三角形的内角和练习题
三角形的内角和
18、如图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠A=α,那么∠BOC=。
19、在Rt△ABC中,若∠C=90度,∠B—∠A=30度,则∠A=度。
20、在以下四个条件①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中能确定△ABC是直角三角形的有。
练习题:
4、在△ABC中,如果∠A=300,∠B=2∠C,则∠C=
5、如二班作业图①,∠1=600,则∠2+∠3+∠4+∠500,∠3=600,则∠4=度。
7、如二班作业图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠A=700,那么∠BOC=0;如果∠A=α,那么∠BOC=。
24、填写证明过程。如下图,求证△ABC的内角和是180度。
证明:作CD∥
∴∠B=∠(两直线平行,)
∴∠A=∠(两直线平行,)
∵∠ACB+∠1+∠2=
∴∠A+∠B+∠C=
∴△ABC的内角和是180度。
三角形的内角和(一班)
知识点:
1、三角形三个内角的和是。
2、直角三角形的两个锐角。
3、有两个角互余的三角形是。
10、在直角三角形中,两个锐角的差等30度,则这个三角形中最小角的度数是。
11、如图①,∠A=500,则∠2+∠3+∠4+∠1=度。
12、如图②,如果∠1=300,∠2=500,∠3=600,则∠4=度。
13、如图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠1=20度,∠2=40度,那么∠A的度数是,∠BOC的度数是。
三角形的内角和练习题
三角形的内角和练习题三角形是几何学中的基本概念,它有着许多有趣和重要的特性。
其中一个重要的特性就是它的内角和,即三个内角的度数之和。
本文将为你提供一系列的练习题,帮助你巩固并深入理解三角形的内角和。
练习题一:三角形内角和的基础题1. 计算一个等边三角形的内角和。
解析:等边三角形的三个内角必定相等,设每个内角的度数为x,则有:x + x + x = 180°。
化简得到3x = 180°,解得x = 60°。
因此,等边三角形的内角和为180°。
2. 计算一个等腰直角三角形的内角和。
解析:等腰直角三角形的两个锐角必定相等,并且等于45°,直角为90°。
所以,内角和为45° + 45° + 90° = 180°。
练习题二:三角形内角和的进一步探索1. 设一个三角形的两个内角分别为30°和60°,求第三个内角。
解析:三角形的内角和为180°。
设第三个内角的度数为x,则有:30° + 60° + x = 180°。
化简得到90° + x = 180°,解得x = 90°。
因此,第三个内角的度数为90°。
2. 一个三角形的两个内角分别为75°和x°,其中x是一个锐角,求第三个内角。
解析:三角形的内角和为180°。
设第三个内角的度数为y,则有:75° + x° + y° = 180°。
化简得到x° + y° = 180° - 75°,即x° + y° = 105°。
根据题意,x°是一个锐角,所以y°是一个钝角,根据三角形的性质,钝角的度数大于90°,因此答案无解。
四年级数学下册《三角形的内角和》练习题及答案解析
四年级数学下册《三角形的内角和》练习题及答案解析学校:___________姓名:___________班级:_______________一、填空题1.一个等边三角形,每个内角是( )度。
2.一个三角形中一个角是35°,一个角是110°,另一个角是( ),这个三角形按边分是( )三角形,按角分是( )三角形。
3.给它们分分类。
(只填序号)4.∠1、∠2、∠3是一个三角形的3个内角,已知∠1=∠2=60°,那么∠3=( )°,这是一个( )三角形,也是一个( )三角形。
二、选择题5.如果一个三角形三个内角的度数比是3∠1∠5,那么这个三角形是()三角形。
A.锐角B.直角C.钝角6.等腰三角形的一个底角是52°,则它的顶角是()。
A.128°B.104°C.76°三、图形计算7.算出下面各个未知角的度数。
四、解答题8.用一根铁丝能围成一个长是10厘米,宽8厘米的长方形,如果用这根铁丝围成一个底边是16厘米的等腰三角形(铁丝无剩余),腰长是多少厘米?9.求出下面三角形各个角的度数。
参考答案与解析:1.60【分析】等边三角形的三个内角都相等,三角形的内角和为180°,因此用180°除以3即可,依此计算并填空。
【详解】180°÷3=60°【点睛】此题考查的是等边三角形的特点,以及三角形的内角和,应熟练掌握。
2.35°等腰钝角【分析】利用三角形内角和定理,用180°减去已知的两个角的度数,就是第三个角的度数;然后根据三角形按边、按角分类的特点,写出三角形的分类即可。
【详解】180°﹣35°﹣110°=35°,因为三角形中有两个角相等,所以有两条边也相等,所以这个三角形是等腰三角形;因为一个角是110°,是钝角,所以这个三角形是钝角三角形。
(完整版)三角形内角和练习题
三角形的内角和练习例题分析】例1. 在△ABC 中,已知∠ A=1∠B=1∠C,请你判断三角形的形状。
23 分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠ C 是最大的角,因此只需求出∠ C 的度数即可判断三角形的形状。
例2. 如图,已知DF⊥AB 于点F,且∠ A=45°,∠ D=30°,求∠ ACB 的度数。
例3. 如图,在△ ABC 中,∠ 1=∠ 2,∠ 3=∠ 4,∠ BAC =54°,求∠ DAC 的度数例4. 已知在△ ABC 中,∠A=62°,BO、CO 分别是∠ ABC 、∠ ACB 的平分线,且BO、CO 相交于O,求∠ BOC 的度数。
〖拓展与延伸〗(1)已知△ AB 中C,BO、CO分别是∠ ABC 、∠ ACB 的平分线,且BO、CO相交于点O,试探索∠ BOC 与∠A 之间是否有固定不变的数量关系。
(2)已知BO、CO分别是△ ABC 的∠ ABC 、∠ ACB 的外角角平分线,BO、CO相交于O,试探索∠ BOC 与∠A 之间是否有固定不变的数量关系。
(3)已知:BD为△ABC 的角平分线,CO为△ABC 的外角平分线,它与BO的延长线交于点O,试探索∠ BOC 与∠A 的数量关系由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个内角之间存在着一定的数量关系。
例5. 已知多边形的每一个内角都等于135°,求这个多边形的边数。
例6. 一个零件的形状如图,按规定∠ A=90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠ BDC=149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
分析:验证的关键是求出∠ A 的度数,即把∠ A 用已知的角∠ B、∠ C、∠BDC 联系起来,利用三角形关于角的性质就可以发现它们之间的关系CE随堂检测】A组1、在△ ABC 中,∠A=40°,∠ B=∠C,则∠ C=。
三角形内角的和练习题
三角形内角的和练习题1. 已知一三角形的两个内角分别为60°和70°,求第三个内角的度数。
解答:三角形的内角和为180°,已知两个内角为60°和70°,将其相加得130°,所以第三个内角的度数为180°-130°=50°。
2. 若一三角形的两个内角的度数分别是x°和(2x-10)°,求第三个内角的度数。
解答:三角形的内角和为180°,已知两个内角的度数分别为x°和(2x-10)°,将其相加得x° + (2x-10)° = 180°,整理方程可得3x - 10 = 180,解得x = 63,所以第三个内角的度数为2x-10 = 2(63)-10 = 116°。
3. 已知一三角形的两个内角的度数之比为3:4,求这两个内角的度数。
解答:设一个内角的度数为3x,另一个内角的度数为4x,根据题意得到方程3x:4x = 3:4,通过求解比例系数可得3x = 3,解得x = 1,所以第一个内角的度数为3x = 3,第二个内角的度数为4x = 4。
4. 若一三角形的两个内角的度数之差为20°,求这两个内角的度数。
解答:设一个内角的度数为x,另一个内角的度数为x+20°,根据题意得到方程x - (x+20°) = 20°,整理方程可得-20° = 20°,这是一个不可能成立的等式,所以不存在满足条件的三角形。
5. 若一三角形的两个内角的度数之和为110°,求这两个内角的度数。
解答:设一个内角的度数为x,另一个内角的度数为110°-x,根据题意得到方程x + (110°-x) = 110°,整理方程可得110° = 110°,这是一个恒等式,所以存在无数个满足条件的三角形,例如一个内角为50°,另一个内角为60°。
三角形的内角和 练习题
三角形的内角和练习题1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。
A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。
A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。
三角形内角和练习题
三角形内角和练习题在几何学中,三角形是一个基本的图形,它由三条边和三个内角组成。
三角形的内角和是指三个内角的度数总和。
本文将提供一些关于三角形内角和的练习题,旨在帮助读者加深对此概念的理解和运用。
练习题一:计算三角形内角和1. 已知三角形ABC的三个内角分别为60度、70度和x度,求x的值。
解析:根据三角形内角和的性质,三个内角的和必须等于180度。
因此,我们可以列出等式:60 + 70 + x = 180。
解方程得到x的值。
2. 已知三角形DEF的三个内角分别为2x度、3x度和4x度,求x的值。
解析:同样地,根据三角形内角和的性质,三个内角的和必须等于180度。
我们可以列出等式:2x + 3x + 4x = 180。
解方程得到x的值。
练习题二:应用三角形内角和1. 已知三角形PQR的内角和为180度,且两个内角的度数比为3:5,求这两个内角的度数。
解析:设其中一个内角的度数为3x度,另一个内角的度数为5x度。
根据题意,我们可以列出方程:3x + 5x = 180。
解方程得到x的值,进而计算出两个内角的度数。
2. 已知三角形STU的内角和为180度,且其中一个内角的度数为3x度,另一个内角的度数为4x度。
求三角形STU的另一个内角的度数。
解析:根据题意,我们可以列出方程:3x + 4x + 另一个内角的度数= 180。
解方程得到另一个内角的度数。
练习题三:图形中的三角形内角和1. 如图所示,ABCD是一个四边形,角A和角B的度数已知,求角C和角D的度数。
解析:根据四边形的性质,四个内角的和为360度。
由此我们可以列出等式:角A + 角B + 角C + 角D = 360。
已知角A和角B的度数,可以通过解方程计算出角C和角D的度数。
[插入示意图]2. 如图所示,在平行四边形EFGH中,AB是平行于CD的一条线段,角A的度数已知,求角F的度数。
解析:由于AB与CD平行,根据平行线性质,角A和角F是对应角,它们的度数相等。
三角形内角和定理练习题(供参考)
三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,那么△ABC是三角形.2.如图,在△ABC中,BE、CF别离是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,那么∠BIC =.3.如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,那么∠A =.4.如图,假设AB=AC,BG=BH,AK=KG,那么∠BAC的度数为.5.假设等腰三角形一腰上的高和另一腰上的高的夹角为58°,那么那个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,假设∠A=80°,∠B=68°,∠CFB=22°,那么∠CEA =.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,假设∠ABE=135°,∠CDE=110°,那么∠DEF=.9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,那么∠EDF等于( )A.64°B.65°C.67°D.68°10.如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,那么∠E是( )A.锐角B.直角C.钝角D.无法确信11.如图,已知在△ABC中,AD平额外角∠EAC,AD∥BC,那么△ABC的形状是( ) A.等边三角形 B.直角三角形 C.等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,那么∠D等于( )A.180°-2∠αB.180°-∠αC.90°-∠αD.90°-2∠α13.若是三角形的一个外角等于与它相邻的内角,那么那个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.如图,∠1=20°,∠2=25°,∠A=35°,那么∠BDC的度数等于( )A.60°B.70°C.80°D.无法确信15.如图,∠A=32°,∠B=45°,∠C=38°,那么∠DFE等于( )A.108°B.110°C.115°D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,∠BAC=∠BCA,∠B=∠D=∠α,∠CAD=∠β,那么∠α与∠β之间的关系是( )A.∠α+∠β=180°B.3∠α+2∠β=180°C.∠α=2∠βD.3∠α+∠β=180°17.如图,在△ABC中,AD⊥BC,∠DAC=∠B,判定△ABC是什么形状的三角形,并写出你的判定理由.18.在△ABC中,∠B=∠C,BD是AC边上的高,∠ABD=20°,求∠C的度数.19.如图,已知E是BC上一点,且∠1=∠2,∠3=∠4,且AB∥CD.求证:AF⊥DE.20.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AE=AD.求∠EDC的度数.21.如图,点D是△ABC中∠ACE的外角平分线与BA延长线的交点.求证:∠BAC>∠B.类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,那么其最大内角的度数为()A.60° B.75° C.90° D.120°触类旁通:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,那么∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。
三角形的内角和计算练习题
三角形的内角和计算练习题1. 计算下列三角形的内角和:(1) 一个等边三角形的每个角度为多少?解析:等边三角形的三个角度相等。
设每个角度为x,则有x + x +x = 180°。
解得x = 60°。
所以,一个等边三角形的每个角度为60°,内角和为180°。
(2) 一个直角三角形的两个锐角分别为30°和60°,第三个角是多少度?解析:直角三角形的两个锐角的和为90°,所以第三个角为90° - 30°- 60°= 0°。
因为三角形的内角和不能为0°,所以这样的三角形不存在。
(3) 一个等腰三角形的底角为45°,顶角是多少度?解析:等腰三角形的两个底角相等。
设顶角为x,则有x + 45° + 45°= 180°。
解得x = 90°。
所以,一个等腰三角形的顶角为90°,内角和为180°。
2. 根据已知条件计算三角形内角和:(1) 如果一个三角形的内角为30°、60°和90°,那么三角形是什么类型的三角形?解析:因为三角形的内角和为180°,所以三角形的三个内角之和为30° + 60° + 90° = 180°。
这个三角形是一个直角三角形。
(2) 如果一个三角形的两个角度分别是60°和75°,第三个角是多少度?这个三角形是什么类型的三角形?解析:设第三个角为x,则有60° + 75° + x = 180°。
解得x = 45°。
所以,这个三角形的第三个角是45°,属于锐角三角形。
(3) 如果一个三角形的两个角度分别是75°和95°,第三个角是多少度?这个三角形是什么类型的三角形?解析:设第三个角为x,则有75° + 95° + x = 180°。
八年级数学:三角形内角和定理练习(含解析)
八年级数学:三角形内角和定理练习(含解析)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°2.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°﹣∠B;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.①②B.③④C.①③④D.①②③3.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°4.有一个外角等于120°,且有两个内角相等的三角形是()A.不等边三角形B.等腰三角形 C.等边三角形 D.不能确定5.三角形三个内角的度数分别是(x+y)°,(x﹣y)°,x°,且x>y>0,则该三角形有一个内角为()A.30°B.45°C.90°D.60°6.在△ABC中,∠A=25°,∠B=63°,则△ABC的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A:∠B:∠C=1:2:3,能确定△ABC 为直角三角形的条件有()A.1个B.2个C.3个D.0个9.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC上的点A′处,如果∠A′EC=70°,则∠A′DE的度数为()A.50°B.60°C.75°D.65°10.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形 B.钝角三角形C.直角三角形 D.钝角或直角三角形11.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A.25°B.35°C.45°D.75°12.一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C 的度数为()A.75°B.65°C.55°D.45°二.填空题(共8小题)13.在△ABC中,若∠A=78°,∠B=57°,则∠C= .14.已知三角形的三个内角的度数比为2:3:4,则这个三角形三个内角的度数为.15.一个三角形的三个内角中最多有个钝角(或直角).16.在△ABC中,∠C=60°,∠A=2∠B,则∠A= .17.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB= (度).18.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2= .19.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E= .(用度数表示)20.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC= .三.解答题(共4小题)21.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.22.如图,在△ABC中,∠A=50°,过点C作CD∥AB,若CB平分∠ACD,求∠B的度数.23.如图,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分线,AD是高.(1)求∠BAE的度数;(2)求∠EAD的度数;(3)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由.24.如图,△ABC中AD是BC边上的高,AE是∠BAC的平分线,∠B=50°,∠C=70°.(1)∠BAC= °;(2)求∠DAE的度数.参考答案与试题解析一.选择题(共12小题)1.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.2.解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:D.3.解:∵在△ABC中,∠A=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°.故选:D.4.解:当∠BAC的外角是120°时,则∠BAC=60°,∠B=∠C=(180°﹣∠BAC)=60°,即∠BAC=∠B=∠C,所以△ABC是等边三角形;当∠ABC的外角是120°时,∠ABC=60°,即∠C=∠ABC=60°,∵∠BAC+∠ABC+∠C=180°,∴∠BAC=60°,∴∠BAC=∠B=∠C,∴△ABC是等边三角形;同样当∠ACB的外角是120°,也能推出△ABC是等边三角形;故选:C.5.解:∵三个内角的度数分别是(x+y)°,(x﹣y)°,x°,三角形内角和为180°, ∴x+y+x﹣y+x=180,∴3x=180,x=60,故选:D.6.解:∵△ABC中,∠A=25°,∠B=63°,∴∠C=180°﹣25°﹣63°=92°,∴△ABC是钝角三角形.故选:C.7.解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.8.解:∵∠A+∠B+∠C=180°,∴若①∠A+∠B=∠C,则∠C=90°.三角形为直角三角形;②∠A=∠B=2∠C,则∠A=∠B=72°,∠C=36°.三角形不是直角三角形;③∠A﹕∠B﹕∠C=1﹕2﹕3,则∠A=30°,∠B=60°,∠C=90°.三角形为直角三角形;故选B.9.解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故选:D.10.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.11.解:∵AB=BD,∠B=30°,∴∠ADB=75°,∵∠C=40°,∴∠DAC=∠ADB﹣∠C=75°﹣40°=35°.故选:B.12.解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣(∠A+∠B)=180°﹣(45°+60°)=75°,故选:A.二.填空题(共8小题)13.解:由题可得,∠C=180﹣∠A﹣∠B=180°﹣78°﹣57°=45°,故答案为:45°.14.解:根据三角形的内角和定理,得三个内角分别是180°×=40°,180°×=60°,180°×=80°.15.解:假设三角形中,出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,因而假设不成立,所以一个三角形中最多有一个钝角.故答案为:1.16.解:设∠A=2x,则∠B=x,由三角形内角和等于180°,得:2x+x+60°=180°,解得x=40°.∴∠A=2x=2×40°=80°.故答案为:80°.17.解:由题意可得∠DAE=∠BAC﹣(90°﹣∠C),又∠BAC=2∠B,∠B=2∠DAE,∴90°﹣2∠B=∠B,则∠B=36°,∴∠BAC=2∠B=72°,∴∠ACB=180°﹣36°﹣72°=72°.故答案为7218.解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.19.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.20.解:∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故答案为:130°.三.解答题(共4小题)21.解:∵DF⊥AB于点F,∴∠AFE=90°,∵∠A=45°,∴∠AEF=45°,∴∠CED=∠AEF=45°.∴∠ACB=∠D+∠C ED=30°+45°=75°.22.解:∵∠A+∠B+∠ACB=180°,∠A=50°,∴∠B+∠ACB=130°.∵CD∥AB,∴∠DCB=∠B.∵CB平分∠ACD,∴∠DCB=∠ACB,∴∠ACB=∠B,∴2∠B=130°,∴∠B=65°.23.解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=×100°=50°.(2)∵∠B=30°,AD⊥BC,∴∠BAD=90°﹣30°=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣50°=10°.(3)∠DAE=(β﹣α),理由如下:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β.又∵AE是∠BAC的平分线,∴∠BAE=∠BAC=90°﹣(α+β).∵∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α).24.解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°故答案为:60°(2)∵AE是∠BAC的平分线,∠BAC=60°∴∠BAE=30°∴∠AEB=180°﹣∠B﹣∠BAE=100°∵AD是BC边上的高,∴∠ADE=90°∴∠DAE=∠AEB﹣∠ADE=100°﹣90°=10°答:∠DAE的度数是10°.。
三角形的内角和的试题
三角形的内角和的试题三角形是中学数学中的一个基本几何概念,其内角和是一个重要的数学知识点。
下面给出关于三角形内角和的相关试题。
一、基础题目1. 若三角形的一个内角为60度,另外两个内角之和是120度,这个三角形的内角和是多少度?2. 已知三角形的三个内角分别为30度、60度和90度,那么这个三角形的内角和是多少度?3. 若三角形的一个内角为80度,另外一个内角为30度,那么第三个内角是多少度?这个三角形的内角和是多少度?二、进阶题目1. 某个三角形的三个内角依次为x、y和z度(x<y<z),且这个三角形的内角和是180度,求这个三角形的每个内角的度数。
2. 一个四边形的内角和是360度,其中一个角为120度,另外三个角之和是200度,这个四边形的另外三个角分别是多少度?3. 若三边形ABC的角A、B、C的大小分别为α、β、γ,且满足sin α:sin β:sin γ=3:4:5,则角A、B、C中最大的一个是多少度?这个三角形的内角和是多少度?三、高阶题目1. 在平面直角坐标系中,顶点为(0,0)的等腰三角形ABC的两个顶点坐标分别为(-a,b)和(a,b),角B的顶点坐标为(0,h),其中a、b、h均为正实数,且满足a^2+b^2=h^2,此时,三角形ABC的内角和是多少度?2. 已知等腰三角形ABC的底边AB的长度为2a,且角C为60度,点P在边AB上,且满足PA=PB=a,则三角形PCB的内角和是多少度?(提示:利用三角形内角和与外角和的关系)以上是部分关于三角形内角和的试题,适合不同难度和水平的学生进行练习和考查。
对于学生们来说,掌握三角形内角和的计算方法和理论知识,能够在数学学习中更好地理解和应用。
四年级数学下册三角形的内角和专项练习(共5套含答案)
四年级数学下册三角形的内角和专项练习(共5套含答案)练习一一、选择题。
1、一个三角形中,有1个角是44°,另外两个角可能是()A、96°,50°B、80°,56°C、90°,36°2、用10倍的放大镜看一个三角形,这个三角形三内角和是()。
A、108°B、180°C、1800°D、1080°3、三角形中最大的一个角一定()。
A、不小于60°B、大于90°C、小于90°D、大于60°而小于90°4、两个不相等的三角形,它们的内角和()。
A、相等B、面积大的三角形内角和大C、面积小的三角形内角和小D、不能比较5、一个三角形最小的内角是50°,这是一个()。
A、锐角三角形B、直角三角形D、以上都不对C、钝角三角形6、一个三角形中,有两个角都是锐角,另一个角()A、一定是钝角B、一定是锐角C、可能是钝角、锐角或直角7、下面能组成一个三角形的三个角是()。
A、∠1=80°,∠2=70°,∠3=15°B、∠1=50°,∠2=85°,∠3=63°C、∠1=60°,∠2=60°,∠3=70°D、∠1=74°,∠2=16°,∠3=90°8、这个三角形原来是()三角形。
A、锐角B、钝角C、直角二、计算下图中三角形中未知角的度数。
三、如图,ABC为直角三角形,求∠1和∠2各是多少度?四、下面是三块三角形玻璃打碎后留下的碎片,你知道它们原来各是什么三角形吗?练习二一、选择题1、把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A、30°B、60°C、90°D、180°2、一个三角形中,如图所示,∠1=70°,∠3=35°,∠2=()。
三角形的内角和练习题
三角形的内角和练习题一、基础练习1、判断下列说法是否正确,并说明理由。
(1)一个三角形的内角和是180度。
(2)一个三角形的内角和等于3个直角。
(3)一个等边三角形的内角和等于一个等腰三角形的内角和。
2、一个三角形的三个内角分别为A、B、C,已知A=30度,B=80度,求C的度数。
二、提升练习1、一个三角形的三个内角分别为A、B、C,已知A=70度,B=90度,求C的度数。
2、一个等边三角形的三个内角分别为A、B、C,已知A=60度,求B 和C的度数。
3、一个等腰三角形的两个内角分别为A、B,已知A=80度,求B的度数(该三角形是等腰三角形,有两边长度相等)。
三、拓展练习1、一个四边形由两个等边三角形组成,它的四个内角分别为A、B、C、D,求A+B+C+D的度数。
2、一个五边形由三个等边三角形组成,它的五个内角分别为A、B、C、D、E,求A+B+C+D+E的度数。
3、一个n边形(n≥3)的所有内角之和是多少?在解答上述问题的过程中,我们可以使用三角形内角和定理以及多边形的内角和公式来进行计算。
我们还需要了解等边三角形和等腰三角形的性质,以便解决相关问题。
三角形的内角和教学设计一、教材分析三角形的内角和是义务教育课程标准实验教科书(人教版)四年级下册第8单元数学广角里的内容,本节课是在学生已经学习了三角形的概念及分类的基础上进一步研究三角形的有关知识,教材中安排了三部分内容:第一部分是例1通过测量计算三个内角的度数和,第二部分是例2通过撕拼、旋转、翻转等不同的方法验证三角形的内角和等于180度,第三部分是例3用已知的两个角度求出第三个角的度数。
通过这些活动,培养学生动手操作能力和数学思维能力。
同时,还体现了数学来源于生活,又应用于生活这一理念。
二、学情分析作为四年级的学生,他们已经具备了一定的观察、猜测、动手操作、积极思考的能力,因此他们可以根据自己的实际情况选择喜欢的方法来研究验证三角形的内角和。
初二数学三角形内角和练习题
初二数学三角形内角和练习题三角形是初中数学学习内容中非常重要的一部分,而其中内角和是三角形的基本性质之一。
本文将为大家提供一些初二数学三角形内角和的练习题,帮助大家更好地理解和掌握这一知识点。
练习题1:已知三角形ABC中,∠A=70°,∠B=50°,求∠C的度数。
解答:根据三角形的内角和性质可知,三角形ABC的内角和等于180°。
∠A + ∠B + ∠C = 180°70° + 50° + ∠C = 180°120° + ∠C = 180°∠C = 180° - 120°∠C = 60°练习题2:已知三角形DEF中,∠D=42°,∠E=68°,求∠F的度数。
解答:根据三角形的内角和性质可知,三角形DEF的内角和等于180°。
∠D + ∠E + ∠F = 180°110° + ∠F = 180°∠F = 180° - 110°∠F = 70°练习题3:已知三角形GHI中,∠G=80°,∠H=50°,求∠I的度数。
解答:根据三角形的内角和性质可知,三角形GHI的内角和等于180°。
∠G + ∠H + ∠I = 180°80° + 50° + ∠I = 180°130° + ∠I = 180°∠I = 180° - 130°∠I = 50°练习题4:已知三角形JKL中,∠J=75°,∠K=90°,求∠L的度数。
解答:根据三角形的内角和性质可知,三角形JKL的内角和等于180°。
∠J + ∠K + ∠L = 180°165° + ∠L = 180°∠L = 180° - 165°∠L = 15°练习题5:已知三角形MNO中,∠M=50°,∠N=80°,求∠O的度数。
三角形内角和练习题
三角形内角和练习(一)姓名________学号_____一.填空题1.等腰三角形的一个内角是94°,那么它的另外两个内角是()和()。
2.三角形的两个内角之和是85°,第三个角是()°,这个三角形是()三角形。
3.一个直角三角形的一个锐角是45°,另一个内角是(),按边分这是()三角形。
4.三角形最多()个直角,最多()个钝角,最少()个锐角。
5.已知等腰三角形的一个内角是80°,另外两个内角分别是()、()或()、()。
6.一个三角形有两个角都是45°,它按角分是(),按边分是()。
二、选择题1、一个三角形中,有一个角是65°,另外的两个角可能是()A.95°,20°B.45°,80°C.55°,60°2、一个等腰三角形,顶角是100°,一个底角是()。
A.100°B. 40°C.55°3、一个等腰三角形,一个底角是顶角的2倍,这个三角形顶角()度,底角()度。
A. 36°B.72°C.45°D.90°4、一个三角形的最小的一个角大于45°,这个三角形一定是()。
A.锐角三角形 B直角三角形 C 钝角三角形5、下面说法错误的是()。
A.一个三角形中最多有一个钝角。
B.一个三角形中最多有两个锐角。
C.两个完全一样的直角三角形能拼成一个大三角形,拼成的大三角形内角和是360度。
D.钝角三角形的两个锐角和一定小于90°。
二、下列各组角能组成三角形吗?如果能,请说明是什么三角形;如果不能,请说明理由。
1、80°,95°,5°2、60°,70°,90°3、30°,40°,50°4、50°,50°,80°5、60°,60°,60°三、解决问题1.某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带( )去。
三角形内角的和练习题
三角形内角的和练习题一、选择题1. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 270度D. 360度2. 如果一个三角形的一个内角是70度,另一个内角是60度,那么第三个内角是多少度?A. 40度B. 50度C. 60度D. 70度3. 直角三角形的两个锐角之和是多少度?A. 45度B. 90度C. 180度D. 270度4. 等边三角形的每个内角是多少度?A. 30度B. 45度C. 60度D. 90度5. 如果一个三角形的两个内角分别是50度和70度,那么这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题6. 在一个三角形中,如果一个内角是x度,另一个内角是y度,且x+y=100度,那么第三个内角是________度。
7. 已知三角形ABC中,∠A=45度,∠B=60度,那么∠C=________度。
8. 如果一个三角形的三个内角分别为a度、b度和c度,且a+b+c=180度,那么a=________度,b=________度,c=________度(答案不唯一)。
9. 等腰三角形的两个底角相等,如果底角为40度,那么顶角是________度。
10. 一个三角形的三个内角之和是180度,如果其中一个角是锐角,另一个角是钝角,那么第三个角一定是________角。
三、简答题11. 请解释为什么三角形的内角和总是180度。
12. 如果一个三角形的内角和不是180度,那么它可能是什么形状?13. 描述如何使用三角形内角和的性质来解决实际问题。
14. 为什么直角三角形的两个锐角之和总是90度?15. 等边三角形的每个内角相等,为什么它们都是60度?四、计算题16. 已知三角形ABC中,∠A=30度,∠B=45度,求∠C的度数。
17. 如果一个三角形的两个内角之和为120度,且这两个角相等,求第三个角的度数。
18. 在一个等腰三角形中,如果底角为50度,求顶角的度数。
人教版四年级数学“三角形的内角和”练习题
人教版四年级数学“三角形的内角和”练习题
一、填空.
1、三角形的内角和是().
2、在直角三角形中.两个锐角的和是().
3、在一个三角形中.有两个角分别是110°和40°.那么第三个角是()度.
4、在一个等腰三角形中.顶角是60°.它的一个底角是().
二、判断.(对的画“√”.错的画“×”)
1.直角三角形中只能有一个角是直角.( )
2.等边三角形一定是锐角三角形.( )
3.三角形共有一条高.( )
4.两个底角都是28°的三角形.一定是钝角三角形.( )
三、选择.
1.一个等腰三角形.其中一个底角是750.顶角是( )
A.750 B.450 C.300 D.600
2.三角形越大.内角和( )
A.越大 B.不变 C.越小
四、求下面三角形中∠3的度数.并指出是什么三角形.
1.∠1=300. ∠2=1080.∠3= ( ).它是( )三角形.
2.∠1=900. ∠2=450. ∠3=( ).它是( )三角形.
3.∠1=700. ∠2=700. ∠3=( ).它是( )三角形.
五、(辨析题)在能组成的三角形的三个角后面画“√”.
1. 900 500 400 ( )
2. 500 500 500 ( )
六、(开放题).在能组成三角形的三条线段后面画“√”.
1.2厘米 3厘米 4厘米 ( )
2.10厘米 20厘米 40堙米 ( )
1 / 1。
三角形内角和解答题专项练习60题(有答案)
三角形内角和解答题专项练习60题(有答案)1.如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线,求∠ADC的度数?2.如图△ABC中,AD,AE分别是△ABC的高和角平分线,∠B=36°,∠DAE=16°.求∠CAD的度数.3.如图,已知∠CBE=96°,∠A=27°,∠C=30°,试求∠ADE的度数.4.如图,△ABC中,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,求证:∠D=90°+∠A.5.如图,在△ABC中,∠A=3x°,∠ABC=4x°,∠ACB=5x°,BD,CE分别是边AC,AB上的高,且BD,CE相交于点H,求∠BHC的度数.2013年10月1581698636的初中数学组卷6.如图,D是△ABC的BC边上一点,∠ABC=40°,∠BAC=80°.求:(1)∠C的度数;(2)如果AD是△ABC的BC边上的角平分线,求∠ADC的度数.7.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=60°.求∠A的度数.8.如图,∠A=50°∠ABC=60°.(1)若BD为∠ABC平分线,求∠BDC.(2)若CE为∠ACB平分线且交BD于E,求∠BEC.9.如图,在△ABC中,∠B和∠C的平分线相交于O点.(1)若∠A=60°,求∠BOC的度数.(只需写出结果)(2)若∠A=α,求∠BOC的度数.10.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,(1)试判断EC与DF是否平行,并说明理由;(2)若∠ACF=110°,求∠A的度数.11.在三角形中,每两条边所组成的角叫三角形的内角,如图1,在三角形ABC中,∠B,∠BAC和∠C是它的三个内角.其实,在学习了平行线的性质以后,我们可以用几何推理的方法去证明“三角形的内角的和等于180°”.请在以下给出的证明过程中填空或填写理由.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(_________ ),(_________ )又∵AE∥BC(已作)∴∠2=∠(_________ ),(_________ )∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(_________ ),即,三角形的内角的和等于180°.12.如图,已知△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线.求:∠DAE的度数.(写出推导过程)13.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.14.如图,已知三角形ABC,∠ACB=90°,∠BCD+∠B=90°,∠A与∠BCD有怎样的大小关系?说明你的理由.15.如图,△ABC中,∠C=70°,AD、BD是△ABC的外角平分线,AD与BD交于点D,(1)求∠D的度数;(2)若去掉∠C=70°这个条件,试写出∠C与∠D之间的数量关系.16.(1)如图1,在△ABC中,∠C=90°,∠BAC=45°,∠BAC的平分线与外角∠CBE的平分线相交于点D,则∠D= _________ 度.(2)如图2,将(1)中的条件“∠BAC=45°”去掉,其他条件不变,求∠D的度数.17.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求:∠A和∠ABD的度数.18.△ABC中,(1)若∠A=70°,BO、CO分别平分∠ABC和∠ACB,求∠BOC的度数;(2)若∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,请直接写出用n°表示∠BOC的关系式.19.已知,如图,在△ABC中,BD⊥AC于D,若∠A:∠ABC:∠ACB=3:4:5,试求∠ABD的度数.20.如图,把△ABC纸片沿DE折叠,使点C落在四边形BADE内部点F的位置.(1)已知∠CDE=50°,求∠ADF的大小;(2)已知∠C=60°,求∠1+∠2的大小.21.已知△ABC中,∠A=∠B=∠C,判断三角形的形状?22.如图,在△ABC中,BA平分∠DBC,∠BAC=124°,BD⊥AC于D,求∠C的度数.23.如图,AD是△ABC的BC边上的高,AE是∠BAC的角平分线,若∠B=47°,∠C=73°,求∠DAE的度数.24.如图,已知△ABC中,∠A=40°,角平分线BE、CF相交于O,求∠BOC的度数.25.如图,在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AFG=40°,求∠ACB的度数.26.已知△ABC中,∠BAC=90°,∠C=30°,点D为BC边上一点,连接AD,作DE⊥AB于点E,DF⊥AC于点F.(1)若AD为△ABC的角平分线(如图1),图中∠1、∠2有何数量关系?为什么?(2)若AD为△ABC的高(如图2),求图中∠1、∠2的度数.27.如图:证明“三角形的内角和是180°”已知:_________求证:_________证明:过B点作直线EF∥AC.28.如图,BD平分∠ABC,CD平分∠ACE,请写出∠A和∠D的关系式,并说明理由.29.已知△ABC.(1)若∠BAC=40°,画∠BAC和外角∠ACD的角平分线相交于O1点(如图①),求∠BO1C的度数;(2)在(1)的条件下,再画∠O1BC和∠O1CD的角平分线相交于O2点(如图②),求∠BO2C的度数;(3)若∠BAC=n°,按上述规律继续画下去,请直接写出∠BO2012C的度数.30.(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数.(2)如图(2),△DEF两个外角的平分线相交于点G,∠D=40°,求∠EGF的度数.(3)由(1)、(2)可以发现∠BOC与∠EGF有怎样的数量关系?设∠A=∠D=n°,∠BOC与∠EGF是否还具有这样的数量关系?为什么?31.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE,CF分别是AC和AB边上的高,H是BE和CF的交点,求∠BHC 的度数.32.如图,△ABC中,∠ACB=∠B=2∠A,CD是AB边上的高,求∠BCD.33.如图,已知DM平分∠ADC,BM平分∠ABC,∠A=36°,∠M=44°,求∠C的度数.34.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE 和∠CDF的度数.35.已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB 的度数.36.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.37.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.38.如图,CD是∠ACB的平分线,DE∥BC,∠B=70°,∠ACB=50°,求∠EDC,∠BDC的度数.39.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠DAE的度数.40.如图,△ABC中,AD是BC边上的高,AE是三角形∠BAC的角平分线,若∠B=40°,∠C=70°,则∠DAE为多少度?41.如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.42.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.43.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)44.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.45.如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.46.如图:在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34度.求∠DAE的度数.47.如图,若AB∥CD,EF与AB、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠P的度数.48.如图已知△ABC中,∠B和∠C外角平分线相交于点P.(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.(2)若∠ABC=α,∠BPC=β,求∠ACB度数.49.如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.50.如图:AB∥CD,直线l交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由;(2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系并说明理由.51.如图,△ABC中,∠B=40°,∠C=70°,AD为∠BAC的平分线,AE为BC边上的高,求∠DAE的度数.52.如图,在△ABC中,∠ABC=60°,∠ACB=50°,BD平分∠ABC,CD平分∠ACB.求∠D的度数.53.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.54.已知:图中,∠B=40°,∠C=60°,AD、AF分别是△ABC的角平分线和高.(1)∠BAC等于多少度?(2)∠DAF等于多少度?55.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.56.如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.57.如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?58.如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.259.已知:如图,在△ABC中,∠C>∠B,AD⊥BC交于点D,AE平分∠BAC,试说明:∠EAD=(∠C﹣∠B).60.如图(1),△ABC中,AB=AC,∠B=2∠A.(1)求∠A和∠B的度数;(2)如图(2),BD是△ABC中∠ABC的平分线:①写出图中与BD相等的线段,并说明理由;②直线BC上是否存在其它的点P,使△BDP为等腰三角形,如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠BDP的度数;如果不存在,请说明理由.三角形内角和解答题60题参考答案:1.∵AD是△ABC的一条角平分线,∴∠BAD=∠BAC=×60°=30°,∴∠ADC=∠BAD+∠B=30°+45°=75°2.∵AD⊥BC,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠B=36°,∴∠BAD=90°﹣36°=54°,∵∠DAE=16°,∴∠BAE=54°﹣16°=38°,∵AE平分∠BAC,∴∠CAE=∠BAE=38°,∴∠CAD=38°﹣16°=22°3.∵∠A=27°,∠C=30°,∴∠DFC=∠A+∠C=57°,∵∠DBF=∠CBE=96°,∴∠ADE=180°﹣∠DFC﹣∠FBD=180°﹣57°﹣96°=27°.4.在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠D=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A,即:∠D=90°+∠A.5.在△ABC中,∵∠A=3x°,∠ABC=4x°,∠ACB=5x°.又∵∠A+∠ABC+∠ACB=180°.∴3x°+4x°+5x°=180°,解得x=15,∠A=3x°=45°,∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∵在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°6.(1)∵∠ABC=40°,∠BAC=80°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣40°﹣80°=60°;(2)∵∠BAC=80°,AD是△ABC的BC边上的角平分线,∴∠DAC=∠BAC=40°,∵∠C=60°,∴∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣60°=80°7.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∵∠EDC=∠DBC+∠DCB=60°,∴(180°﹣∠A)=60°,∴∠A=60°8.(1)∵BD为∠ABC平分线,∴∠ABD=∠ABC=×60°=30°,∴∠BDC=∠A+∠ABD=50°+30°=80°.(2)∵∠ACB=180°﹣∠A﹣∠ABC=180°﹣50°﹣60°=70°,又∵CE为∠ACB平分线,∴∠DCE=∠ACB=×70°=35°,∴∠BEC=∠DCE+∠BDC=35°+80°=115°9.(1)∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣60°=120°,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×120°=60°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°;(2))∵∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵∠B和∠C的平分线相交于O点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣α)=90°﹣α,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣α)=90°+α10.(1)BC∥DF,理由:∵∠ABC=∠ACB,∠1=∠2,∴∠ABC﹣∠1=∠ACB﹣∠2,即∠3=∠ECB,∵∠3=∠F,∴∠ECB=∠F,∴EC∥DF(同位角相等,两直线平行);(2)∵∠ACF=110°,∴∠ACB=70°,∵∠ABC=∠ACB,∴∠ABC=70°,∴∠A=∠ACF﹣∠ABC=110°﹣70°=40°11.证明:如图2,延长BA,过点A作AE∥BC.∵AE∥BC(已作)∴∠1=∠(∠B ),(两直线平行,同位角相等)又∵AE∥BC(已作)∴∠2=∠(∠C ),(两直线平行,内错角相等)∵∠1+∠2+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换),即,三角形的内角的和等于180°.12.∵△ABC中,∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=39°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠EAC﹣∠DAC=39°﹣28°=11°13.∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°14.∠A=∠BCD,理由是:∵∠ACB=90°,∴∠A+∠B=90°,∵∠BCD+∠B=90°,∴∠A=∠BCD15.(1)∵∠C=70°,∴∠CAB+∠CBA=180°﹣70°=110°,∴∠EAB+∠FBA=360°﹣110°=250°,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA)=125°,∴∠D=180°﹣125°=55°;(2)由题意可得,∠CAB+∠CBA=180°﹣∠C,∴∠EAB+∠FBA=360°﹣(∠CAB+∠CBA),=360°﹣(180°﹣∠C),=180°+∠C,∵AD、BD是△ABC的外角平分线,∴∠DAB+∠DBA=(∠EAB+∠FBA),=(180°+∠C),=90°+∠C,∴∠D=180°﹣(90°+∠C),=90°﹣∠C.16.(1)∵∠CBE 是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°;故答案为:45;(2)∵∠CBE 是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=∠CAB,∠2=∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=(∠CBE﹣∠CAB)=∠C=×90°=45°.17.∵AC∥DE,∠E=50°,∠D=75°,∴∠ACB=∠E=50°…(1分)∠1=∠D=75°(3分)又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣50°=60°…(6分)∠ABD=∠1﹣∠A=75°﹣60°=15°…(9分)∴∠A=60°,∠ABD=15°.18.(1)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=70°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(180°﹣70°)=125°.故∠BOC的度数为:125°.(2)∵∠OBC=∠ABC,∠OCB=∠ACB,∠A=n°,∵∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠OBC+∠OCB)=180°﹣(180°﹣n°)=120°+n°.故∠BOC=120°+n°19.设∠A、∠ABC、的度数分别为3x、4x、5x.则3x+4x+5x=180°,解得x=15°.∴∠A=45°,∠ACB=75°.又∵∠A+∠ABD=90°,∴∠ABD=90°﹣45°=45°20.(1)由折叠的过程可知:∠3=∠CDE,∵∠CDE=50°,∴∠3=50°,∴∠1=180°﹣∠3﹣∠CDE=80°,即∠ADF=80°;(2)∵∠C=60°,∴∠CDE+∠CED=120°,∵由折叠的过程可知∠CDE+∠CED=∠3+∠4=180°﹣∠C=120°,∴∠CDE+∠CED+∠3+∠4=240°,∵∠1+∠3+∠CDE+∠2+∠4+∠CED=360°,∴∠1+∠2+∠3+∠4+∠CDE+∠CED=360°,∴∠1+∠2=120°21.∵∠ABC+∠ACB+∠BAC=180°,∠A=∠B=∠C,∴∠A+2∠A+3∠A=180°.∴∠A=30°,∠B=60°,∠C=90°.所以△ABC是直角三角形22.在△ABD中,∠BAC=∠D+∠DBA,∵BD⊥AC,∴∠D=90°.又∵∠BAC=124°,∴∠DBA=34°.∵BA平分∠DBC,∴∠DBC=2∠DBA=68°,在△CBD中,∠C=180°﹣(∠D+∠DBC)=22°.23.∵∠B=30°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE是角平分线,∴∠EAC=∠BAC=30°.∵AD是高,∠C=73°,∴∠DAC=90°﹣∠C=17°,∴∠EAD=∠EAC﹣∠DAC=30°﹣17°=13°24.如图,∵角平分线BE、CF相交于O,∴∠ABC=2∠1,∠ACB=2∠2,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠1+2∠2=180°,∴∠1+∠2=90°﹣∠A,又∵∠1+∠2+∠BOC=180°,∴∠1+∠2=180°﹣∠BOC,∴180°﹣∠BOC=90°﹣∠A,∴∠BOC=90°+∠A,而∠A=40°,∴∠BOC=90°+×40°=11025.(1)证明:如图,∵CF⊥AB,ED⊥AB,∴DE∥FC,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴FG∥BC;(2)解:如图,在△AFG中,∠A=60°,∠AFG=40°,∴∠AGF=180°﹣∠A﹣∠AFG=100°.又由(1)知,FG∥BC,∴∠ACB=∠AGF=80°,即∠ACB的度数是80°.26.(1)∠1=∠2,理由如下:∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,DF∥AB,∴∠1=∠DAC,∠2=∠DAB,∵AD平分∠BAC,∴∠DAC=∠DAB,∴∠1=∠2;(2)∵DE⊥AB,DF⊥AC,AD⊥BC,∴∠ADB=∠ADC=∠DEB=∠DFC=∠BAC=90°,∴DE∥AC,∴∠BDE=∠C=30°,∴∠1=∠ADB﹣∠BDE=30°,∵∠FDC=180°﹣∠DFC﹣∠C=60°,∴∠2=∠ADC﹣∠FDC=60°27.过点B作EF∥AC,∴∠EBA=∠A,∠FBC=∠C,∵∠EBA+∠ABC+∠FBC=180°,∴∠A+∠C+∠ABC=180°,∴三角形的内角和等于180°.故答案为△ABC,∠A+∠B+∠C=180°28.∠A=2∠D.理由如下:∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∴∠A=∠ACE﹣∠ABC,∠D=∠DCE﹣∠DBC=(∠ACE﹣∠ABC),∴∠A=2∠D29.∵O1B、O1C分别平分∠ABC和∠ACD,∴∠ACD=2∠O1CD,∠ABC=2∠O1BC,而∠O1CD=∠O1+∠O1BC,∠ACD=∠ABC+∠A,∴∠A=2∠01=40°,∴∠O1=20°,同理可得∠O1=2∠O2,即∠A=22∠02=40°,∴∠O2=10°,∴∠A=2n∠A n,∴∠A n=n °×()n.则∠BO2012C=0.30.(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°.∵BO、CO分别是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×140°=70°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣70°=110°;(2)设△ABC的两个外角为α、β.则∠G=180°﹣(α+β)(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知α+β=∠D+∠DFE+∠D+∠DEF=180°+40°=220°,∴∠G=180°﹣(α+β)=70°;(3)∠A=∠D=n°,∠BOC与∠EGF互补.证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+,∵∠D=n°,∠EGF=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣,∴∠A+∠D=90°++90°﹣=180°,∴∠BOC与∠EGF互补.31.如图,在△ABC中,∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB180°﹣66°﹣54°=60°,∵BE和CF分别为AC和AB边上的高,∴∠AEB=∠BFC=90°,在Rt△ABE中,∠1=180°﹣∠A﹣∠AEB=180°﹣90°﹣60°=30°,在△BHC中,∠BHC=∠1+∠BFC=30°+90°=120°32.∵∠ACB=∠B=2∠A,∴∠A+∠B+∠ACB=∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠B=2∠A=2×36°=72°,∵CD是AB边上的高,∴∠BCD=90°﹣∠B=90°﹣72°=18°33.∵DM平分∠CDA,∴∠CDM=∠MDA,又∵BM平分∠ABC,∴∠CBM=∠ABM,又∵∠MDA+44°=∠CBM+36°,∴∠CBM﹣∠MDA=8°,∴2∠CBM﹣2∠MDA=16°,即∠ABC﹣∠ADC=16°,又∵∠ADC+∠C=∠ABC+∠A,∴∠C=36°+16°=52°34.∵∠A+∠B+∠ACB=180°,∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,∴∠BCE=∠ACB=×68°=34°,∵CD⊥AB,∴∠CDB=90°,∵∠B=72°,∴∠BCD=90°﹣72°=18°,∴∠FCD=∠BCE﹣∠BCD=16°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=74°,即∠BCE=34°,∠CDF=74°35.在△BFD中,∵DF⊥AB,∠D=20°,∴∠B=90°﹣∠D=90°﹣20°=70°,在△ABC中,∵∠B=70°,∠A=30°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣70°=80°.答:∠ACB度数是80°36.∵∠BAC+∠B+∠C=180°,而∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AE是△ABC的角平分线,∴∠EAC=∠BAC=50°又∵AD为高线,∴∠ADC=90°,而∠C=50°,∴∠DAC=180°﹣90°﹣50°=40°,∴∠DAE=∠EAC﹣∠DAC=50°﹣40°=10°37.∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°38.∵CD是∠ACB的平分线,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°,∴在△BDC中,∠BDC=180°﹣∠B﹣∠BCD=180°﹣70°﹣25°=85°.39.∵AD⊥BC,∴∠BDA=90°.∵∠B=60°,∴∠BAD=180°﹣90°﹣60°=30°∵∠BAC=80°∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°.∵AE平分∠DAC,∴∠DAE=0.5∠DAC=25°140.∵∠B=40°,∠C=70°,∴在△ABC中,∠BAC=180°﹣40°﹣70°=70°,又∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,又∵AD是BC边上的高,∴AD⊥BC,∴∠ADC=90°,∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠EAC﹣∠DAC=35°﹣20°=15°41.在△BDF中,∠B=180﹣∠BFD﹣∠D=180°﹣90°﹣50°=40°,在△ACB中,∠A=40°,故∠ACB=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°42.∵∠B=∠A+10°,∠C=∠B+10°,又∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+10°+10°)=180°,3∠A+30°=180°,3∠A=150°,∠A=50°.∴∠B=60°,∠C=70°.43.(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°﹣∠B=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣50=10°;(2)∠C﹣∠B=2∠DAE44.∵DE⊥AB(已知),∴∠FEA=90°(垂直定义).∵在△AEF中,∠FEA=90°,∠A=30°(已知),∴∠AFE=180°﹣∠FEA﹣∠A(三角形内角和是180)=180°﹣90°﹣30°=60°.又∵∠CFD=∠AFE(对顶角相等),∴∠CFD=60°.∴在△CDF中,∠CFD=60°∠FCD=80°(已知)∠D=180°﹣∠CFD﹣∠FCD=180°﹣60°﹣80°=40°45.在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°46.在△ABC中∠BAC=180﹣∠B﹣∠C=76°,又∵AE平分∠BAC,∴∠EAC=38°,在直角△ACD中,∠DAC=90﹣∠C=56°,∴∠DAE=∠DAC﹣∠EAC=18°47.∵EP⊥EF,∴∠PEM=90°,∠PEF=90°.∵∠BEP=40°,∴∠BEM=∠PEM﹣∠BEP=90°﹣40°=50°.∵AB∥CD,∴∠BEM=∠EFD=50°.∵FP平分∠EFD,∴∠EFP=∠EFD=25°,∴∠P=90°﹣25°=65°.48.(1)∠BPC =180°﹣(∠EBC+∠BCF)=180°﹣(∠EBC+∠BCF)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣(180°﹣30°+180°﹣70°)=50°;(2)∠BPC=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=(∠ABC+∠ACB),∵∠BPC=β,∠ABC=α,∴β=(α+∠ACB).故∠ACB=2β﹣α49.在△ABC中,∠A+∠B+∠1=180°,∠B=42°,∴∠A+∠1=138°,又∵∠A+10°=∠1,∴∠A+∠A+10°=138°,解得:∠A=64°.∴∠A=∠ACD=64°,∴AB∥CD(内错角相等,两直线平行)50.(1)∵AB∥CD,∴∠AEF+∠MFN=180°.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM=∠AEF.(2)∠FMN+∠FNM+∠AEF=180°.理由:∵AB∥CD,∴∠AEF=∠MFN.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM+∠AEF=180°.51.∵∠B=40°,∠C=70°,∴∠BAC=180°﹣40°﹣70°=70°,又AD为平分线,∴∠DAC=35°.∵AE⊥BC,∴∠EAC=90°﹣∠C=20°,∴∠DAE=35°﹣20°=15°252.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC=30°,∠DCB=∠ACB=25°,又∵∠DBC+∠DCB+∠D=180°,∴∠D=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣25°=125°53.∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=27°,∴∠D=180°﹣110°﹣27°=43°54.(1)根据三角形的内角和定理,得:∠BAC=180°﹣∠B﹣∠C=80°;(2)∵AD是△ABC的角平分线,∴∠BAD=∠BAC=40°,∴∠ADF=∠B+∠BAD=80°,又∵AF是△ABC的高,∴∠DAF=10°55.∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°56.在△ABC中,∵∠ABC=80°,BP平分∠ABC,∴∠CBP=∠ABC=40°.∵∠ACB=50°,CP平分∠ACB,∴∠BCP=∠ACB=25°.在△BCP中∠BPC=180°﹣(∠CBP+∠BCP)=115°57.由OE⊥OA,得∠2+∠3=90°,又∵∠1=∠2,∠1+∠2+∠3+∠4=180°,∴∠3=∠4,∵EH⊥CO,∴∠5=90°﹣∠3=90°﹣∠4,∴∠5=∠2,∵BE∥AO,∴∠2=∠6,∴∠5=∠658.∵∠ABC和∠ACB的平分线BD、CE相交于点O,∴∠1=∠2,∠3=∠4,∴∠2+∠4=(180°﹣∠A)=(180°﹣60°)=60°,故∠BOC=180°﹣(∠2+∠4)=180°﹣60°=120°.59.∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC∵∠BAC=180°﹣(∠B+∠C)∴∠EAC=[180°﹣(∠B+∠C)]∵AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=90°﹣∠C,∵∠EAD=∠EAC﹣∠DAC∴∠EAD=[180°﹣(∠B+∠C)]﹣(90°﹣∠C)=(∠C﹣∠B)60.(1)∵AB=AC,∠B=2∠A∴AB=AC,∠C=∠B=2∠A又∵∠C+∠B+∠A=180°∴5∠A=180°,∠A=36°∴∠B=72°;(2)①∵BD是△ABC中∠ABC的平分线∴∠ABD=∠CBD=36°∴∠BDC=72°∴BD=AD=BC;②当BD是腰时,以B为圆心,以BD为半径画弧,交直线BC于点P1(点C除外)此时∠BDP=∠DBC=18°.以D为圆心,以BD为半径画弧,交直线BC于点P3(点C除外)此时∠BDP=108°.当BD是底时,则作BD的垂直平分线和BC的交点即是点P2的一个位置.此时∠BDP=∠PBD=36°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的内角和
一、填空
1、每个三角形的内角和都是()度。
2、在三角形ABC中,∠A=900 ,∠B+∠C= ( )度。
3、在三角形中至少有()个锐角。
4、在三角形ABC中,∠A=250 ,∠C=260,∠B=(),它是()三角形。
5、一个顶角是500的等腰三角形的底角是()度。
6、等边三角形的每个内角都是()。
二、判断(对的打“√”,错的打“×”)
1、等腰三角形一定是锐角三角形。
()
2、等腰直角三角形的底角一定是450。
()
3、三角形越大,它的内角和就越大。
()
4、一个三角形至少有一个角是锐角。
()
三、选择
1、一个等腰三角形,顶角是1000,一个底角是()
A 1000
B 400
C 550
2、一个三角形中,有一个角是650 ,另外两个角可能是()
A 950,200
B 450,800
C 650,600
3、一个等腰三角形,一个底角是500,顶角是()
A 1000
B 800
C 550
4、一个等腰三角形,一个底角是顶角的2倍,这个三角形的顶角是()
A 360
B 720
C 450。