平抛运动典型例题 (2)

合集下载

高一物理必修二 第五章平抛运动及其规律基础练习题(带参考答案)

高一物理必修二 第五章平抛运动及其规律基础练习题(带参考答案)

高一物理必修二第五章平抛运动及其规律基础练习题(带参考答案)高一物理第五章一、研究要点平抛运动及其规律1.会用运动合成和分解的方法分析平抛运动。

2.掌握平抛运动的规律,会分析解决生活中的平抛运动问题。

二、研究内容一)平抛运动基本知识1.平抛运动的特征初速度方向,只受重力,属于抛体曲线运动。

2.平抛运动的分解水平方向:匀速直线运动,竖直方向:自由落体运动。

问题1:平抛运动是什么性质的运动?例1:(多选题)关于平抛运动,下列说法正确的是()A.是匀变速运动 B.是变加速运动C.任意两段时间内速度改变不一定相等 D.任意相等时间内的速度改变一定相等练1:(多选题)物体在做平抛运动的过程中,以下的物理量不变的是()A.物体的速度 B.物体的加速度C.物体竖直方向的分速度 D.物体水平方向的分速度问题2:如何研究平抛运动?例2:为了研究平抛物体的运动,可以概括为两点:①水平方向作匀速运动;②竖直方向作自由落体运动。

为了研究平抛物体的运动,可以进行如图1所示的实验。

1)把两个小铁球分别吸在电磁铁C、D上,切断电源,使两个小铁球以相同的初速度从轨道A、B射出,两小铁球能够在轨道B上相碰,这可以说明水平方向作匀速运动。

2)把两个小铁球分别吸在电磁铁C、E上,切断电磁铁C的电源,使一只小球从轨道A射出时碰撞开关S,使电磁铁E断电释放它吸着的小球,两个小球可以在空中相碰。

这可以说明竖直方向作自由落体运动。

练2:如图2所示,在光滑的水平面上有一小球a以初速度v运动,同时刻在它的正上方有小球b也以初速度水平v抛出,并落于c点,则()A.小球a先到达c点B.小球b先到达c点C.两小球同时到达c点D.不能确定二)平抛运动规律1.平抛运动的速度及其方向水平速度vx初速度vx竖直速度vy初速度vygt;合速度v=√(vx²+vy²),速度与水平方向的夹角θ,tanθ=v yvxgt/vx2.平抛运动的位移及其方向水平位移x=vxt;竖直位移y=vyt-1/2gt²;合位移s=√(x²+y²),运动方向与初速度方向相同。

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析1.图为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为2.5厘米,如果取重力加速度g=10米/秒2,那么:(1)照片的闪光频率为________Hz。

(2)小球做平抛运动的初速度的大小为_______m/s。

【答案】(1)10 ;(2)0.75【解析】(1)根据,则,则照片的闪光频率为f=1/T=10Hz;(2)小球做平抛运动的初速度的大小为:【考点】研究平抛物体的运动试验。

2.如图所示,质量为0.5 kg的小球在距离车底面高20 m处以一定的初速度向左平抛,落在以7.5 m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg,设小球在落到车底前瞬时速度是25 m/s,g取10 m/s2,则当小球与小车相对静止时,小车的速度是()A.m/s B.5m/sC.4 m/s D.m/s【答案】B【解析】据题意,小球从20m高出向走抛出做平抛运动,落到车上时数值分速度为:,即,此时水平分速度为:,当小球和车相对静止时,据动量守恒定律有:,则小车的速度为:,故选项B正确。

【考点】本题考查动量守恒定律和平抛运动的应用。

3.在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A 点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如右图所示.由此可见()A.电场力为2mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等【答案】D【解析】小球在水平方向不受力,所以沿水平方向做匀速直线运动,小球从A到B的运动时间是从B到C的运动时间的2倍,C错;在竖直方向,小球在AB受到的重力是小球在BC所受合力的一半,所以电场力,AB错;小球从A到B与从B到C的速度变化量的大小相等,D正确。

【考点】平抛运动电场力4.质量为m=3kg的物体在离地面高度为h=20m处,正以水平速度v=20m/s运动时,突然炸裂成两块,其中一块质量为m1=1kg.仍沿原运动方向以v1=40m/s的速度飞行,炸裂后的另一块的速度大小为______m/s.两块落到水平地面上的距离为______m(小计空气阻力,g取10m/s2).【答案】10 60【解析】物体爆炸前后,由动量守恒定律可知:,代入数据可得:,方向不变.由可知两块物体的下落时间,所以两块物体落地点间的距离为..【考点】考查动量守恒定律和平抛运动规律的应用.5.分如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v抛出一个小球,测得小球经时间t落到斜坡另一点Q,斜坡的倾角为θ,已知该星球的半径为R,引力常量为G。

平抛运动练习题含答案

平抛运动练习题含答案

平抛运动练习题一【例题1】下列说法正确的是A.做曲线运动的物体受到合外力一定不为零B.做曲线运动的物体的加速度一定是变化的C.物体在恒力作用下,不可能做曲线运动D.曲线运动中速度的方向不断改变,因而是变速运动【例题2】有一条河,河流的水速为v 1,现有一条小船沿垂直于河岸的方向从A 渡河至对岸的B 点,它在静止水中航行速度v 大小一定,当船行驶到河中心时,河水流速变为v 2(v 2>v 1),若船头朝向不变,这将使得该船( )A 、渡河时间增大B 、到达对岸时的速度增大C 、渡河通过的路程增大D 、渡河通过的路程比位移大【例题3】关于运动和力,下列说法中正确的是A. 物体受到恒定合外力作用时,一定作匀速直线运动B. 物体受到变化的合外力作用时,它的运动速度大小一定变化C. 物体做曲线运动时,合外力方向一定与瞬时速度方向垂直D. 所有曲线运动的物体,所受的合外力一定与瞬时速度方向不在一条直线上【例题4】如图所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2【例题5】如图3所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹出枪口时,松鼠开始运动,下述各种运动方式中,松鼠不能逃脱厄运而被击中的是(设树枝足够高):A .自由落下B .竖直上跳C.迎着枪口,沿AB 方向水平跳离树枝D.背着枪口,沿AC 方向水平跳离树枝【例题6】平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一坐标系中作出两个分运动的v-t图象,如图1所示,则以下说法正确的是( )A .图线1表示水平方向分运动的v-t 图线B .图线2表示竖直方向分运动的v-t 图线C .t 1时刻物体的速度方向与初速度方向夹角为45°D .若图线2的倾角为θ,当地重力加速度为g ,则一定有g =θtan 图 3图1【例题7】在足够高处将质量m=1kg的小球沿水平方向抛出,已知在抛出后第2s末时小球速度大小为25m/s,取g=10m/s2,求:⑴小球沿水平方向抛出后第0.58s末小球的加速度大小和方向如何?⑵第2s末时小球下降的竖直高度h;⑶小球沿水平方向抛出时的初速度大小。

平抛运动中的典型问题

平抛运动中的典型问题
水平:x=v0t 竖直:y=gt2/2
tan y gt
x 2v0
分解速度: 水平:vx=v0 竖直:vy=gt
v0
α
θ
v
θ vy
第4页
返回目录
v0 y x
结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角
的斜坡上的A点,以10m/s的速度水平抛出
一个小球,求落在斜坡上的B点与A点的距
可算出(ABC ).
A.轰炸机的飞行高度 B.轰炸机的飞行速度 C.炸弹的飞行时间 D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
第8页
数字媒体资源库ຫໍສະໝຸດ Hxv0H-h=12vyt x=v0t, vv0y=ta1n θ x=tahn θ vy=返g回t 目录
第14页
返回目录
结束放映
数字媒体资源库
典型问题二 平抛运动的临界问题
第15页
返回目录
结束放映
数字媒体资源库
【例6】如图,排球场总长18m,设网的高度为2m,运动员 站在离网3m远的线上正对网前竖直跳起把球水平击出 .(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在 什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出 的速度多大,球不是触网就是出界,试求此高度?
B.小球的抛出点距斜面的竖直高度约是 15 m
C.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 的上方
D.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 处

平抛运动斜面问题

平抛运动斜面问题

4.2 平抛运动的规律和应用(二)考点:斜面上的平抛运动典型例题[例1] 如图4-2-1所示,斜面倾角为300,小球从A 点以初速度v 0水平抛出,恰好落到斜面B 点,求:①AB 间的距离;②物体在空中飞行的时间;③从抛出开始经多少时间小球与斜面间的距离最大?[例2]一斜面倾角为θ,A 、B 两个小球均以水平初速度v0水平抛出(如图4-2-2所示,A 球垂直撞在斜面上,B 球落到斜面上的位移最短,不计空气阻力,则A 、B 两个小球下落时间tA 与tB 之间的关系为( )A .tA =tB B .tA =2tBC .tB =2tAD .无法确定[例3] 如图4-2-3所示,一个斜面固定在水平面上,从斜面顶端以不同初速度v0水平抛出一小球,得到小球在`空中运动时间t 与初速度v0的关系如下表所示,g 取10 m/s2试求:v 0/m ·s -1…2…910…t /s …0.400… 1.000 1.000…(1)v0=2 m/s 时平抛水平位移s ;(2)斜面的高度h ;(3)斜面的倾角θ。

针对训练:1.某同学在篮球训练中,以一定的初速度投篮,篮球水平击中篮板,现在他向前走一小段距离,与篮板更近,再次投篮,出手高度和第一次相同,篮球又恰好水平击中篮板上的同一点,则( )A .第二次投篮篮球的初速度大些B .第二次击中篮板时篮球的速度大些图4-2-1C.第二次投篮时篮球初速度与水平方向的夹角大些D.第二次投篮时篮球在空中飞行时间长些2.如图1所示,在水平地面上固定一倾角为θ=37°、表面光滑的斜面体,物体A以v1=6 m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B物体击中.(A、B均可看做质点,sin37°=0.6,cos37°=0.8,取g=10 2m/s)求:(1)物体A上滑到最高点所用的时间t;(2)物体B抛出时的初速度v2;(3)物体A、B间初始位置的高度差h.图13.如图2所示,在距地面2l的高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中。

平抛运动经典题型(含答案)

平抛运动经典题型(含答案)
A.运动员先后落在雪坡上的速度方向不相同
B.运动员先后在空中飞行的时间之比为
C.运动员先后落到雪坡上的速度之比为
D.运动员先后下落的高度之比为
【答案】C
【解析】A.设运动员的速度和水平方向的夹角为 ,则 ,而位移和水平方向的夹角 ,因此可得 ;运动员先后落在雪坡上时位移的偏向角相同,根据平抛运动速度的偏向角的正切等于位移的偏向角的正切的2倍可知,速度的偏向角相同,即运动员落到雪坡上的速度方向相同,选项A错误;
A.20B.18C.9.0D.3.0
【答案】B
【解析】有题意可知当在a点动能为E1时,有
根据平抛运动规律有
当在a点时动能为E2时,有
根据平抛运动规律有
联立以上各式可解得
故选B。
【练习1】如图所示,以水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ的斜面上,则AB之间的水平位移与竖直位移之比为()
A. B.
C. D.
【答案】BC
【解析】AB.做平抛运动的物体两次都落在斜面上,因此
整理得 ①
B正确,A错误;
CD.由于 ②

由①②③联立得
C正确,D错误。
故选BC。
平抛结论应用
【方法】
①速度反向延长线过水平位移中点
②tanα=2tanβ
【典例】(2020全国II卷)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。若摩托车经过a点时的动能为E1,它会落到坑内c点。c与a的水平距离和高度差均为h;若经过a点时的动能为E2,该摩托车恰能越过坑到达b点。 等于()
平抛运动
【模型】平抛运动是指物体以一定的初速度水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。

平抛运动典型例题(含答案)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q 点, 证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是, 所用时间为, 则由“分解位移法”可得, 竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示, 在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B, 两侧斜坡的倾角分别为和, 小球均落在坡面上, 若不计空气阻力, 则A和B两小球的运动时间之比为多少?图3解析: 和都是物体落在斜面上后, 位移与水平方向的夹角, 则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示, 在倾角为的斜面上以速度水平抛出一小球, 该斜面足够长, 则从抛出开始计时, 经过多长时间小球离开斜面的距离的达到最大, 最大距离为多少?图6解析: 将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些, 但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为 轴的正方向, 垂直斜面向上为 轴的正方向, 如图6所示, 在 轴上, 小球做初速度为 、加速度为 的匀变速直线运动, 所以有①②当 时, 小球在 轴上运动到最高点, 即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离当 时, 小球在 轴上运动到最高点, 它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为例4: 在平直轨道上以 的加速度匀加速行驶的火车上, 相继下落两个物体下落的高度都是2.45m. 间隔时间为1s. 两物体落地点的间隔是2.6m, 则当第一个物体下落时火车的速度是多大? (g 取 )分析: 如图所示. 第一个物体下落以 的速度作平抛运动, 水平位移 , 火车加速到下落第二个物体时, 已行驶距离 . 第二个物体以 的速度作平抛运动水平位移 . 两物体落地点的间隔是2.6m.解: 由位置关系得物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5: 光滑斜面倾角为 , 长为L, 上端一小球沿斜面水平方向以速度 抛出(如图所示), 小球滑到底端时, 水平方向位移多大?解:小球运动是合运动, 小球在水平方向作匀速直线运动, 有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动, 有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①, ②, ③式解得例6: 某一物体以一定的初速度水平抛出, 在某 内其速度方向与水平方向成 变成 , 则此物体初速度大小是________ , 此物体在 内下落的高度是________ ( 取 )选题目的: 考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示, 其中 . 分别是 及 时刻的瞬时速度.在这两个时刻, 物体在竖直方向的速度大小分别为 及 , 由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =(1) 例7如图, 跳台滑雪运动员经过一段加速滑行后从O 点水平飞出, 经过3.0s 落到斜坡上的A 点. 已知O 点是斜坡的起点, 斜坡与水平面的夹角θ=37°, 运动员的质量m=50kg. 不计空气阻力. (取sin37°=0.60, cos37°=0.80;g 取10m/s2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;从O 点水平飞出后, 人做平抛运动, 根据水平方向上的匀速直线运动, 竖直方向上的自由落体运动可以求得A 点与O 点的距离L ; (2)运动员离开O 点时的速度就是平抛初速度的大小, 根据水平方向上匀速直线运动可以求得;设A 点与O 点的距离为L, 运动员在竖直方向做自由落体运动, 则有: Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0, 运动员在水平方向做匀速直线运动,即: Lcos37°=v0t解得: v0=20m/s答: (1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1: 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q点, 证明落在Q点物体速度。

平抛运动典型例题

平抛运动典型例题

平抛运动典型例题
1.从某高处以6m/s的初速度、30°抛射角斜向上方抛出一石子,落地时石子的速度方向和水平线的夹角为60°,求石子在空中运动的时间和抛出点离地面的高度。

(取g=10m/s2)
2.如图,可视为质点的小球,位于半径为半圆柱体左端点A的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B点.过B点的半圆柱体半径与水平方向的夹角为,则初速度为:(不计空气阻力,重力加速度为多少。

3.如图所示,在倾角为45O 的斜面底端正上方高H=6.4m 处,将一小球以不同初速度水平抛出,若小球到达斜面时位移最小,重力加速度g=10m/s 2,求:
(1)小球平抛的初速度;
(2)小球落到斜面时的速度。

4如图所示,装甲车在水平地面上以速度s m v /200=沿直线前进,车上机枪的枪管水平,距地面高为h=1.8m 。

在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触。

枪口与靶距离为时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为s m v /800=。

在子弹射出的同时,装甲车开始匀减速运动,行进s=90m 后停下。

装甲车停下后,机枪手以相同方式射出第二发子弹。

(不计空气阻力,子弹看成质点,重力加速度

(1)求装甲车匀减速运动时的加速度大小;
(2)当410m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离;
(3)若靶上只有一个弹孔,求L 的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平抛运动典型例题1、平抛运动中,(除时间以外)所有物理量均由高度与初速度两方面决定。

v水平抛出,抛出点离地面的高度为h,阻力不计,求:(1)小球在例1、一小球以初速度o空中飞行的时间;(2)落地时速度;(3)水平射程;(4)小球的位移。

2、从同时经历两个运动的角度求平抛运动的水平速度求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。

例2、如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过x=5m的壕沟,沟面对面比A处低h=1.25m,摩托车的速度至少要有多大?3、平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决例3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须A.甲先抛出球 B.先抛出球C.同时抛出两球 D.使两球质量相等例4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D )A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v24、平抛运动轨迹问题——认准参考系例5、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动5、平抛运动运动性质的理解——匀变速曲线运动(a→)例6、把物体以一定速度水平抛出。

不计空气阻力,g取10,那么在落地前的任意一秒内()A.物体的末速度大小一定等于初速度大小的10倍B.物质的末速度大小一定比初速度大10C.物体的位移比前一秒多10mD.物体下落的高度一定比前一秒多10m6、平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系例7、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D )A .B .C .D .例8、作平抛运动的物体,在水平方向通过的最大距离取决于( C )A.物体所受的重力和抛出点的高度B.物体所受的重力和初速度C.物体的初速度和抛出点的高度D.物体所受的重力、高度和初速度7、从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

例9、如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上。

可知物体完成这段飞行的时间是A.s 33B.332sC.s 3D.s 2 8.从分解位移的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)例10、 若质点以V 0正对倾角为θ的斜面水平抛出,如果要求质点到达斜面的位移最小,求飞行时间为多少?例11、 在倾角为α的斜面上的P 点,以水平速度0v 向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度α20tan 41+=v v 。

例12、 如图3所示,在坡度一定的斜面顶点以大小相同的速度0v 同时水平向左与水平向右抛出两个小球A 和B ,两侧斜坡的倾角分别为︒37和︒53,小球均落在坡面上,若不计空气阻力,则A 和B 两小球的运动时间之比为多少?θv 30°甲乙v 0ν0 θ AB v 0v 037°53°9. 从竖直方向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。

为此,我们可以运用竖直方向是自由落体的规律来进行分析。

例13、 某一平抛的部分轨迹如图4所示,已知a x x ==21,b y =1,c y =2,求0v 。

10. 从平抛运动的轨迹入手求解问题例14、 从高为H 的A 点平抛一物体,其水平射程为s 2,在A 点正上方高为2H 的B 点,向同一方向平抛另一物体,其水平射程为s 。

两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。

11. 灵活分解求解平抛运动的最值问题例15、如图6所示,在倾角为θ的斜面上以速度0v 水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?12. 利用平抛运动的推论求解推论1:任意时刻的两个分速度与合速度构成一个矢量直角三角形。

例16、从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为1v 和2v ,初速度方向相反,求经过多长时间两小球速度之间的夹角为︒90?推论2:任意时刻的两个分位移与合位移构成一个矢量直角三角形例17、宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为l ,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为l 3。

已知两落地点在同一水平面上,求该星球的重力加速度。

13、轨迹方程是很实用的二次结论例18、如图4-1-19所示,排球场总长为18 m ,设网的高度为2 m ,运动员站在离网3 m 远的线上正对网前竖直跳起把球垂直于网水平击出.(g 取10 m/s 2)(1)设击球点的高度为2.5 m ,球被水平击出时的速度在什么范围内才能使球既不触网也不出界?(2)若击球点的高度小于某个值,那么无论球被水平击出时的速度多大,球不是触网就是出界,试求出此高度.14、在平抛运动的实验中,用竖直方向的比例1:3判定坐标原点是否为其抛出点 例20、在“研究平抛物体运动”的实验中,某同学记录了运动轨迹上三点A 、B 、C ,如图所示,以A 为坐标原点,建立坐标系,各点坐标值已在图中标出.求:(1)小球平抛初速度大小; (2)小球做平抛运动的初始位置坐标15、竖直方向的公差2gT y =∆是解决时间单位T 的关键平抛在竖直方向的运动是自由落体,单位时间内的位移成等差数列,公差为2gT y =∆,它是解决的关键。

例21、在研究平抛物体运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长l =1.25厘米.若小球在平抛运动途中的几个位置如图中的a 、b 、c 、d 所示,则小球平抛的初速度的计算式为v 0=____ __(用l 、g 表示),其值是 (取g =9.8米/秒2)16、类平抛运动。

a 、b 两质点从同一点O 分别以相同的水平速度v0沿x 轴正方向抛出,a 在竖直平面内运动,落地点为p1,b 沿光滑斜面运动,落地点为p2,p1和p2在同一水平面上,设斜面高h ,倾角为θ,如图4-2-16,不计空气阻力,求1.a 、b 的运动时间2.a 、b 沿x 轴方向的位移3.a 、b 落地时的速度大小4.a 、b 落地时的速度22、正沿平直轨道以速度 匀速行驶的车厢内,前面高h 的支架上放着一个小球,如图所示,若车厢突然改以加速度a ,做匀加速运动,小球落下,则小球在车厢底板上的落点到架子的水平距离为多少?23、参加电视台娱乐节目,选手要从较高的平台上以水平速度跃出后,落在水平传送带上,已知平台与传送带高度差H =1.25m ,水池宽度S 0=1.5m ,传送带AB 间的距离L=17m , 由于传送带足够粗糙,假设人落到传送带上后瞬间相对传送带静止,经过一个Δt=1.0s 反应时间后,立刻以恒定向右a=2m/s 2加速度跑至传送带最右端。

(1)若传送带静止,选手以v 0=5m/s 水平速度从平台跃出,求从开始跃出到跑至传送带右端经历的时间。

(2)若传送带以u=1m/s 的恒定速度逆时针运动,选手要能到达传送带右端,他从高台上跃出的水平速度v 1至少多大?在此情况下到达传送带右端时速度v 大小是多少?24、一平板车,质量M=100千克,停在水平路面上,车身的平板离地面的高度h=1.25米,一质量m=50千克的小物块置于车的平板上,它到车尾端的距离b=1.00米,与车板间的滑动摩擦系数μ=0.20,如图所示。

今对平板车施一水平方向的恒力,使车向前行驶,结果物块从车板上滑落。

物块刚离开车板的时刻,车向前行驶的距离s 0=2.0米。

求物块落地时,落地点到车尾的水平距离s 。

25、抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L 、网高h ,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g )(1)若球在球台边缘O 点正上方高度为h 1处以速度1v ,水平发出,落在球台的P 1点(如图 实线所示),求P 1点距O 点的距离x 1。

.(2)若球在O 点正上方以速度2v 水平发出,恰好在最高点时越过球网落在球台的P 2(如图虚线所示),求2v 的大小. v oh(3)若球在O正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3,求发球点距O点的高度h3.。

相关文档
最新文档