正比例函数图像教案
19.2.1 正比例函数图像教学设计
惠水二中八年级数学科教学设计方案
课题
19.2.1正比例函数图像
课型
新授课
课时
第7课时
设计人
蒲永龙
执教人
授课日期
审核人
教材分析
学习画正比例函数图象。探索正比例函数图象的过程,由此及彼此认识问题的能力,体会事物的抽象性以及正比例函数图象的实际应用。
学习目标
1、领会正比例函数的定义,会画正比例函数图象。2、经历探索正比例函数图象的过程,发展学生的类比思维。3、培养由此及彼此认识问题的能力,体会事物的抽象性以及正比例函数图象的实际应用价值。
会
四、学习体会
本节课我们学习到了什么.谈谈你的收获?
4分钟
巡视小组总结讨论,提问1个组起来回答总结情况,最后评价并补充总结。
学生小组讨论总结,举手回答问题,并听教师分析补充。
让学生学会总结
五、
拓
展
练
习
五、课后学效检测与拓展(内容见学案)
8分钟
让学生独立做,让学生讨论的同时抽2个学生上黑板写出自己的步骤,纠正学生解题问题,并作出评价
学生做题目,讨论,看老师分析
让学生对知识进行深度掌握,并拓宽他们的思维深度。
六、
作业
布置
七、
教
学
反
思
让学生在探究中掌握本节课的内容,并能够应用。
三、
巩
固
练
习
三、随堂练习.
(内容见学案)
10分钟
巡视,对学生出现的错误及时帮助解决,然后给学生小组讨论对答案,最后给学生讲解题目答案
学生做完学案上的题目,讨论纠正,最后听老师讲解
让学生应用知识解决问题,达到巩固知识的目的,并帮组学生纠正书写习惯。
正比例函数图像教案
(( )函数,叫做正比例函)函数,叫做正比例函数,其中k 叫做叫做 。
2.练习(1).下列函数中,那些是正比例函数?______________ ((1)x y 4= ((2)13+=x y ((3)1=y ((4)x y 8= ((5)y=x 3 (6) y=x 22.2.关于关于x 的函数x m y )1(-=是正比例函数,则m__________3.3.若若y=5x 3m-2是正比例函数,则m=___________.4. 4. 若若(1)ny n x =-是正比例函数,则n = .3.合作互学1.1.还记得描点法画函数图象的一般步骤吗?还记得描点法画函数图象的一般步骤吗?①______________,______________,②②______________________________________③③____________________2.2.用描点法画出下列函数的图像用描点法画出下列函数的图像用描点法画出下列函数的图像(1) y=2x解:列表得:解:列表得:x … -3 -2 -1 0 1 2 3 … 正比例函数图像与性质房县石堰河中学: 舒德永一、教学目标: 知识与技能 1、理解正比例函数的概念,能在用描点法画正比例函数能在用描点法画正比例函数图象图象过程中发现正比例函数图象性质发现正比例函数图象性质2、能用正比例函数图象的性质简便地画出正比例函数图像3、能够利用正比例函数解决简单的数学问题过程与方法 学生通过探究实际问题中函数关系归纳得出正比例函数的概念,再通过动手操作画图象观察概括出正比例函数图象的性质。
学生在探究合作中交流,体验知识的形成过程究合作中交流,体验知识的形成过程情感态度与价值观 通过教师的主导作用,提高学生的提高学生的合作学习合作学习效率,让学生体会合作学习的好处。
会合作学习的好处。
教学重点 探索并理解正比例函数图像的主要性质。
教学难点 结合正比例函数图像,探索并理解正比例函数图像的主要性质。
初中数学《正比例函数的图象》教案
初中数学《正比例函数的图象》教案一、教学目标1. 知识目标:理解正比例函数的定义及其性质;掌握正比例函数的变化规律及其应用;能够绘制正比例函数的图象。
2. 能力目标:通过对正比例函数的学习,提高学生的抽象思维能力和图像思维能力;培养学生探索问题、解决问题的能力,在实际问题中运用正比例函数。
3. 情感目标:从正比例函数的实际应用中感受数学的实用性和重要性;培养学生对数学的兴趣和热爱,激发学生学习数学的积极性。
二、教学内容正比例函数的图象。
三、教学重难点1. 教学重点:掌握正比例函数的定义及其性质;掌握正比例函数的变化规律及其应用;能够绘制正比例函数的图象。
2. 教学难点:理解正比例函数的定义及其性质;掌握绘制正比例函数的图象的方法。
四、教学方法讲授法、示范法、探究法、实践法。
五、教学过程1. 前置知识导入(5分钟)通过积累生活中与正比例函数有关的问题,引发学生对正比例函数的兴趣。
例如:一个人跑完1000米要用10分钟,那么这个人每分跑多少米?2. 新课教学(35分钟)(1) 正比例函数的定义及其性质。
1. 如果y与x成正比例关系,且比例系数为k,则y=kx 。
2. 通常称这种函数为正比例函数,其中k称为比例系数。
(2) 正比例函数的图象。
1. 当x>0时,y=kx表示的是以原点为起点、斜率为k的直线。
2. 当k>0时,y=kx表示的是一条从左下到右上的直线。
3. 当k<0时,y=kx表示的是一条从左上到右下的直线。
(3) 正比例函数的变化规律及其应用。
1. 如果两个量x和y成正比例关系,那么当x增加一定比例时,y也按照同样的比例增加。
2. 在实际生活中,有很多问题涉及到正比例函数,例如:工人能够完成一定的工作量需要一定的时间,那么能够完成的工作量与时间成正比例关系。
3. 在实际生活中,我们可以通过正比例函数的性质,解决很多实际问题。
(4) 绘制正比例函数的图象。
1. 绘制正比例函数的图象,可以通过确定两个点来确定这条函数的图象。
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案一、教学目标:1. 知识与技能:学生能够理解正比例函数的定义和图象特点。
学生能够运用正比例函数的性质解决实际问题。
2. 过程与方法:学生通过观察和分析正比例函数的图象,探索其性质。
学生通过合作交流,培养解决问题的能力。
3. 情感态度价值观:学生培养对数学的兴趣和好奇心,体验数学的乐趣。
学生培养团队合作意识,提高自我表达能力。
二、教学重点与难点:重点:正比例函数的定义和图象特点。
正比例函数的性质。
难点:理解和运用正比例函数的性质解决实际问题。
三、教学准备:教学课件或黑板。
正比例函数的图象和性质的相关素材。
练习题和作业。
四、教学过程:1. 导入:引导学生回顾已学过的函数知识,为新课的学习做好铺垫。
通过实际例子引入正比例函数的概念。
2. 探究正比例函数的定义和图象特点:引导学生观察正比例函数的图象,分析其特点。
学生通过合作交流,总结正比例函数的性质。
3. 讲解正比例函数的性质:引导学生理解正比例函数的性质,并能够运用到实际问题中。
通过例题和练习题,巩固学生对正比例函数性质的掌握。
4. 应用与拓展:给学生提供实际问题,让学生运用正比例函数的性质解决。
引导学生思考正比例函数在实际生活中的应用。
五、作业布置:根据课堂练习题和作业,布置相关的习题,巩固学生对正比例函数的图象和性质的理解。
鼓励学生进行思考和探索,培养学生的自学能力。
六、教学评估:1. 课堂提问:在教学过程中,教师应适时提问学生,了解学生对正比例函数图象和性质的理解程度。
通过学生的回答,教师可以及时发现问题,并进行针对性的讲解和辅导。
2. 练习题解答:在课堂练习环节,教师应观察学生的解答过程,了解学生对正比例函数图象和性质的应用能力。
对于学生解答中出现的问题,教师可以进行个别辅导,帮助学生纠正错误,提高解题能力。
3. 作业完成情况:教师应检查学生作业的完成情况,包括答案的正确性和解题过程的完整性。
通过作业反馈,教师可以了解学生对正比例函数图象和性质的掌握情况,为下一步教学提供参考。
正比例函数的图像和性质教学设计
19.2.1正比例函数图像和性质教学设计一、教学目标1、知识与技能: 知识性目标:理解正比例函数图像特征.技能性目标:能画出正比例函数图像2、数学思考:数学思想:体会与发展建立数学模型和数形结合的思想.数学研究方法:从特殊到一般,从数到形研究正比例函数图像特征及性质.3、解决问题,利用正比例函数图像特征及性质知识解决有关实际问题4、情感与态度:结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯.二、教学重难点教学重点:正比例函数图像特征和性质.教学难点:正比例函数图像特征和性质的综合运用.三.教学方法与课时方法:讲授法,讨论法课时:1课时四、教学过程创设情境新课导入:通过课前一练,我们已经掌握了什么是正比例函数,正比例函数的图象是怎样的?他具有哪些性质呢?这节课,我们将研究这个内容(板书19.2.1 正比例函数的图象及其性质)【活动一】正比例函数y=kx(k >0)的图象及特点引导探究安排主持人点名抢答题,板答题,出题同学点评、赋分。
锻炼学生的语言表达能力和逻辑思维能力。
直接引入课题,交代本节课的学习内容。
学活动解决问题:能利用所学知识解决相关问题,体会解决问题的多样性。
情感态度:结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯。
正比例函数的图象及性质,两点法画正比例函数图象正比例函数的性质以及两点的确定。
活动一:以问题串的形式向学生提问1 在同一直角坐标系中,画正比例函数y=2x 与y =-2 x 的图象。
观察图象,回答下列问题:1、这两个函数图象是什么形状?他们都经过哪一点?2、这两个函数图象分布在坐标系的哪些象限?3、从左到右,随着x 值的增大,y 的值发生怎样的变化?(举例说明)4、比例系数k 值是什么数?【活动二】正比例函数y=kx(k<0)的图象及特点在同一直角坐标系中,画正比例函数y=0.5x 与y=-0.5x 的图象。
仿照上面两个函数的分析过程,进行讨论,回答以上问题。
《正比例图像》教案
《正比例图像》教案第一章:正比例函数的概念1.1 引入正比例函数的概念,让学生了解正比例函数的定义和特点。
1.2 举例说明正比例函数在实际生活中的应用,帮助学生理解正比例函数的意义。
1.3 引导学生通过观察实例,探索正比例函数的图像特征,培养学生的观察和分析能力。
第二章:正比例函数的图像2.1 介绍正比例函数的图像——一条通过原点的直线,并解释其原因。
2.2 引导学生通过绘制正比例函数的图像,加深对正比例函数图像特征的理解。
2.3 分析正比例函数图像的斜率和截距,帮助学生掌握正比例函数图像的性质。
第三章:正比例函数图像的性质3.1 介绍正比例函数图像的斜率和截距的概念,解释其含义。
3.2 引导学生通过观察和分析正比例函数图像的斜率和截距,总结正比例函数图像的性质。
3.3 举例说明正比例函数图像的性质在实际问题中的应用,帮助学生理解正比例函数图像的性质的重要性。
第四章:正比例函数图像的绘制4.1 介绍如何绘制正比例函数图像,让学生掌握绘制正比例函数图像的方法。
4.2 引导学生通过绘制不同斜率和截距的正比例函数图像,加深对正比例函数图像的理解。
4.3 分析学生绘制的正比例函数图像,及时纠正错误,并引导学生总结绘制正比例函数图像的注意事项。
第五章:正比例函数图像的实际应用5.1 举例说明正比例函数图像在实际生活中的应用,引导学生理解正比例函数图像的实际意义。
5.2 引导学生通过分析实际问题中的正比例关系,绘制正比例函数图像,并解决问题。
5.3 总结正比例函数图像在实际问题中的应用,强调正比例函数图像在解决问题中的重要性。
第六章:正比例函数图像的识别与分析6.1 复习正比例函数图像的特征,包括斜率、截距和通过原点的事实。
6.2 引导学生如何识别给定函数是否为正比例函数,并分析其图像特征。
6.3 通过例题,练习识别和分析实际问题中的正比例函数图像,提高学生的应用能力。
第七章:正比例函数图像的变换7.1 介绍平移对正比例函数图像的影响,包括上下移动和左右移动。
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案《正比例函数的图象和性质》教案一、教学内容:正比例函数的图象和性质二、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。
2、通过观察、探究、分析、引导学生发现正比例函数的性质。
3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。
三、教学重点:正比例函数图象的画法及性质的探索。
四、教学难点:发现、归纳正比例函数的性质。
五、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。
本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
六、教具:三角板、多媒体。
七、教学过程。
教学过程:(1)温故知新,引入课题。
1、下列函数哪些是正比例函数?(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x22、(学生回答完上述问题后提问概念)一般地,形如y= kx(K≠0)的函数,叫正比例函数,其中K叫做比例系数。
3、画函数图象的一般步骤(1)列表(2)描点(3)连线学生回答后:教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?出示课题(二)探究正比例函数的图象和性质例1、画出下列正比例函数的图象。
(1)y=2x(2)y=-2x解(1)函数y=2x中x 可取任意实数,列表如下:描点连线(2)学生练习画出函数y=-2x的图象。
正比例函数的图像和性质教学设计
正比例函数的图像和性质教学设计正比例函数的图像和性质教学设计一、教学目标1、知识目标:(1)探究正比例函数的图像特征,正确画出正比例函数图像;(2)理解正比例函数的性质;(3)结合图相对简单实际问题中的函数关系进行分析。
2、能力目标:(1)通过对正比例函数图像特征的观察和分析,促进学生有感性思维向理性思维的发展,提高学生的逻辑思维能力;(2)通过对于正比例函数性质的讨论,增强学生数形结合的观念;体会由“特殊”到“一般”的数学思想方法,提到他们的概括能力、抽象能力、语言表达能力。
3、情感目标(1)结合描点作图及观察图像培养学生认真细心严谨的学习态度和习惯。
(2)培养学生积极参与数学活动,勇于探索的数学现象和规律,形成良好的质疑和独立思考的习惯。
二、教学重点:1、正比例函数图像的画法和性质2、理解正比例函数意义及解析式特点三、教学难点:发现及归纳正比例函数的性质四、教学方法:探索归纳,启发式讲练结合五、教学用具:粉笔、黑板六、教学过程:(一)复习、巩固旧知识师:上一节课我们已经学习了正比例函数的定义,以及它的表达式,大概回忆一下,好,大家共同回忆。
生:一般的,形如y=kx(k不等于零,k为常数)的函数,叫做正比例函数。
师:好,很棒啊。
那么同学们还知道k和x满足什么条件的时候才是正比例函数。
生:k不为零,x的次数为一次。
师:好,现在我们已经知道了正比例函数的解析式,今天我们就来探究它的图像以及它有什么样的性质。
师:同学们回忆画函数图像的步骤的一般步骤。
生:列表、描点、连线师:好,那老师给同学们在黑板上示范一下如何画函数图像。
(在黑板上写,画出y=x的函数图像,在画图中要注意x取值的任意性,平面直角坐标系的三要素)师:好,现在老师已经画完了y=x的函数图像,请同学来再画y=-x,y=2x的函数图像,并看看这些函数图像它的形状是不是一样。
下面同学画y=3x,y=-3x的函数图像。
师:看黑板,这些函数图像画的对不对,现在同学们观察函数图像的形状,看看有什么特别的地方?生:都是一条直线。
六年级数学下册教案《4.2.1 正比例的图像》9-人教版
六年级数学下册教案《4.2.1 正比例的图像》9-人教版一、教学目标1.了解正比例的概念。
2.能够绘制正比例函数的图像。
3.能够利用正比例的性质解决实际问题。
二、教学重点1.正比例的定义和特点。
2.正比例函数的基本形式 y = kx。
3.正比例函数的图像特点。
三、教学内容1. 正比例的概念正比例是指两个变量之间的关系是成比例的。
即当一个变量的值增加(或减少)时,另一个变量的值也相应地增加(或减少)。
2. 正比例函数的基本形式正比例函数一般表示为 y = kx,其中 k 为比例系数,表示两个变量之间的比例关系。
3. 正比例函数的图像特点•正比例函数的图像是一条通过原点的直线。
•当 k 大于 1 时,表明正比例关系更为显著,曲线更为陡峭;当 k 等于1 时,表明两者成正比例关系;当 k 小于 1 时,表明正比例关系弱化,曲线较为平缓。
四、教学过程第一步:导入新知识1.通过生活中的例子引入正比例的概念,让学生理解正比例的意义。
2.引导学生思考如何判断两个变量之间是否为正比例关系。
第二步:讲解正比例函数的基本形式1.介绍正比例函数的基本形式 y = kx,让学生明白其中 k 的作用。
2.演示如何通过给定 k 的值绘制正比例函数的图像。
第三步:练习和讨论1.让学生在纸上练习绘制几个正比例函数的图像。
2.引导学生讨论不同 k 值对于图像的影响。
第四步:解决实际问题1.给学生提供一些实际问题,让他们利用正比例函数解决。
2.强调如何将问题转化为数学语言,建立函数关系。
五、教学小结1.巩固正比例的概念和正比例函数的基本形式。
2.强化学生对于正比例函数图像的理解和绘制能力。
3.培养学生运用正比例函数解决实际问题的能力。
以上是本次课程的教案内容,希望能够帮助学生透彻理解正比例的概念及图像特点,提升数学学习成绩。
正比例函数图像的教案
正比例函数图像的教案教案标题:探索正比例函数图像教案目标:1. 理解正比例函数的概念和特征。
2. 掌握绘制正比例函数图像的方法。
3. 运用正比例函数图像解决实际问题。
教学资源:1. 教材:包含正比例函数的相关知识点和例题。
2. 白板、彩色粉笔/白板笔。
3. 计算器。
4. 练习题和解答。
教学过程:引入活动:1. 利用实物或图片展示不同比例关系的例子,引导学生观察并描述这些例子中的规律。
2. 引导学生思考正比例函数的定义,并与之前观察到的例子进行对比。
知识讲解:1. 通过讲解正比例函数的定义和特征,如y与x的比值恒定为常数k,当x为0时y也为0等,帮助学生建立起对正比例函数的基本认识。
2. 解释比例常数k的意义,即y与x的比值,可用来表示两个变量之间的关系强度。
图像绘制:1. 提供一些正比例函数的例题,解释如何根据函数表达式绘制函数图像。
2. 强调坐标轴的标尺和比例,以确保图像的准确性。
3. 指导学生使用计算器计算函数值,并将结果绘制在坐标轴上。
4. 强调绘制图像时应注意选择合适的比例尺和坐标轴范围,以展示函数的特征。
实际问题解决:1. 提供一些实际问题,要求学生运用正比例函数图像解决问题。
2. 引导学生分析问题,确定自变量和因变量,并建立函数关系。
3. 利用已绘制的正比例函数图像,找到问题的解答。
巩固练习:1. 提供一些练习题,要求学生绘制正比例函数图像并解答相关问题。
2. 检查学生的答案,并针对错误或困惑的地方进行解释和指导。
总结:1. 回顾本节课所学的内容,强调正比例函数图像的特征和应用。
2. 鼓励学生总结本节课的学习成果,并提醒他们练习更多以加深对正比例函数图像的理解。
教学延伸:1. 引导学生探索其他函数类型的图像特征,如反比例函数、线性函数等。
2. 提供更多复杂的实际问题,让学生运用正比例函数图像解决。
评估方法:1. 教师观察学生在课堂上的参与程度和问题解决能力。
2. 批改学生完成的练习题,检查他们对正比例函数图像的理解和应用。
正比例函数的图象(教学设计)
6.3正比例函数的图象(教案)教学目标1、了解正比例函数y=kx的图象的特点。
2、会作正比例函数的图象。
3、理解正比例函数及其图象的有关性质。
4、能熟练地作出正比例函数的图象。
能力目标1、进一步培养学生数形结合的意识和能力。
2、通培养学生的探索精神。
情感目标让学生全身心地投入教学活动中,能进行探索的活动,发展实践能力与创新精神。
教学重点1、正比例函数的图象的特点。
2、正比例函数图象的性质。
教学过程1、新课导入(几张幻灯片导入新课2分钟)生活中有时候为了解决问题的方便,我们利用图象来研究两个变量之间的变化关系,刚才我们看到的心电图,以及买彩票时画的一些图,还有气温变化折线图以及速度随时间的变化图等都可以很方便的知道因变量随自变量的变化情况,上周我们刚刚学了一次函数,现在我们遇到一个一次函数,如果我想知道y随x 如何变化,也可以借助这个一次函数的图象来了解,在一次函数中有一类特殊的函数叫正比例函数,今天我们就从正比例函数的图象开始学习,不过首先我们得了解什么是函数的图象,下面请大家先齐读学习目标。
2、讲授新课(1)首先请大家认真阅读课本第187页的内容,并完成试一试的1、2两个题。
3.活动1:请大家在同一坐标系内作出正比例函数y= x,y=x,y=3x,y=-2x的图象。
(学生完成,老师巡视,并发现问题及时讲解)4、想一想(1)正比例函数y=kx的图象有什么特点?(都经过原点)(2)你作正比例函数y=kx的图象时描了几个点?(至少两点)(3)直线y= x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(用幻灯片展示要得出的知识点)(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。
19.2.1 正比例函数的图像(第2课时)教案.2.1 正比例函数的图像(第2课时)教案
19.2.1正比例函数的图像(第2课时)淋山河中学 童 鹏 知识与技能:理解正比例函数的概念,会画正比例函数的图象,并且能判断两个变量是否构成正比例关系.过程与方法:运用“列表法”作出正比例函数图象,培养学生运用正比例函数解决简单数学问题的能力;分析图象,培养学生的观察能力、概括能力,初步认知数学建模思想及数形结合思想.情感态度价值观:结合描点作图,培养学生认真、细心、严谨的学习态度和学习习惯。
通过正比例函数概念的引入,使学生进一步认识数学是由于人们需要而产生的,与现实世界密切相关,数学来源于生活并作用于生活. 1.重点:正比例函数的概念2.难点:探索、发现正比例函数的图象特征一.复习引入(活动一)师:什么样的函数是正比例函数呢?生:形如y=kx(k 是常数且k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 师:在上面的这四个选项中,y 是正比例函数的是哪一个?生: 我觉得应该选择C 选项,因为A 选项中函数右边不是单项式,B 选项中x 的最高次数是2,D 选项中x 含有根号.师:前面我们讲函数的画法时,是通过把解析式中的x,y 的值分别取出来,作为横纵坐标在直角坐标系中描点,连线得到函数图像,那么对于正比例函数的图像我们同样也可以用列表,描点,连线的方法来画出它的图像. 二.讲授新课(活动二)(1)画出正比例函数y=2x ,y=x 31的图像. 师:我们在画函数图像的时候首先要列表,然后再平面直角坐标系中描点,最后连线。
下面就y=2x 的函数图像我们一起来看一下它的图像有何特点? 1.解:(1)由于函数y=2x 中自变量x 可以取任意实数,表19-7是y 与x 的几组对应值. 师(点拨):注意由于自变量x 的值可以任意取,为了我们便于在直角坐标系中观察它的图像,我们这里x 取的都是整数.师:接下来我们再来描点,在平面直角坐标系中画出函数y=2x 的函数图像.师:函数y=2x 的函数图像有什么特点呢?生:它的图像是经过原点的一条直线,图像经过一.三象限,y 随x 的增大而增大.师:下面请大家用列表描点的方法将y=x1的图像在平面直角坐标系中画出来,观察它的图像与y= 2x 的图像有哪些共同的特点? (图19.2-1)生:这两个正比例函数的解析式中比例系数k 都大于0,他们的图像都是过原点的直线,并且图像都过一,三象限,y 都随x 的增大而增大.师:回答的很好。
正比例函数的图像(教案)
19.2 一次函数19.2.1.2 正比例函数的图像【知识与技能】1.初步理解正比例函数的图象的特征.2.能够画出正比例函数的图象.【过程与方法】通过正比例函数图象的学习与研究,感知数形结合思想.【情感态度】结合描点作图,培养学生认真、细心、严谨的学习态度.【教学重点】正比例函数的图象与性质.【教学难点】正比例函数的特征.一、回顾旧知1、正比例函数的概念:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
2、已知y=(k+1)x+k-1是正比例函数,求k的值.【分析】联想正比例函数定义可知,应用时考虑k+1≠0,k-1=0,综合可得k=1.【教学说明】这类问题看三点:(1)自变量的最高次数为1;(2)含自变量x的系数k≠0;(3)常数项为0,三者必须同时满足.二、情景导入下面我们一起来研究正比例的图象。
你还记得函数图象的画法吗?我们能不能用同样的方法画出正比例函数的图象。
三、学习目标1、能够画出正比例函数的图像2、理解正比例函数图像的特征3、用简便方法画正比例函数的图像四、学情前测1、用描点法画函数图象的步骤:①确定两个函数自变量的取值范围.②列表③画图象2、画出正比例函数的图象:x y3= 五、典例精析画出以下正比例函数的图象:(1) (2)六、发现归纳师生共同画出图象,并鼓励学生探索图象特征,引导学生归纳的结果围绕以下几个方面:(1)两图象都是经过原点的直线.(2)函数y=12x 的图象从左向右递增,经过一、三象限. (3)函数y=-12x 的图象从左向右递减,经过二、四象限. 教师总结正比例函数的图象与性质:一般地,正比例函数y=kx(k 是常数,k≠0)的图象是一条经过原点的直线,当k >0时,直线过第一、三象限,y 随x 的增大而增大;当k <0时,直线过第二、四象限,y 随x 的增大而减小.x y 21=x y 312=xy 42-=x y 5.11-=七、思考画正比例函数图像时,怎样画最简单?为什么?因为两点确定一条直线,所以能够用两点法画正比例函数y=kx (k≠0)的图像。
认识正比例图像(教案)
认识正比例图像(教案)教学目标:1. 能够理解正比例函数的定义和性质;2. 能够通过实例认识正比例函数的图像特征;3. 能够绘制图像,验证正比例函数的规律。
教学重点:1.让学生认识正比例函数的定义和性质;2.让学生理解正比例函数的图像特征;3.引导学生通过绘制图像的方式验证正比例函数的规律。
教学难点:让学生通过实例,掌握正比例函数的图像特征和规律。
教学准备:1.黑板,彩笔;2.实验装置(如弹簧秤、测温计等)。
教学过程:一、引入新课通过举例子引入新课:比如,以小明走路为例,他一秒钟能走10米,那么2秒钟他就能走20米,3秒钟他就能走30米,可以看出,随着小明走的时间越来越多,他所能走的路程也在逐渐增加,这种关系是一种什么关系呢?二、讲解正比例函数的定义和性质1. 正比例函数是指,两个变量相等比例的关系。
其中一个变量的值增加,另一个变量的值也会相应地增加,反之亦然。
2. 正比例函数有一个特点,就是关系图像呈现出的是一条经过原点的直线。
3. 正比例函数可以用数学公式表示,y=kx,其中k是常数。
4. 正比例函数的图像特征:与x轴正向平行,与y轴正向平行。
三、通过实例认识正比例函数的图像特征让学生通过多个实例去观察正比例函数的图像特征,例如:温度与气压的关系、小汽车行驶时间和路程的关系等。
四、绘制图像,验证正比例函数的规律让学生结合实例,用图像验证正比例函数的规律,例如:小明走路的例子,让他根据距离和时间间隔记录下他的活动轨迹,并画出图像,验证是否符合正比例函数的规律。
五、总结让学生总结正比例函数的定义和性质,以及正比例函数的图像特征和规律。
六、课后练习1. 问:小明将购物车里的东西重量一斤一斤的放进他家里的电梯里,如果每放入一斤电梯升高5厘米,那么小明放入20斤物品后,电梯大约升高多少米?2. 问:小明买了一台空气净化器,他发现在房间内净化器所释放的半径范围内,对pm2.5净化效果与净化器与pm2.5的距离成反比例关系。
正比例函数图像和性质教学设计正比例函数图像和性质教学设计
正比例函数图像和性质教学设计一.教材分析1.教材的地位与作用《正比例函数》是九年制义务教育新课程标准八年级第一学期第十四章的内容。
从比例中的两个量的比值是一个定值,得出两个量成正比例的概念。
学生已经学习了比例的意义与性质,在这个基础上,学生能很容易接受正比例概念。
再从正比例关系到正比例函数,从互相联系的两个变量在变化过程中有互相依从,互相制约的关系,初步引出函数的概念。
因此,本节课具有承上启下的重要作用,函数思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,体现了数学的建模思想和数形结合思想,对于初次接触到函数的学生而言,理解函数的意义是个难点。
因此本节课在教学中力图向学生展示常见问题中的变量,和变量之间的关系,使学生对以后函数的定义有一定的了解。
教学目标:认识正比例函数图像是一条直线,学会画正比例函数图像,通过计算机辅助教学使学生在观察、研究中自主发现正比例函数的性质。
过程与方法:1、通过作出函数图象和从图象上获取信息,体会数形结合思想;2、通过解决问题时根据实际情境进行函数的三种表示法的相互转化,体会转化与化归在解决问题中的作用.3、让学生亲自经历“问题情境---函数解析式---函数图象---从图象中获取信息---解决问题”的过程,体验数学知识在实际生活中的广泛应用。
情感、态度与价值观:1.通过对实际问题的解决,使学生亲身感受数学来源于生活。
2.体会在学习中与同学合作和独立思考的重要性,并在教学学习活动中获得成功的体验,树立学生良好的自信心。
教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点正比例函数图象性质特点的掌握.教学过程:一、创设情景,导入新课。
通过幻灯片介绍美国“卡特里娜”台风29日在美国登陆时的图片。
同时播放风声师:“卡特里娜”飓风给美国造成了重大的经济损失,预告台风动向,和台风赛跑成了科学工作者的重要使命,今天我们就来研究一下。
正比例函数的图像教案
正比例函数的图像教案教案标题:正比例函数的图像教案教案目标:1. 学生能够理解正比例函数的概念和特点。
2. 学生能够绘制正比例函数的图像。
3. 学生能够分析正比例函数图像的特征和变化规律。
教材和资源:1. 教材:包含正比例函数的定义和性质的教科书。
2. 白板、彩色粉笔或白板笔。
3. 教学投影仪或电脑。
4. 练习题和答案。
教学步骤:引入阶段:1. 引入正比例函数的概念:通过提问学生,引导他们回忆正比例函数的定义和特点。
解释正比例函数的定义,即两个变量之间存在着固定的比例关系。
2. 引导学生思考正比例函数图像的特点:与直线呈正比例关系,经过原点,斜率为常数。
讲解阶段:1. 讲解正比例函数图像的绘制方法:a. 提供一个正比例函数的例子,如y = 2x。
解释斜率为2,表示y每增加2,x增加1。
b. 在白板上绘制一个坐标系,并标出原点O。
c. 根据函数的斜率,从原点开始,向右上方绘制一条直线。
解释斜率为正的情况下,图像是向上倾斜的。
d. 强调图像经过原点,因为正比例函数的特点是与原点有关。
e. 引导学生绘制更多的正比例函数图像,如y = 3x,y = 0.5x等。
实践阶段:1. 分发练习题给学生,让他们根据给定的正比例函数,绘制图像,并回答相关问题。
2. 监督学生的练习过程,提供必要的帮助和指导。
总结阶段:1. 引导学生总结正比例函数图像的特点和绘制方法。
2. 解答学生可能出现的问题,澄清他们的疑惑。
3. 鼓励学生在课后练习更多的正比例函数图像绘制。
扩展活动:1. 提供更多复杂的正比例函数的例子,让学生挑战更高难度的图像绘制。
2. 引导学生思考正比例函数图像的应用场景,如物体的速度与时间的关系等。
评估方式:1. 观察学生在课堂练习中的表现,包括图像绘制的准确性和对正比例函数特点的理解。
2. 收集学生完成的练习题,检查他们的答案和解答过程。
教案反思:本教案通过引入、讲解、实践和总结等阶段,帮助学生理解正比例函数的图像特点和绘制方法。
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案第一章:正比例函数的定义与表达式1.1 引入正比例函数的概念通过实际例子,让学生理解正比例函数的定义,即两个变量之间的比例保持不变。
解释正比例函数的表达式为y = kx (k 为常数)。
1.2 学习正比例函数的参数k解释参数k 的含义,即比例常数。
引导学生理解k 的正负对函数图象的影响。
第二章:正比例函数的图象特点2.1 绘制正比例函数的图象利用数轴和坐标系,引导学生绘制正比例函数的图象。
强调图象是一条通过原点的直线,且斜率为k。
2.2 分析正比例函数图象的性质解释正比例函数图象的斜率表示y 随x 变化的速率。
引导学生观察图象的截距为0,即函数在y 轴上的截距为0。
第三章:正比例函数的性质3.1 单调性解释正比例函数的单调性,即函数图象是一条单调增加或单调减少的直线。
引导学生通过观察图象和分析表达式来判断函数的单调性。
3.2 过原点强调正比例函数图象一定经过原点(0,0)。
引导学生通过实际例子来验证这一性质。
第四章:正比例函数的图象与坐标轴的交点4.1 横轴交点解释正比例函数与x 轴的交点为(0,0)。
引导学生通过表达式和图象来确定横轴交点。
4.2 纵轴交点解释正比例函数与y 轴的交点为(0,k)。
引导学生通过表达式和图象来确定纵轴交点。
第五章:正比例函数的应用5.1 实际问题引入通过实际问题引入正比例函数的应用,例如速度与时间的关系。
引导学生理解速度随时间的变化是成正比例的。
5.2 解题方法解释如何利用正比例函数解决实际问题。
引导学生通过建立方程和绘制图象来解决实际问题。
第六章:正比例函数的图象变换6.1 横向变换讲解正比例函数图象在x 轴方向上的变换,如平移、翻折等。
引导学生通过图象来理解和掌握变换规律。
6.2 纵向变换讲解正比例函数图象在y 轴方向上的变换,如平移、翻折等。
引导学生通过图象来理解和掌握变换规律。
第七章:正比例函数与坐标系的交点7.1 函数图象与坐标系的交点讲解正比例函数图象与坐标系的交点,包括原点、横轴交点和纵轴交点。
正比例函数的图象与性质教学设计
一次函数的图象(第1课时)一、 【教学目标】1、通过具体操作,感受正比例函数的图像是一条直线。
2、能利用特殊的点画出正比例函数图象,掌握正比例函数图象的性质。
经历正比例函数图像画法的探索过程,体会数形结合、特殊到一般的数学思想。
初步学会研究函数的一般方法,初步培养学生利用图象研究函数性质的能力。
敢于发表自己的想法,养成独立思考的学习习惯,增强学好数学的信心。
二、【教学重难点】教学重点:1.理解函数图象的概念,掌握作函数图象的一般步骤.教学难点:掌握正比例函数的图象与性质,并能灵活运用解答有关问题.三、 【教法与学法】采用引导探究法、直观演示法等进行教学,指导学生在观察与操作、合作与交流的数学活动中探索学习。
四、【教学过程设计】本节课设计了五个教学环节:知识回顾——讲授新课——巩固练习——交流收获——作业布置。
第一环节:知识回顾1、在下列函数2(1)3(2)2y x y x =-=是一次函数的是 ,是正比例函数的是 . 2.函数有哪些表示方法? 它们之间有什么关系?图象法、列表法、关系式法,三种方法可以相互转化今天我们就从最简单的函数开始,学习它的图象。
板书课题:4.3一次函数的图象(1)正比例函数的图象。
第二环节:讲授新课活动1、画正比例函数图像的方法例1:画出下面正比例函数y =2x 的图象?1) 想:画图像的基本步骤。
列表——描点——连线。
2) 写:写出一些符合y=2x 的点的坐标。
3) 画:利用展台将同学做题情况进行展示,引导学生观察,发现过程冗杂。
从而引进两点作图法:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点 (1,k ),连线即可.活动2、探索正比例函数图像的性质观察y=-3x 和y=2x 这两个函数图像有什么共同特征1)总结共同点,归纳得出这两个正比例函数的图象是一条经过原点的直线。
4(3)(4)25y y x x ==-2)比较不同点:k>0的图象,经过第一、三象限,随着x值的增大,y的值______(填“增大”或“减小”)k<0的图象,经过第二、四象限, 随着x值的增大,y的值______(填“增大”或“减小”)活动3、说一说,直线的陡与平缓是由什么决定的?1)正比例函数y=x和y=3x中,随着x值的增大,y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?2)正比例函数y=- x和y=-4x中,随着x值的增大,y的值都减小了,其中哪一个减小得更快?你是如何判断的?总结:|k|越大,直线越陡,直线越靠近y轴.第三环节:巩固练习1、已知正比例函数y=(m+1)x m2 ,它的图象经过第几象限?2、已知正比例函数y=(k+1)x(1)若函数图象经过第一、三象限,则k的取值范围是________.(2)若函数图象经过点(2,4),则k_____.3、变式2:当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析为y=-2x,则在同一直角坐标系中的图象大致为( )4、已知正比例函数y=kx (k>0)的图象上有两点(x1,y1),(x2,y2),若x1<x2,则y1y2.5、正比例函数y=k1x和y=k2x的图象如图,则k1和k2的大小关系是()A.k1>k2B.k1=k2C.k1<k2D.不能确定6、已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大而减小,求m的值.第四环节:交流收获本节课你有什么收获?教师寄语:同学们,生活中充满着变化,需要我们找准方向,不断汲取正能量,这些正能量就像正比例函数中k大于0,有了它的陪伴,相信努力的付出一定可以让我们不断迈向人生新的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数图像与性质
房县石堰河中学: 舒德永
一、教学目标:
知识与技能 1、理解正比例函数的概念,能在用描点法画正比例函数图象过程中
发现正比例函数图象性质
2、能用正比例函数图象的性质简便地画出正比例函数图像
3、能够利用正比例函数解决简单的数学问题
过程与方法 学生通过探究实际问题中函数关系归纳得出正比例函数的概念,再
通过动手操作画图象观察概括出正比例函数图象的性质。
学生在探究合作中交流,体验知识的形成过程
情感态度与价值观 通过教师的主导作用,提高学生的合作学习效率,让学生体会合作学习的好处。
教学重点 探索并理解正比例函数图像的主要性质。
教学难点 结合正比例函数图像,探索并理解正比例函数图像的主要性质。
二、教学过程:
1.复习
一般地,形如 ( )函数,叫做正比例函数,其中k 叫做 。
2.练习
(1).下列函数中,那些是正比例函数?______________
(1)x
y 4= (2)13+=x y (3)1=y (4)x y 8= (5)y=x 3 (6) y=x 2
2.关于x 的函数x m y )1(-=是正比例函数,则m__________
3.若y=5x 3m-2是正比例函数,则m=___________.
4. 若(1)n
y n x =-是正比例函数,则n = .
3.合作互学
1.还记得描点法画函数图象的一般步骤吗?
①______________,②___________________③____________________
2.用描点法画出下列函数的图像
(1) y=2x
解:列表得:
观察所画图像,填写你发现的规律:
(1) 函数x y 2=的图像是经过原点的 __________,
(2) 函数x y 2=的图像经过第_______象限,从左到右_______,即y 随x 的增
大而________;
(3) 函数kx y =(0>k )的图像经过第_______象限,从左到右_______,即y
随x 的增大而________;
(2)、 y=-2x
解:列表得:
观察所画图像,填写你发现的规律:
(4) 函数x y 2-=的图像是经过原点的 __________. (5) 函数x y 2-=的图像经过第_______象限,从左到右呈_______趋势,即y
随x 的增大而________;
(6) 函数kx y =(0<k )的图像经过第_______象限,从左到右呈_______趋势,
即y 随x 的增大而________;
1题)
1题)
正比例函数的性质:
正比例函数kx y =(k ≠0)是一条经过 .
当k > 0时,直线经过 象限,从左到右呈 趋势,即y 随x 的增大而
当k 〈0时,直线经过 象限,从左到右呈 趋势,即y 随x 的减小 而
练习(2):
1.已知正比例函数x k y ·)13(-=,若y 随x 的增大而增大,则k 的取值范围是( ) A.k<0 B.k>0 C.31<k D. 3
1>k 2.已知正比例函数)0(≠=k kx y 的图像过第二、四象限,则( )
A 、y 随x 的增大而增大
B 、y 随x 的增大而减小
C 、当0<x 时,y 随x 的增大而增大;当0>x 时,y 随x 的增大而减少;
D 、不论x 如何变化,y 不变。
3.当0<x 时,函数x y =的图像在第( )象限。
A 、一、三
B 、二、四
C 、二
D 、三
4.函数x y 5-=的图像在第_______象限,经过点(0,____)与点(1,____),y 随x 的增大而_________
(三)两点法画正比例函数的图像
1.因为 点确定一条直线,我们在画正比例函数图象时,只需确定两点即可,通常是( , )和( , )
2.试一试:用最简单的方法画出下列函数的图像
(1)、 y=3x (2) y= -2
1x
三.达标测评
1. 正比例函数y=(m -1)x 的图象经过一、三象限,则m 的取值范围是( )
A. m =1
B. m >1
C. m <1
D. m ≥1
2. 正比例函数y=(3-k ) x ,如果随着x 的增大y 反而减 小,则k 的取值范围是 ______.
3. 函数y=-3x 的图象在第 象限内,经过点(0, )与点(1, ),y 随x 的增大而 .
4. 函数y= x 的图象在第 象限内,经过点(0, )与点(1, ),y 随x 的增大而
四.小结:
告诉大家本节课你学到了什么﹗
五.作业:
1.若函数(4)y m x =-是关于x 的正比例函数,则m
2..函数kx y =的图像经过点P (-1,3)则k 的值为( )
A 、3
B 、—3
C 、31
D 、3
1-
3.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.
4.函数y=kx(k ≠0)的图象过P (-3,3),则k=____,图象过_____象限。
5.设函数2||)62(--=m x m y 是正比例函数,且图像过一、三象限,则m 的值为 。
6. 在函数y=2x 的自变量中任意取两个点x 1,x 2,若x 1<x 2,则对应的函数值y 1与y 2的大小关系是y 1___y 2.。