现可持续发展。
锅炉烟气余热回收技术
当前您浏览到是第五页,共三十三页。
(一) 烟管锅炉特点
高温烟气在火筒或烟管内流动放热,低温介 质在火筒或烟管外吸热
优点:结构简单、维修方便、水容积大、 水质要求低
缺点:炉温低、燃烧差(尺寸受限) 传热效果差、排烟温度高、热效率低 汽压不宜提高、蒸发量受限 结构刚性大、清洗水垢困难、易堵灰
当前您浏览到是第六页,共三十三页。
当前您浏览到是第十五页,共三十三页。
当前您浏览到是第十六页,共三十三页。
燃油和燃煤锅炉
但是由于石油、煤等燃料中均含有硫,在 燃烧时,硫氧化物的产生是必不可少的, 它与水蒸气结合后即形成硫酸蒸汽。当锅 炉尾部受热面的金属壁面温度低于硫酸蒸 汽的凝结点(称为酸露点),就会在其表 面形成液态硫酸(称为结露)。
采用先进的燃烧装置强化了燃烧,降低了 不完全燃烧量。然而,降低排烟热损失和 回收烟气余热的技术仍进展不快。为了进 一步提高锅炉的热效率,达到节能降耗的 目的,回收烟气余热也是一项重要的节能 途径。
当前您浏览到是第十页,共三十三页。
美、日、苏等工业发达国家都十分重视对 工业烟气余热的回收利用,把热管换热器 的研制、生产和推广应用工作放在优先发 展的位置,这就是热管换热器迅速发展和 广泛应用的原因。
锅炉烟气余热回收技 术
当前您浏览到是第一页,共三十三页。
一、选题目的
在当今社会里,节能已成为继煤炭、电力、 石油和天然气之后的“第五能源”。而在 现在的工业锅炉的使用中普遍存在着热量 利用率低下,排放烟气余热温度过高,以 及烟气内污染环境气体含量过高等问题。
当前您浏览到是第二页,共三十三页。
目前工业锅炉是我国主要的热能动力设备, 随着我国经济快速发展,能源消耗日益增加, 城市大气质量日益恶化的问题越发突出。 在热能动力方面能耗高、污染高的主要原 因之一就是锅炉的烟气排放,锅炉排烟问题 一方面在于烟气污染物的直接污染,另一方 面就是过高的排烟温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:可回收≥15%的热量,热效率提高≥ 17%
2
锅炉理论效率与排烟温度的关系
露点温度
结论:1、烟气温度降至60℃时,锅炉热效率可提高3~6%; 2、烟气温度再降至30℃以下时,热效率再提高8~10%。
3
二、小型烟气全热回收系统
同为小型燃气锅炉烟气全热回收节能产品,系 统热效率提高15~17%以上。该系统采用气液换热 冷凝器和热泵余热回收专利技术,将烟气温度降到 25℃以下,回收燃气锅炉烟气中的显热和潜热,用 于供暖、供应卫生热水或其它工艺生产应用,实现了 烟气全热(显热和潜热)的回收利用。 该系统适用于5 t/h及以上的燃气热水/蒸汽锅炉。
8
低温端5~10℃温差
气液冷凝换热原理:
冷凝式气液板壳采用不对称结 构、强制换热流程通道的板壳 式换热器,换热器两侧流体通 道截面积相差近10倍。其中大 截面积通道用于通过体积流量 大的气体,来降低气体的压力 损失。小截面积通道用于通过 体积流量小的液体,来确保液 体换热所需的流速。 具有低成本、低阻力、高效率 实现尾气利用的特点。
4
系统解决方案
其工作原理为:燃气锅炉的 高温烟气与低温采暖回水或卫生
50℃
热水在换热器中换热降温,回收
烟气显热,然后由引风机导流进 入冷凝器,在冷凝器中与水源热 泵循环水进行进一步换热,回收 烟气潜热。采暖回水或卫生热水 经过高温烟气和热泵加热后,温 度提升,进入原热系统。实现烟
气余热到中温热水的转移,锅炉
燃气锅炉 烟气余热回收技术方案
湖南同为节能科技有限公司
HuNan TOWNS Energy Technology CO.,LTD
0
一、燃气锅炉烟气节能分析
近年来,中大型燃气热水锅炉和天然气热电厂在集中供 暖地区作为供热热源得到大量的应用,同时小型燃气锅炉在人 民的生产生活中已经得到大量应用。 这些锅炉的热效率一般小于0.9,其热量损失最大的途径 就是排烟。大量的烟气冷凝热由于采暖回水温度高的原因都未 能得到回收而被白白的排放浪费;并且在冬季排放大量的“白 烟”,影响环境和美观。
7
其工作原理为:低温 循环水进入板式冷凝换热 器,冷却锅炉烟气,使烟 气温度降低至露点以下, 放出大量的潜热,循环水 温度升高,烟气余热转移 到低温循环水。 升温后的循环水进入 吸收式热泵,热泵回收循 环水的热量,使中温热水 升温,进入锅炉或满足采 暖等需求,实现烟气余热 到中温热水的转移,锅炉 的热效率提高15%以上。
11
的热效率提高15%左右。
40℃
5
6
三、 中大型烟气全热回收系统
“同为中大型燃气锅炉烟气全热深度回收系统”使锅 炉热效率提高15~17%以上。系统利用吸收式热泵和 冷凝式换热原理,将10t以上燃气锅炉或燃气热电厂的 烟气排放温度降低至30℃以下,回收利用燃气锅炉烟 气中的显热和潜热。同时,消除烟气中的粉尘及冒“白 烟”现象。
9
板式冷凝换热
10
四、产品三大优势
1、节能实用 烟气温度降至25~30℃,锅炉热效率提高15%以上; 运行费用低,气液板式换热冷凝器无需任何运行费用; 占地面积小,实用性强,投资回收期小于3年。 2、特别环保 有效对烟气中SO-、NO-等有害气体进行分离,吸附尾气中 的灰尘,极大消除对PM2.5的影响; 非接触式气液换热,运行时无需添加化学药剂,无二次污染。 3、高可靠性 特殊材料的非对称结构板式换热器,阻力低,耐腐蚀; 智能化控制,全面监控运行工况和回收热量,全自动运行; 工厂化施工,成套一体化供货,质量可靠,安装简单。