新高考数学第一次模拟试卷附答案

合集下载

新高考数学模拟卷(附答案)

新高考数学模拟卷(附答案)

新高考数学模拟卷(考试时长120分钟,总分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若1i z =+,则2|2|z z -=A .0B .1CD .22.已知集合{}31|3,|log 02A x x B x x ⎧⎫=<<=<⎨⎬⎩⎭,则A B ⋂=( )A.122x x ⎧⎫<<⎨⎬⎩⎭∣ B.112x x ⎧⎫<<⎨⎬⎩⎭∣ C.{13}xx <<∣ D.1123xx ⎧⎫<<⎨⎬⎩⎭∣ 3. 已知a ,b 是单位向量,c =a +2b ,若a ⊥c ,则|c |=A.34.已知,,a b ∈R 则“||1a ”是“||||1a b b -+”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件5. 将函数2log (22)y x =+的图象向下平移1个单位长度,再向右平移1个单位长度,得到函数()g x 的图象,则()g x = A.2log (21)1x +- B.2log (21)1x ++ C.2log 1x - D.2log x6. 某中学举行“十八而志,青春万岁”成人礼,现在需要从4个语言类节目和6个歌唱类节目中各选2个节目进行展演,则语言类节目A 和歌唱类节目B 至少有一个被选中的不同选法种数是 A.15 B.45 C.60D.757.已知拋物线22y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与拋物线交于M ,N 两点,若3,PF MF =则||MN =( )A.163B.83C.2 8. 如图,正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点G ,H ,给出以下四个命题:①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为1;③四棱锥1C EGFH -的体积为定值16;④点1B 到平面EGFH. 其中正确命题的序号为( ) A .②③ B .①④C .①③④D .②③④二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.若函数2(),f x x =设155151log 4,log ,2,3a b c ===则(),(),()f a f b f c 的大小关系不正确的是( )A.()()()f a f b f c >>B.()()()f b f c f a >>C.()()()f c f b f a >>D.()()()f c f a f b >>10.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题不正确的是( )A.若m α⊂,则m β⊥B.若,m n αβ⊂⊂,则m n ⊥C.若,m m αβ⊂⊥/,则//m αD.若,m n m αβ⋂=⊥,则n α⊥11.已知函数()2sin()(0,0π)f x x ωϕωϕ=+><<,ππ082f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 在(0,π)上单调.下列说法不正确的是( ) A.12ω=B.π6282f -⎛⎫-= ⎪⎝⎭C.函数()f x 在ππ,2⎡⎤--⎢⎥⎣⎦上单调递增D.函数()y f x =的图象关于点3π,04⎛⎫⎪⎝⎭对称 12.已知函数()f x 是定义在R 上的奇函数,当0x >时,()e (1)x f x x -=-.下列命题正确的是( ) A.当0x <时,()e (1)x f x x =+ B.函数()f x 有5个零点C.若关于x 的方程()f x m =有解,则实数m 的范围是[(2),(2)]f f -D.对()()1221,,2x x f x f x ∀∈-<R 恒成立三、填空题:本题共4小题,每小题5分,共20分.13.在6211(1)x x ⎛⎫++ ⎪⎝⎭的展开式中含2x 项的系数为____________.(用数字作答).14.已知圆22(2)(1)2x y -+-=关于直线1(0,0)ax by a b +=>>对称,则21a b+的最小值为_______. 15.巳知球O 为正四面体ABCD 的内切球,E 为棱BD 的中点,2AB =,则平面ACE 截球O 所得截面圆的面积为____________.16. 对平面直角坐标系xOy 中的两组点,如果存在一条直线ax +by +c =0使这两组点分别位于该直线的两侧,则称该直线为“分类直线”,对于一条分类直线l ,记所有的点词l 的距离的最小值为d ,约定:d 1越大,分类直线l 的分类效果越好,某学校高三(2)出的7位同学在2020年期间网购文具的费用x (单位:百元)和网购图书的费用y (单位:百元)的情况如图所示,现将P 1,P 2,P 3和P 4归为第I 组点,樽Q 1,Q 2,和Q 3归为第II 组点,在上述约定下,可得这两组点的分类效果最好的分类直线,记为L 给出下列四个结论:①直线x =2.5比直线3x -y -5=0的分类效果好; ②分类直线L 的斜率为2;③该班另一位同学小明的网购文具与网购图书的费用均为300元,则小明的这两项网购花销的费用所对应的点与第II组点位于L的同侧;④如果从第I组点中去掉点P1,第II组点保持不变,则分类效果最好的分类直线不是L。

新数学高考一模试卷带答案

新数学高考一模试卷带答案

新数学高考一模试卷带答案一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =- B .1()2xy =C .2y log x =D .()2112y x =- 3.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 4.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与B B .B 与CC .A 与DD .C 与D5.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组6.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±7.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±8.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16C .1112D .25249.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A 2B 3C .22D .3210.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .211.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .2722012.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.函数y=232x x --的定义域是 .15.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 16.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.17.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 18.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.19.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =1cos 3A =,则ABC △的面积为______. 20.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.三、解答题21.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=. (1)求角C 的大小; (2)求AB 的长.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

新高考数学第一次模拟试题(及答案)

新高考数学第一次模拟试题(及答案)
解析:
【解析】
【分析】
【详解】
设AB=2,作CO⊥面ABDE
OH⊥AB,则CH⊥AB,∠CHO为二面角C−AB−D的平面角,
CH=3√,OH=CHcos∠CHO=1,
结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,
故EM,AN所成角的余弦值 ,
18.1:8【解析】考查类比的方法所以体积比为1∶8
C. D.
二、填空题
13.设 是等差数列 的前 项和,且 ,则
14.若x,y满足约束条件 ,则 的最小值为______.
15.已知复数z=1+2i(i是虚数单位),则|z|=_________.
16. ________________.
17.等边三角形 与正方形 有一公共边 ,二面角 的余弦值为 , 分别是 的中点,则 所成角的余弦值等于.
18.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为▲
19.若 , 满足约束条件 ,则 的最大值为_____________.
20.设等比数列 满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.二、填Leabharlann 题13.25【解析】由可得所以
解析:25
【解析】
由 可得 ,所以 .
14.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A时取得最小值由解得代入计算所以的最小值为故答案为
解析:-1
【解析】
【分析】
【详解】
根据题中所给的约束条件,画出其对应的可行域,如图所示:

高三下学期新高考第一次调研测试数学试卷-带参考答案与解析

高三下学期新高考第一次调研测试数学试卷-带参考答案与解析

高三下学期新高考第一次调研测试数学试卷-带参考答案与解析注意专项:1.答卷前 考生务必将自己的姓名 考生号 考场号 座位号填写在答题卡上。

2.回答选择题时 选出每小题答案后 用铅笔把答题卡上对应题目的答案标号涂黑。

如简改动 用橡皮擦干静后 再选涂其他答案标号回答非选择题时 将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后 将本试卷和答题卡一并交回。

一、选择题(本大题共8小题 每小题5分 共40分.在每小题给出的四个选项中 只有一项是符合题目要求的.)1.设复数1i z =+,则复数1z z +(其中z 表示z 的共轭复数)表示的点在( )上 A .x 轴B .y 轴C .y x =-D .y x =2.已知角α和β,则“αβ=”是“tan tan αβ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3 侧面展开图是一个半圆面,则该圆锥的体积为( )A .12πB .9πC .3πD 4.已知双曲线()222106x y b b -=>的一条渐近线的倾斜角为π6,则此双曲线的右焦点到一条渐近线的距离为( )A B .2CD .5.一对夫妻带着3个小孩和一个老人 手拉着手围成一圈跳舞 3个小孩不相邻的站法种数是( ) A .6B .12C .18D .366.已知递增的等比数列{}n a 10a > 公比为q 且1a 3a 4a 成等差数列,则q 的值为( )A B C D 7.已知平面内的三个单位向量a b c 且12a b ⋅=32a c ⋅=,则b c ⋅=( )A .0B .12C D 0 8.设方程22log 1xx ⋅=的两根为1x ()212x x x <,则( )A .101x << 22x >B .121x x >C .1201x x <<D .123x x +>二 选择题(本大题共3小题 每小题6分 共18分.在每小题给出的选项中 有多项符合题目要求.全部选对的得6分 部分选对的得部分分 有选错的得0分.)9.下列说法正确的是( )A .若事件A 和事件B 互斥 ()()()P AB P A P B = B .数据4 7 5 6 10 2 12 8的第70百分位数为8C .若随机变量ξ服从()217,N σ ()17180.4P ξ<≤=,则()180.1P ξ>=D .已知y 关于x 的回归直线方程为0.307ˆ.yx =-,则样本点()2,3-的残差为 1.9- 10.设函数()f x ()g x 的定义域都为R 且()f x 是奇函数 ()g x 是偶函数,则下列结论正确的是( )A .()()f x g x 是奇函数B .()()f x g x 是偶函数C .若()()321g x f x x x -=++,则()()111f g +=D .若函数()f x 在(),-∞+∞上单调递减且()11f =-,则满足()121f x -≤-≤的x 的取值范围是[]1,3 11.已知体积为2的四棱锥P ABCD - 底面ABCD 是菱形 2AB = 3PA =,则下列说法正确的是( )A .若PA ⊥平面ABCD ,则BAD ∠为π6B .过点P 作PO ⊥平面ABCD 若AO BD ⊥,则BD PC ⊥C .PA 与底面ABCD 所成角的最小值为6πD .若点P 仅在平面ABCD 的一侧 且AB AD ⊥,则P点轨迹长度为三 填空题(本大题共3小题 每小题5分 共15分.)12.已知关于x 的不等式10ax ->的解集为M 2M ∈且1M ∉,则实数a 的取值范围是______. 13.已知抛物线22y x =的弦AB 的中点的横坐标为2,则弦AB 的最大值为______. 14.已知()1cos 3αβ+=-cos cos 1αβ+=,则cos cos 22αβαβ-+=______()sin sin sin αβαβ+=+______. 四 解答题(本大题共5小题 共77分.解答应写出文字说明 证明过程或演算步骤.)15.(本小题满分13分)在如图所示的ABC △中 sin 0B =. (1)求B ∠的大小(2)直线BC 绕点C 顺时针旋转π6与AB 的延长线交于点D 若ABC △为锐角三角形 2AB = 求CD 长度的取值范围.16.(本小题满分15分)已知椭圆()2222:10x y W a b a b+=>>的右顶点为A 左焦点为F 椭圆W 上的点到F 的最大距离是短半轴长倍 且椭圆W 过点31,2⎛⎫⎪⎝⎭.记坐标原点为O 圆E 过O A 两点且与直线6x =相交于两个不同的点P Q (P Q 在第一象限 且P 在Q 的上方) PQ OA = 直线QA 与椭圆W 相交于另一个点B . (1)求椭圆W 的方程 (2)求QOB △的面积. 17.(本小题满分15分)如图 在四棱锥P ABCD -中 AB CD ∥ 4AB = 2CD = 2BC = 3PC PD == 平面PCD ⊥平面ABCD PD BC ⊥. (1)证明:BC ⊥平面PCD(2)若点Q 是线段PC 的中点 M 是直线AQ 上的一点 N 是直线PD 上的一点 是否存在点M N 使得MN =请说明理由.18.(本小题满分17分)已知函数()ln f x x x =的导数为()f x '.(1)若()1f x kx ≥-恒成立 求实数k 的取值范围(2)函数()f x 的图象上是否存在三个不同的点()11,A x y ()22,B x y ()33,C x y (其中123x x x <<且1x2x 3x 成等比数列) 使直线AC 的斜率等于()2f x '?请说明理由.19.(本小题满分17分)2023年10月11日 中国科学技术大学潘建伟团队成功构建255个光子的量子计算机原型机“九章三号” 求解高斯玻色取样数学问题比目前全球是快的超级计算机快一亿亿倍.相较传统计算机的经典比特只能处于0态或1态 量子计算机的量子比特(qubit )可同时处于0与1的叠加态 故每个量子比特处于0态或1态是基于概率进行计算的.现假设某台量子计算机以每个粒子的自旋状态作为是子比特 且自旋状态只有上旋与下旋两种状态 其中下旋表示“0” 上旋表示“1” 粒子间的自旋状态相互独立.现将两个初始状态均为叠加态的粒子输入第一道逻辑门后 粒子自旋状态等可能的变为上旋或下旋 再输入第二道逻辑门后 粒子的自旋状态有p 的概率发生改变 记通过第二道逻辑门后的两个粒子中上旋粒子的个数为X . (1)若通过第二道逻辑门后的两个粒子中上旋粒子的个数为2 且13p = 求两个粒子通过第一道逻辑门后上旋粒子个数为2的概率(2)若一条信息有()*1,n n n >∈N 种可能的情况且各种情况互斥 记这些情况发生的概率分别为1p2p … n p ,则称()()()12n H f p f p f p =++⋅⋅⋅+(其中()2log f x x x =-)为这条信息的信息熵.试求两个粒子通过第二道逻辑门后上旋粒子个数为X 的信息熵H(3)将一个下旋粒子输入第二道逻辑门 当粒子输出后变为上旋粒子时则停止输入 否则重复输入第二道逻辑门直至其变为上旋粒子 设停止输入时该粒子通过第二道逻辑门的次数为Y (1Y = 2 3 ⋯ n ⋯).证明:当n 无限增大时 Y 的数学期望趋近于一个常数. 参考公式:01q <<时 lim 0nn q →+∞= lim 0nn nq →+∞=.2024届新高考教学教研联盟高三第一次联考数学参考答案一 选择题(本大题共8小题 每小题5分 共40分.)1.C 【解析】11331i i 1i 22z z +=+-=-+ 所以对应的点33,22⎛⎫- ⎪⎝⎭在直线y x =-上. 2.D 【解析】当2παβ==时 tan α tan β没有意义 所以由αβ=推不出tan tan αβ=当tan tan αβ=时()πk k αβ=+∈Z所以由tan tan αβ=推不出αβ=故“αβ=”是“tan tan αβ=”的既不充分也不必要条件. 3.C 【解析】设圆锥的底面半径为r 母线为l 由于圆锥的侧面展开图是一个半圆面,则2ππr l = 所以2l r =所以圆锥的高h ==圆锥的体积为2211ππ3π33V r h ==⨯⨯⨯=.4.A 【解析】因为双曲线()222106x y b b -=>的一条渐近线的倾斜角为π6 πtan 6= 所以该渐近线的方程为3y x = 所以2263b ⎛= ⎝⎭解得b =(舍去) 所以c =此双曲线的右焦点坐标为()30y -==5.B 【解析】3232A A 12=.6.A 【解析】由题意知1432a a a += 即321112a a q a q += 又数列{}n a 递增 10a > 所以1q > 且3212q q += 解得q =7.D 【解析】如图 a OA = c OC = b OB =(或b OD =)由32a c ⋅=得cos COA ∠= 又[]0,πCOA ∠∈ 所以π6COA ∠=由12a b ⋅=得1cos 2BOA ∠= 又[]0,πBOA ∠∈ 所以π3BOA ∠=(或1cos 2DOA ∠= 又[]0,πDOA ∠∈ 所以π3DOA ∠=)所以b c 夹角为π6或π2所以32b c ⋅=或0.8.C 【解析】由题意得 120x x << 由22log 1xx ⋅=得21log 02xx ⎛⎫-= ⎪⎝⎭令()()21log 02xf x x x ⎛⎫=-> ⎪⎝⎭,则()1102f =-< ()1321044f =-=> 1102f ⎛⎫=-> ⎪⎝⎭由()1102f f ⎛⎫⋅<⎪⎝⎭ ()()120f f ⋅<得11,12x ⎛⎫∈ ⎪⎝⎭()21,2x ∈ 故A 错 由21222111log log 022xxx x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭得21222111log log 22xxx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭由11,12x ⎛⎫∈ ⎪⎝⎭ ()21,2x ∈得21222111log log 022x xx x ⎛⎫⎛⎫+=-< ⎪ ⎪⎝⎭⎝⎭所以1201x x << 故C 对 B 错由11,12x ⎛⎫∈ ⎪⎝⎭()21,2x ∈ 所以123x x +< D 错误.二 选择题(本大题共3小题 每小题6分 共18分.)9.BCD 【解析】对于A 若事件A 和事件B 互斥 ()0P AB = 未必有()()()P AB P A P B = A 错 对于B 对数据从小到大重新排序 即:2 4 5 6 7 8 10 12 共8个数字 由870% 5.6⨯= 得这组数据的第70百分位数为第6个数8 B 正确 对于C 因为变量ξ服从()217,N σ 且()17180.4P ξ<≤=,则()()()181717180.50.40.1P P P ξξξ>=>-<≤=-= 故C 正确对于D 由0.307ˆ.yx =- 得样本点()2,3-的残差为()30.30.72 1.9---⨯=- 故D 正确 故选BCD . 10.ACD 【解析】令()()()F x f x g x =,则()()()F x f x g x -=-- 因为()f x 是奇函数 ()g x 是偶函数 所以()()f x f x -=- ()()g x g x -= 所以()()()()F x f x g x F x -=-=- 所以()()()F x f x g x =是奇函数 A 正确同样 令()()()F x f x g x =,则()()()()()()F x f x g x f x g x F x -=--=-=- 所以()F x 是奇函数 B 错误令1x =-代入()()321g x f x x x -=++,则()()()()32111111g f ---=-+-+= 又()()11g g -=()()11f f -=- 所以()()111g f += C 正确因为()f x 为奇函数 又()11f =- 所以()11f -=由于()f x 在(),-∞+∞上单调递减 要使()121f x -≤-≤成立,则121x -≤-≤ 所以13x ≤≤ D 正确.11.BCD 【解析】114sin sin 2333P ABCD NBCD V S h AB AD BAD h h BAD -=⋅=⋅∠⋅=∠=,则当PA ⊥平面ABCD 时 3h PA ==,则1sin 2BAD ∠= 即BAD ∠为π6或5π6A 错误如图1 若PO ⊥平面ABCD ,则PO BD ⊥ 又AO BD ⊥则BD ⊥平面PAO 有BD PA ⊥ 又BD AC ⊥ 所以BD ⊥平面PAC BD PC ⊥ B 正确 设PA 与底面ABCD 所成角为θ 又11sin 233P ABCD ABCD ABCD V S h S PA θ-===则2sin ABCDS θ=因为4sin 4ABCD S BAD =∠≤,则1sin 2θ≥则PA 与底面ABCD 所成角的最小值为π6C 正确如图2 当AB AD ⊥ 根据123P ABCD ABCD V S h -== 得32h = 即P 点到底面ABCD 的距离为32过A 点作底面ABCD 的垂线为l 过点P 作PO l ⊥交l 于点O,则PO ===点P 的轨迹是以O 为圆心为半径的圆轨迹长度为 D 正确.三 填空题(本大题共3小题 每小题5分 共15分.)12.1,12⎛⎤⎥⎝⎦【解析】2M ∈且1M ∈ 所以210,10,a a ->⎧⎨-≤⎩所以112a <≤.13.5 【解析】方法一:当直线AB 的斜率不存在时 直线AB 的方程为2x = 代入22y x =得2y =或2y =- 所以4AB =当直线AB 的斜率存在时 显然不为零 设直线AB 的方程为y kx b =+代入22y x =消y 并整理得()222220k x kb x b +-+=设()11,A x y ()22,B x y 判别式480kb ∆=->时有122212222,,kb x x k b x x k -⎧+=-⎪⎪⎨⎪=⎪⎩因为弦AB 的中点的横坐标为2 所以2224kb k --= 所以212kb k =-21AB x =-==所以2211145AB k k ⎛⎫⎛⎫=≤++-= ⎪ ⎪⎝⎭⎝⎭当且仅当221114k k +=-即223k =时取到等号 故弦AB 的最大值为5.方法二:设抛物线的焦点为F ,则AB AF BF ≤+又121211122AF BF x x x x +=+++=++当弦AB 的中点的横坐标为2时 有124x x += 所以5AB ≤当直线过焦点F 时取到等号 故弦AB 的最大值为5.14.12 23(任意填对一空给3分) 【解析】由()1cos 3αβ+=-得212cos 123αβ+-=-,则21cos 23αβ+=由cos cos 1αβ+=得2cos cos 122αβαβ-+=,则1cos cos 222αβαβ-+=所以3cos cos222αβαβ-+=()2sin cos cos sin 2222sin sin 32sin cos cos 222αβαβαβαβαβαβαβαβ++++===+--+. 四 解答题(本大题共5小题 共77分.解答应写出文字说明 证明过程或演算步骤.)15.【解析】(1sin 0B =sin B = 两边同时平方可得:2cos 1sin 2B B += 由22sin cos 1B B +=整理得22cos cos 10B B +-= 解得1cos 2B =或cos 1B =- 又()0,πB ∈,则π3B =.sin 0B -=2sin cos 022B B=得cos 02B =或1sin 22B = 又()0,πB ∈,则π26B = π3B =.(2)由(1)得π3ABC ∠=,则2π3CBD ∠= 由题可知π6BCD ∠=,则π6D ∠=设BC a =,则BD BC a ==由余弦定理有2222cos CD BC BD BC BD CBD =+-⋅∠所以CD =由正弦定理有sin sin BC ABA ACB =∠所以2sin 2sin 31sin sin ACB A a ACB ACB π⎛⎫+∠ ⎪⎝⎭====∠∠ 因为ABC △为锐角三角形,则π0,2π0,2ACB A ⎧<∠<⎪⎪⎨⎪<∠<⎪⎩得ππ62ACB <∠<所以tan 3ACB ⎛⎫∠∈+∞ ⎪⎝⎭,则(1tan ACB ∈∠所以3tan CD ACB==+∠即CD的取值范围为.16.【解析】(1)依题有a c += 又222a b c =+所以2,a cb =⎧⎪⎨=⎪⎩所以椭圆W 的方程为2222143x y c c +=又点31,2⎛⎫⎪⎝⎭在椭圆W 上 所以221191434c c +⨯=解得1c =所以椭圆W 的方程为22143x y +=. (2)设()6,P P y ()6,Q Q y 0P Q y y >> ()0,0O ()2,0A因为PQ OA = 所以2P Q y y -= ①圆E 过点O 与A 且与直线6x =相交于两个不同的点P Q ,则圆心E 的坐标为1,2P Q y y +⎛⎫⎪⎝⎭又EO EP = =解得24P Q y y = ②(另法一:设直线6x =与x 轴交于点G ,则有GA GO GQ GP =又4GA = 6GO = 所以24P Q y y = ② 另法二:由OA PQ =知 612P Qy y +=- 10P Q y y += ②)由①②解得6P y = 4Q y =所以()6,4Q 40162M k -==-所以直线QA 的方程为2y x =-与椭圆方程联立消去y 得271640x x -+= 解得B 点的横坐标27B x =所以267Q B QB x x =-=-=又O 到直线QA 的距离d ==所以QOB △的面积11402277S QB d =⋅=⨯=.17.【解析】(1)如图 取CD 的中点O 因为3PC PD ==,则PO CD ⊥因为平面PCD ⊥平面ABCD 平面PCD 平面ABCD CD = PO ⊂平面PCD所以PO ⊥平面ABCD 又BC ⊂平面ABCD所以PO BC ⊥ 又BC PD ⊥ PO ⊂平面PCD PD ⊂平面PCD PD PO P =所以BC ⊥平面PCD .(2)因为3PC PD == O 为CD 的中点 1OC =所以PO ==过点O 作OE BC ∥交AB 于点E ,则由BC ⊥平面PCD 可得BC CD ⊥,则以O 为原点 OE OCOP 分别为x 轴 y 轴 z 轴建立如图所示的空间直角坐标系则()0,0,0O ()2,3,0A -10,2Q ⎛ ⎝()0,1,0D -(P所以72,2AQ ⎛=- ⎝(DP = ()2,2,0AD =-设与AQ DP 都重直的向量为(),,n x y z =,则720,2220,n AQ x y nDP y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩得3,2,x y z y ⎧=⎪⎪⎨⎪=⎪⎩令4y =,则(6,4,n =设直线AQ与直线DP 的距离为d则12cos ,36AD n d AD AD n n⋅-=⋅===>则不存在点M 和N 使得MN =. 18.【解析】(1)()1f x kx ≥-恒成立即ln 1x x kx ≥-恒成立 又0x > 所以1ln x k x+≥恒成立今()()1ln 0g x x x x =+> 所以()22111x g x x x x ='-=-当01x <<时 ()0g x '< 函数()g x 单调递减 当1x >时 ()0g x '> 函数()g x 单调递增所以当1x =时 ()g x 取到极小值也是最小值 且()11g =所以1k ≤故实数k 的取值范围为(],1-∞.(2)1x 2x 3x 成等比数列且123x x x << 设公比为()1q q >,则21x qx = 231x q x =()ln f x x x =求导得()1ln f x x ='+ 所以()2211ln 1ln ln f x x q x =+=++'直线AC 的斜率为()21131331123131ln 2ln ln ln ln 1q x q x y y x x x x x x x x q +---==---若存在不同的三点A B C 使直线AC 的斜率等于()2f x '则有()21112ln 2ln ln 1ln ln 1q x q x q x q +-=++-整理成221ln 01q q q --=+. 令()()221ln 11x h x x x x -=->+,则()()()()222222114011x xh x x x x x -=-=+'≥+所以()221ln 1x h x x x -=-+在1x >时单调递增 而()10h = 故方程221ln 01q q q --=+在1q >时无实数解 所以不存在不同的三点A B C 使直线AC 的斜率等于()2f x '.19.【解析】(1)设i A =“两个粒子通过第一道逻辑门后上旋粒子个数为i 个” 0i = 1 2B =“两个粒子通过第二道逻辑门后上旋粒子个数为2个” 则()()2021124P A P A ⎛⎫=== ⎪⎝⎭ ()221211C 22P A ⎛⎫== ⎪⎝⎭()019P B A =∣ ()129P B A =∣ ()249P B A =∣则()()()211121414929494i i i P B P A P BA ===⨯+⨯+⨯=∑∣故()()()()()()222214449194P A P BA P AB P A B P B P B ⨯====∣∣. (2)由题知0X = 1 2由(1)知()()()2211112114244P X p p p p ==+-+-=同理可得()()()()21212211111C 11C 14242P X p p p p p p ⎡⎤==-++-+-=⎣⎦则()()()101124P X P X P X ==-=-==故X 的信息熵22111111132log log 42444222H f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++=⨯--=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (3)由题知()()11n P Y n p p -==- 其中1n = 2 3 …则()()()01111211n EY p p p p n p p -=⋅-+⋅-+⋅⋅⋅+⋅-+⋅⋅⋅又()()111111nni i i i i p p p i p --==⋅-=⋅-∑∑则()()()()1111111211ni n i i p p p n p --=⋅-=⋅-+⋅-+⋅⋅⋅+⋅-∑ ①()()()()()11211111211ni ni p i p p p n p -=-⋅⋅-=⋅-+⋅-+⋅⋅⋅+⋅-∑ ②-①②得:()()()()()1011111111ni n ni p i p p p p n p --=⋅-=-+-+⋅⋅⋅+---∑()()()()111111nnn np p n p n p p p p ---=--=---由题知 当n 无限增大时 ()1np -趋近于零 ()1nn p -趋近于零,则EY 趋近于1p. 所以当n 无限增大时 Y 的数学期望䞨近于一个常数.。

新高考数学第一次模拟试题(含答案)

新高考数学第一次模拟试题(含答案)

新高考数学第一次模拟试题(含答案)一、选择题1.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .2.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1B .1C .2D .33.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A .12B .13C .23D .344.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形D .有一个内角为30的等腰三角形5.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .176.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种 B .10种C .18种D .20种7.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}8.函数2||()x x f x e -=的图象是( )A .B .C .D .9.当1a >时, 在同一坐标系中,函数xy a-=与log a y x =-的图像是( )A .B .C .D .10.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N*,不等式均成立.则上述证法()A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的证明过程不正确11.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为A.1220B.2755C.2125D.2722012.已知,a b∈R,函数32,0()11(1),032x xf xx a x ax x<⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b=--恰有三个零点,则()A.1,0a b<-<B.1,0a b<->C.1,0a b>-<D.1,0a b>->二、填空题13.设函数()212log,0log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.14.若三点1(2,3),(3,2),(,)2A B C m--共线,则m的值为.15.已知(13)nx+的展开式中含有2x项的系数是54,则n=_____________.16.在体积为9的斜三棱柱ABC—A1B1C1中,S是C1C上的一点,S—ABC的体积为2,则三棱锥S—A1B1C1的体积为___.17.在极坐标系中,直线cos sin(0)a aρθρθ+=>与圆2cosρθ=相切,则a=__________.18.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.19.在ABC∆中,若13AB=3BC=,120C∠=︒,则AC=_____.20.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.三、解答题21.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.22.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .23.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

新高考数学第一次模拟试卷附答案

新高考数学第一次模拟试卷附答案

新高考数学第一次模拟试卷附答案一、选择题1.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈2.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )ξ1 2P12p- 122pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小3.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .424.函数y =2x sin2x 的图象可能是A .B .C .D .5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .806.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>7.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .328.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .3189.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1210.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A 3B .2C 6D .511.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B 12± C 110± D 322± 12.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC 中,60A =︒,1b =,面积为3,则sin sin sin a b cA B C________.16.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲17.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.18.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.19.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 20.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考:P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 23.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.24.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.25.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值. 26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.2.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑3.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。

2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷

2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷

2024年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷李昌成(乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0094-10收稿日期:2023-11-05作者简介:李昌成ꎬ中学正高级教师ꎬ从事中学数学教学研究.㊀㊀一㊁单选题:本大题共8小题ꎬ共40.0分.在每小题列出的选项中ꎬ选出符合题目的一项.1.设集合U=RꎬA=x1<x<3{}ꎬB=xx<2{}ꎬ则图1中阴影部分表示的集合为(㊀㊀).㊀A.{x|xȡ2}㊀㊀㊀㊀B.{x|xɤ2}C.x1<xɤ2{}D.{x|2ɤx<3}图1㊀第1题图2.已知复数z满足2z-z=1+3iꎬ则zi=(㊀㊀).A.-1+i㊀B.1-i㊀C.1+i㊀D.-1-i3.正方形ABCD中ꎬMꎬN分别是BCꎬCD的中点ꎬ若ACң=λAMң+μBNңꎬ则λ+μ=(㊀㊀).A.65㊀㊀㊀B.85㊀㊀㊀C.2㊀㊀㊀D.834.已知三棱台ABC-A1B1C1中ꎬ三棱锥A-A1B1C1的体积为4ꎬ三棱锥A1-ABC的体积为8ꎬ则该三棱台的体积为(㊀㊀).A.12+33㊀㊀㊀B.12+42C.12+43D.12+475.从装有3个红球㊁2个白球的袋中任取2个球ꎬ则所取的2个球中至少有1个白球的概率是(㊀㊀).A.110㊀㊀㊀B.310㊀㊀㊀C.710㊀㊀㊀D.356.已知函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的部分图象如图2所示ꎬ则下列判断错误的是(㊀㊀).A.函数f(x)的最小正周期为2B.函数f(x)的值域为[-4ꎬ4]C.函数f(x)的图象关于点(103ꎬ0)中心对称D.函数f(x)的图象向左平移π3个单位长度后得到y=Asinωx的图象图2㊀第6题图497.若a>b>1ꎬ0<c<1ꎬ则下列结论正确的是(㊀㊀).A.ac<bc㊀㊀㊀㊀B.alogbc<blogacC.abc<bacD.logac<logbc8.某四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ该四棱锥内有一个半径为1的球ꎬ则该四棱锥的表面积的最小值是(㊀㊀).A.16㊀㊀B.8㊀㊀C.32㊀㊀D.24二㊁多选题:本大题共4小题ꎬ共20.0分.在每小题有多项符合题目要求.9.如图3ꎬ在棱长为1的正方体ABCD-A1B1C1D1中ꎬ点P是线段AD1上的动点ꎬ则下列命题正确的是(㊀㊀).A.异面直线C1P与CB1所成角的大小为定值B.三棱锥D-BPC1的体积是定值C.直线CP和平面ABC1D1所成的角的大小是定值D.若点Q是线段BD上动点ꎬ则直线PQ与A1C不可能平行图3㊀第9题图10.已知函数f(x)=x3-x+1ꎬg(x)=f(x)-ax(aɪR)ꎬ则(㊀㊀).A.f(x)有两个极值点B.f(x)的图象与x轴有三个交点C.点(0ꎬ1)是曲线y=f(x)的对称中心D.若g(x)存在单调递减区间ꎬ则aȡ-111.已知抛物线C:x2=2y的焦点为Fꎬ准线为lꎬAꎬB是C上的两点ꎬO为坐标原点ꎬ则(㊀㊀).A.l的方程为y=-1B.若AF=32ꎬ则әAOF的面积为24C.若OAң OBң=0ꎬ则OA OBȡ8D.若øAFB=120ʎꎬ过AB的中点D作DEʅl于点Eꎬ则ABȡ5DE12.设函数f(x)=xlnxꎬg(x)=12x2ꎬ给定下列命题ꎬ其中正确的是(㊀㊀).A.若方程f(x)=k有两个不同的实数根ꎬ则kɪ(-1eꎬ0)B.若方程kf(x)=x2恰好只有一个实数根ꎬ则k<0㊀C.若x1>x2>0ꎬ总有m[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ则mȡ1D.若函数F(x)=f(x)-2ag(x)有两个极值点ꎬ则实数aɪ(0ꎬ12)三㊁填空题:本大题共4小题ꎬ共20.0分13.(x2-x+2)5的展开式中x3的系数为.14.已知圆C:x2+y2-4x-2y+1=0ꎬ点P是直线y=4上的动点ꎬ过P作圆的两条切线ꎬ切点分别为AꎬBꎬ则AB的最小值为.15.已知函数f(x)=x3+mxꎬ若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则实数m的取值范围为.16.已知椭圆E:x24+y2=1ꎬ椭圆的左右焦点分别为F1ꎬF2ꎬ点A(mꎬn)为椭圆上一点且m>0ꎬn>0ꎬ过A作椭圆E的切线lꎬ分别交x=2ꎬx=-2于点CꎬD.连接CF1ꎬDF2ꎬCF1与DF2交于点Gꎬ并连接AG.若直线lꎬAG的斜率之和为32ꎬ则点A坐标为.四㊁解答题:本大题共6小题ꎬ共70.0分.解答应写出文字说明ꎬ证明过程或演算步骤.17.已知数列an{}满足a1=1ꎬan+1=an+2ꎬ数列bn{}的前n项和为Snꎬ且Sn=2-bn.(1)求数列an{}ꎬbn{}的通项公式ꎻ59(2)设cn=an+bnꎬ求数列cn{}的前n项和Tn.18.已知әABC中ꎬ角AꎬBꎬC所对的边分别为aꎬbꎬcꎬsinAcosC+cosAsinCc+b-a=sinC+sinAa-bꎬ且a=13.(1)求әABC外接圆的半径ꎻ(2)若c=3ꎬ求әABC的面积.19.如图4ꎬ直三棱柱ABC-A1B1C1中ꎬAA1=AB=AC=1ꎬEꎬF分别是CC1ꎬBC的中点ꎬAEʅA1B1ꎬD为棱A1B1上的点.图4㊀第19题图(1)证明:DFʅAEꎻ(2)是否存在一点Dꎬ使得平面DEF与平面ABC的夹角的余弦值为1414若存在ꎬ说明点D的位置ꎬ若不存在ꎬ说明理由.20.某剧场的座位数量是固定的ꎬ管理人员统计了最近在该剧场举办的五场表演的票价xi(单位:元)和上座率yi(上座人数与总座位数的比值)的数据ꎬ其中i=1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ并根据统计数据得到如图5的散点图:图5㊀第20题图(1)由散点图判断y=bx+a与y=clnx+d哪个模型能更好地对y与x的关系进行拟合(给出判断即可ꎬ不必说明理由)ꎬ并根据你的判断结果求回归方程ꎻ(2)根据(1)所求的回归方程ꎬ预测票价为多少时ꎬ剧场的门票收入最多.参考数据:x=240ꎬy=0.5ꎬð5i=1x2i=365000ꎬð5i=1xiyi=457.5ꎻ设zi=lnxiꎬ则ð5i=1ziʈ27ꎬð5i=1z2iʈ147.4ꎬð5i=1ziyiʈ12.7ꎻe5.2ʈ180ꎬe5.4ʈ220ꎬe6.4ʈ600.参考公式:对于一组数据(u1|v1)ꎬ(u2|v2)ꎬ ꎬ(un|vn)ꎬ其回归直线v︿=α︿+β︿u的斜率和截距的最小二乘估计分别为:β=ðni=1uivi-nuvðni=1u2i-nu=ðni=1(ui-u)(vi-v)ðni=1(ui-u)2ꎬα︿=v-β︿u.21.已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)经过点P(4ꎬ2)ꎬ双曲线C的右焦点F到其渐近线的距离为2.(1)求双曲线C的方程ꎻ(2)已知Q(0ꎬ-2)ꎬD为PQ的中点ꎬ作PQ的平行线l与双曲线C交于不同的两点AꎬBꎬ直线AQ与双曲线C交于另一点Mꎬ直线BQ与双曲线C交于另一点Nꎬ证明:MꎬNꎬD三点共线.22.已知函数f(x)=aln(x+1)-sinx.(1)若y=f(x)在[π4ꎬπ2]上单调递减ꎬ求a的取值范围ꎻ(2)证明:当a=1时ꎬf(x)在(π2ꎬ+ɕ)上有且仅有一个零点.参考答案1.由Venn图可知ꎬ阴影部分的元素由属于集合A但不属于集合B的元素构成ꎬ所以阴影部分表示的集合为Aɘ(∁UB).因为集合U=RꎬA={x|1<x<3}ꎬB={x|x<2}ꎬ所以∁UB={x|xȡ2}.所以Aɘ(∁UB)={x|2ɤx<3}.所以图中阴影部分表示69的集合为{x|2ɤx<3}.故选D.2.设z=a+bi(aꎬbɪR)ꎬ则2z-z-=2(a+bi)-(a-bi)=a+3bi=1+3i.所以a=1ꎬ3b=3ꎬ{即a=1ꎬb=1.所以z=1+i.所以zi=1+ii=(1+i)(-i)i(-i)=1-i.故选B.3.以ABꎬAD为坐标轴建立平面直角坐标系ꎬ如图6ꎬ设正方形边长为1ꎬMꎬN分别是BCꎬCD的中点ꎬ所以AMң=(1ꎬ12)ꎬBNң=(-12ꎬ1)ꎬACң=(1ꎬ1).图6㊀第3题解析图因为ACң=λAMң+μBNңꎬ所以λ-12μ=1ꎬ12λ+μ=1.ìîíïïïï所以λ=65ꎬμ=25.所以λ+μ=85.故选B.4.设SәABC=S1ꎬSәA1B1C1=S2ꎬ棱台的高为hꎬ由已知ꎬ得VA-A1B1C1=13S2h=4ꎬ得S2=12hꎬVA1-ABC=13S1h=8ꎬ则S1=24h.所以三棱台ABC-A1B1C1的体积V=13h(S1+S2+S1S2)=13h(12h+24h2+12ˑ24h2)=12+42.故选B.5.根据题意ꎬ首先分析从5个球中任取2个球ꎬ设3个红球为a1ꎬa2ꎬa3ꎬꎬ2个白球为b1ꎬb2ꎬ所以样本空间Ω={a1a2ꎬa1a3ꎬa1b1ꎬa1b2ꎬa2a3ꎬa2b1ꎬa2b2ꎬa3b1ꎬa3b2ꎬb1b2}ꎬ共10个等可能的样本点.设事件A= 所取的2个球中至少有1个白球 ꎬ则事件A=所取的2个球中没有白球 ꎬA={a1a2ꎬa1a3ꎬa2a3}ꎬ则P(A)=310ꎬP(A)=1-310=710.则所取的3个球中至少有1个白球的概率是710.故选C.6.根据题意可得ꎬ12T=43-13ꎬ解得T=2ꎬ故函数f(x)的最小正周期为2ꎬA正确.所以ω=2πT=π.又因为函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的图象过点(13ꎬ0)ꎬ所以Asin(π3+φ)=0ꎬ解得φ=kπ-π3ꎬkɪZ.又因为-π<φ<0ꎬ所以φ=-π3.而函数f(x)=Asin(ωx+φ)的图象过点(0ꎬ-23)ꎬ所以Asin(πˑ0-π3)=-23ꎬ解得A=4ꎬ即f(x)的值域为[-4ꎬ4]ꎬ故B正确.所以f(x)=4sin(πx-π3).令πx-π3=kπꎬ解得x=k+13ꎬkɪZꎬ其中一个对称中心为(103ꎬ0)ꎬC正确.所以f(x)的图象向左移13个单位长度后得到y=4sinπxꎬD错误.故选D.7.因为a>b>1ꎬ0<c<1ꎬ所以ac>bcꎬ故A错误.alogbc=alogcclogcb=alogcbꎬ79blogac=blogcclogca=blogcaꎬalogcb-blogca=logc(aa/bb)logca logcbꎬ因为a>b>1ꎬ0<c<1ꎬ所以aa>ba>bb.即aabb>1.所以logcaabb<0ꎬlogca<0ꎬlogcb<0.所以alogcb<blogca.即alogbc<blogacꎬ故B正确.abcbac=(ab)1-cꎬ因为a>b>1ꎬ0<c<1ꎬ所以ab>1ꎬ1-c>0.㊀所以(ab)1-c>(ab)0=1.所以abcbac>1.即abc>bacꎬ故C错误.因为a>b>1ꎬ0<c<1ꎬ所以logac>logbcꎬ故D错误.故选B.8.因为四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ所以该四棱锥是正四棱锥ꎬ设正四棱锥P-ABCDꎬ当半径为1的球是正四棱锥P-ABCD的内切球时ꎬ该四棱锥的表面积最小ꎬ设正方形ABCD的边长为2aꎬ设ACɘBD=Oꎬ连接POꎬ则POʅ面ABCDꎬ所以正四棱锥P-ABCD的高为POꎬ设PO=hꎬ正四棱锥P-ABCD的表面积为Sꎬ由V=13 SABCD PO=13(4SәPAB+S四边形ABCD)ˑ1=13Sꎬ即为13ˑ2aˑ2ah=13(4ˑ12ˑ2aˑa2+h2+2aˑ2a)ˑ1ꎬ整理可得:a(h-1)=a2+h2.所以a2(h-1)2=a2+h2ꎬ可得a2=h2h2-2h.所以正四棱锥P-ABCD体积为V=13ˑ4a2h.则S=3V=3ˑ13ˑ4a2ˑh=4a2h=4a3h2-2h=4h2h-2(h>2).设t=h-2>0ꎬ可得h=t+2.所以S=4(t+2)2t=4(t+4t+4)ȡ4(2t4t+4)=32ꎬ当且仅当t=4t即t=2ꎬh=4时ꎬ等号成立.该四棱锥的表面积最小值是32.故选C.9.因为CB1ʅBC1ꎬCB1ʅABꎬBC1ɘAB=Bꎬ所以CB1ʅ平面ABC1D1.又C1P⊂平面ABC1D1ꎬ得CB1ʅC1Pꎬ所以异面直线C1P与CB1垂直ꎬ选项A正确.三棱锥D-BPC1以BDC1为底面ꎬ因为AD1ʊ平面BDC1ꎬ所以点P到平面BDC1的距离为定值ꎬ故三棱锥D-BPC1的体积是定值ꎬ选项B正确.点C在平面ABC1D1的射影是定点(BC1与B1C的交点)ꎬ线段CP长度显然随位置变化而变化ꎬ故直线CP和平面ABC1D1所成的角的正弦在变化ꎬ角的大小不是定值ꎬ选项C错误.以点D为原点ꎬDAꎬDCꎬDD1所在的直线分别为xꎬyꎬz轴ꎬ建立如图7所示空间直角坐标系ꎬ则CA1ң=(1ꎬ-1ꎬ1)ꎬ点P坐标取(23ꎬ0ꎬ13)ꎬ点Q坐标取(13ꎬ13ꎬ0)时ꎬPQң=(-13ꎬ13ꎬ-13)ꎬPQ//A1C成立ꎬ选项D错误.故选AB.图7㊀第9题解析图8910.已知f(x)=x3-x+1ꎬ则fᶄ(x)=3x2-1.由fᶄ(x)>0ꎬ得x<-33或x>33ꎻ由fᶄ(x)<0ꎬ得-33<x<33ꎬ所以函数f(x)在(-ɕꎬ-33)ꎬ(33ꎬ+ɕ)上单调递增ꎬ在(-33ꎬ33)上单调递减.则当x=-33时ꎬ函数f(x)取得极大值ꎬ当x=33时ꎬ函数f(x)取得极小值ꎬ故A项正确.而f(-33)=1+239>0ꎬf(33)=1-239>0ꎬ得函数f(x)的图象与x轴有一个交点ꎬ故B项错误.㊀令fᶄ(x)=3x2-1=h(x)ꎬ得hᶄ(x)=6x=0ꎬ得x=0ꎬ此时f(0)=1ꎬ得曲线y=f(x)的对称中心为(0ꎬ1)ꎬ故C项正确.由g(x)=f(x)-axꎬ得gᶄ(x)=fᶄ(x)-a=3x2-1-aꎬ若g(x)存在单调递减区间ꎬ即gᶄ(x)<0有解ꎬ得a>3x2-1有解ꎬ等价于a>(3x2-1)minꎬ则a>-1ꎬ故D项错误.故选AC.11.A选项:l的方程为y=-12ꎬ错误ꎻB选项:因为|AF|=32ꎬ可得yA=1ꎬ|xA|=2ꎬSәAOF=12|OF| |xA|=24ꎬ正确ꎻC选项:设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ则OAң OBң=x1x2+y1y2=0ꎬ即x1x2=-y1y2ꎬ而y1y2=(x1x22)2=-x1x2ꎬ解得x1x2=-4ꎬy1y2=4ꎬ(|OA| |OB|)2=(x21+y21)(x22+y22)=32+x21y22+x22y21ȡ32+2|x1x2| |y1y2|=64ꎬ所以|OA| |OB|ȡ8ꎬ正确ꎻD选项:如图8ꎬ过点A作AA1ʅl于点A1ꎬ过点B作BB1ʅl于点B1ꎬ设|AF|=aꎬ|BF|=bꎬ所以|DE|=12(a+b).因为|AB|2=a2+b2-2ab cosøAFB=a2+b2+ab=(a+b)2-abȡ(a+b)2-(a+b2)2=3 (a+b2)2=3|DE|2ꎬ所以|AB|ȡ3|DE|ꎬ错误.故选BC.图8㊀第11题解析图12.对于Aꎬf(x)的定义域为(0ꎬ+ɕ)ꎬfᶄ(x)=lnx+1ꎬ令fᶄ(x)>0ꎬ得到x>1eꎬ令fᶄ(x)<0ꎬ得到0<x<1e.所以f(x)在(0ꎬ1e)上单调递减ꎬ在(1eꎬ+ɕ)上单调递增.所以[f(x)]min=f(1e)=-1eꎬ且当xң0时ꎬf(x)ң0.又f(1)=0ꎬ从而要使方程f(x)=k有两个不同的实根ꎬ即y=f(x)与y=k有两个不同的交点ꎬ所以kɪ(-1eꎬ0)ꎬ故A正确.对于Bꎬ易知x=1不是该方程的根ꎬ当xʂ1时ꎬf(x)ʂ0ꎬ方程kf(x)=x2有且只有一个实数根ꎬ等价于y=k和y=xlnx只有一个交点ꎬyᶄ=lnx-1(lnx)2ꎬ又x>0且xʂ1ꎬ令yᶄ>0ꎬ有x>eꎬ令yᶄ<0ꎬ有0<x<1或1<x<eꎬ所以函数y=xlnx在(0ꎬ1)和(1ꎬe)单调递减ꎬ在(eꎬ+ɕ)单调递增ꎬx=1是一条渐近线ꎬ极小值为e.由y=xlnx的大致图象(如图9)可知k<990或k=eꎬ故B错.图9㊀第12题解析图对于Cꎬ当x1>x2>0时ꎬm[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ等价于mg(x1)-f(x1)>mg(x2)-f(x2)恒成立ꎬ即函数y=mg(x)-f(x)在(0ꎬ+ɕ)上单调递增ꎬ所以yᶄ=mgᶄ(x)-fᶄ(x)=mx-lnx-1ȡ0恒成立ꎬ即mȡlnx+1x在(0ꎬ+ɕ)上恒成立.令r(x)=lnx+1xꎬ则rᶄ(x)=-lnxx2.令rᶄ(x)>0得0<x<1ꎬ令rᶄ(x)<0得x>1ꎬ从而r(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ则r(x)max=r(1)=1ꎬ于是mȡ1ꎬ故C正确.对于Dꎬ函数F(x)=f(x)-2ag(x)有两个极值点ꎬ即F(x)=xlnx-ax2(x>0)有两个不同极值点ꎬ等价于Fᶄ(x)=lnx+1-2ax=0有两个不同的正根ꎬ即方程2a=lnx+1x有两个不同的正根ꎬ由C可知ꎬ0<2a<1ꎬ即0<a<12ꎬ则D正确.故选ACD.13.式子(x2-x+2)5=[(x2-x)+2]5的展开式的通项公式为Tr+1=Cr5 (x2-x)5-r 2rꎬ对于(x2-x)5-rꎬ它的通项公式为Trᶄ+1=(-1)rᶄ Crᶄ5-rx10-2r-rᶄꎬ其中ꎬ0ɤrᶄɤ5-rꎬ0ɤrɤ5ꎬrꎬrᶄ都是自然数.令10-2r-rᶄ=3ꎬ可得r=2ꎬrᶄ=3{或r=3ꎬrᶄ=1.{故x3项的系数为C2522(-C33)+C3523(-C12)=-200ꎬ故答案为-200.14.圆C:x2+y2-4x-2y+1=0ꎬ即(x-2)2+(y-1)2=4.图10㊀第14题解析图如图10ꎬ由于PAꎬPB分别切圆C于点AꎬBꎬ则PA=PBꎬCAʅPAꎬCBʅPBꎬ所以S四边形APBC=2SәACP=CA PA.因为CA=CB=r=2ꎬ所以S四边形APBC=2PA.又PCʅABꎬ所以S四边形APBC=12AB CP.所以PA=14AB CP.即AB=4PACP=41-4CP2.所以AB最短时ꎬCP最短ꎬ点C到直线y=4的距离即为CP的最小值ꎬ所以CPmin=3.所以AB的最小值为41-49=453.故答案为453.15.令y=ex-(x+1)ꎬ所以yᶄ=ex-1.显然当x>0时ꎬyᶄ>0ꎬ则y在(0ꎬ+ɕ)上单调递增ꎻ当x<0时ꎬyᶄ<0ꎬ则y在(-ɕꎬ0)上单调递减.即x=0时取得最小值ymin=0ꎬ故exȡx+1恒成立.若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则f(x)在R上单调递增ꎬ则fᶄ(x)ȡ0恒成立ꎬfᶄ(x)=3x2+mȡ0ꎬmȡ-3x2ꎬ又(-3x2)max=0ꎬ故mȡ0.故答案为[0ꎬ+ɕ).16.设直线l的方程y=kx+bꎬ由y=kx+bꎬx24+y2=1{得001(1+4k2)x2+8kbx+4b2-4=0.如图11ꎬ因为直线l与椭圆E相切ꎬ所以ә=(8kb)2-4(4k2+1)(4b2-4)=0ꎬ解得4k2=b2-1.因为m=-4kb1+4k2ꎬn=km+bꎬ所以n=b1+4k2.所以mn=-4kꎬ即k=-m4nꎬb=1n.所以直线l的方程为mx4+ny=1.图11㊀第16题解析图分别令x=2和x=-2ꎬ得C(2ꎬ1n(1-m2))ꎬD(-2ꎬ1n(1+m2))ꎬ所以直线DF2方程为y=-(1/n)(1+m/2)2+3(x-3)ꎬ直线CF1方程为y=(1/n)(1-m/2)2+3(x+3).联立得DF2与CF1交点G(32mꎬ(23-3)n).因为kAE=(23-4)n3m/2-m=4nmꎬ所以kAG kl=4nm.(-m4n)=-1.所以由kAG kl=-1ꎬkAG+kl=32ꎬ得kl=-m4n=-12ꎬkAG=2.即m=2n.又m24+n2=1ꎬ则m=2ꎬn=22ꎬ即A(2ꎬ22).17.(1)由题知ꎬa1=1ꎬan+1-an=2ꎬ所以数列{an}是首项为1ꎬ公差为2的等差数列.所以an=1+(n-1)ˑ2=2n-1.当n=1时ꎬb1=S1=2-b1ꎬ所以b1=1.当nȡ2时ꎬSn=2-bnꎬ①Sn-1=2-bn-1.②由①-②ꎬ得bn=-bn+bn-1.即bnbn-1=12(nȡ2).所以数列{bn}是首项为1ꎬ公比为12的等比数列ꎬ故bn=(12)n-1.(2)由(1)知ꎬcn=an+bn=2n-1+(12)n-1.利用分组求和可得ꎬTn=n(1+2n-1)2+1-(1/2)n1-1/2=n2+2-(12)n-1.18.(1)依题意sin(A+C)sinC+sinA=c+b-aa-b.即bc+a=c+b-aa-b=ca-b-1.整理ꎬ得b2+c2-a2=-bc.所以cosA=b2+c2-a22bc=-12.因为0<A<πꎬ所以A=2π3.故所求外接圆半径r=a2sinA=133=393.(2)因为a=13ꎬc=3ꎬA=2π3ꎬ所以由余弦定理ꎬ得13=b2+9-2ˑ3ˑbˑcos2π3.解得b=1或b=-4(舍).则SәABC=12bcsinA=12ˑ1ˑ3ˑ32=334.19.(1)因为AEʅA1B1ꎬA1B1ʊABꎬ101所以AEʅAB.又因为AA1ʅ平面ABCꎬAB⊂平面ABCꎬ所以AA1ʅAB.又AA1ɘAE=AꎬAA1ꎬAE⊂平面A1ACC1ꎬ所以ABʅ平面A1ACC1.图12㊀第19题解析图又因为AC⊂平面A1ACC1ꎬ所以ABʅAC.所以ABꎬACꎬAA1两两垂直.以A为原点建立如图12所示的空间直角坐标系A-xyzꎬ则有A(0ꎬ0ꎬ0)ꎬE(0ꎬ1ꎬ12)ꎬF(12ꎬ12ꎬ0)ꎬA1(0ꎬ0ꎬ1)ꎬB1(1ꎬ0ꎬ1)ꎬ设D(xꎬyꎬz)ꎬA1Dң=λA1B1ңꎬ且λɪ[0ꎬ1]ꎬ即(xꎬyꎬz-1)=λ(1ꎬ0ꎬ0).则D(λꎬ0ꎬ1)ꎬDFң=(12-λꎬ12ꎬ-1).因为AEң=(0ꎬ1ꎬ12)ꎬ所以DFң AEң=0.所以DFʅAE.(2)存在一点D且D为A1B1的中点ꎬ使平面DEF与平面ABC夹角的余弦值为1414.理由如下:由题可知面ABC的法向量m=(0ꎬ0ꎬ1)ꎬ设面DEF的法向量为n=(xꎬyꎬz)ꎬ则n FEң=0ꎬn DFң=0.{则-x+y+z=0ꎬ(1-2λ)x+y-2z=0.{令x=3ꎬ则y=1+2λꎬz=2(1-λ).则n=(3ꎬ1+2λꎬ2(1-λ)).因为平面DEF与平面ABC夹角的余弦值为1414ꎬ所以|cos<mꎬn>|=|m n|m| |n||=1414.即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414.解得λ=12或λ=74(舍).所以当D为A1B1中点时满足要求.20.(1)y=clnx+d能更好地对y与x的关系进行拟合.设z=lnxꎬ先求y关于z的线性回归方程.由已知得z=15ð5i=1ziʈ275=5.4ꎬ所以c=ð5i=1ziyi-5zyð5i=1z2i-5z2ʈ12.7-5ˑ5.4ˑ0.5147.4-5ˑ5.42=12.7-13.5147.4-145.8=-0.81.6=-0.5ꎬd=y-cz=0.5-(-0.5)ˑ5.4=3.2ꎬ所以y关于z的线性回归方程为y=-0.5z+3.2.所以y关于x的回归方程为y=-0.5lnx+3.2.(2)设该剧场的总座位数为Mꎬ由题意得门票收入为M(-0.5xlnx+3.2x)ꎬ设函数f(x)=-0.5xlnx+3.2xꎬ则fᶄ(x)=-0.5lnx+2.7ꎬ当fᶄ(x)<0ꎬ即x>e5.4时ꎬ函数单调递减ꎬ当fᶄ(x)>0ꎬ即0<x<e5.4时ꎬ函数单调递增ꎬ所以f(x)在x=e5.4ʈ220处取最大值.故预测票价为220元时ꎬ剧场的门票收入最多.21.(1)因为双曲线C的渐近线方程为y=ʃbaxꎬ所以双曲线C的右焦点F到其渐近线的距离为bca2+b2=b=2.因为双曲线C经过点P(4ꎬ2)ꎬ所以16a2-422=1ꎬ解得a2=8.故双曲线C的方程为x28-y24=1.(2)因为P(4ꎬ2)ꎬQ(0ꎬ-2)ꎬD为PQ的中点ꎬ所以D(2ꎬ0)ꎬkPQ=1.设直线l的方程为y=x+mꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬM(xMꎬyM)ꎬN(xNꎬyN)ꎬ201所以kAQ=y1+2x1ꎬkBQ=y2+2x2.直线AQ的方程为y=y1+2x1x-2ꎬ直线BQ的方程为y=y2+2x2x-2.联立y=y1+2x1x-2ꎬx28-y24=1ꎬìîíïïïï可得[1-2(y1+2)2x21]x2+8(y1+2)x1x-16=0.所以x1+xM=-8(y1+2)/x11-2(y1+2)2/x21=-8x1(y1+2)x12-2(y1+2)2.又因为x218-y214=1ꎬ所以x1+xM=x1+2x1y1.则xM=2x1y1ꎬyM=y1+2x1xM-2=4y1.同理可得xN=2x2y2ꎬyN=4y2.kMN=4/y1-4/y22x1/y1-2x2/y2=2ˑy2-y1x1y2-x2y1=2ˑx2-x1x1(x2+m)-x2(x1+m)=-2mꎬkMD=4/y1-02x1/y1-2=2x1-y1=-2mꎬ所以kMN=kMD.故MꎬNꎬD三点共线.22.(1)由题意得:函数定义域为(-1ꎬ+ɕ).fᶄ(x)=ax+1-cosx.若f(x)在[π4ꎬπ2]上单调递减ꎬ则fᶄ(x)ɤ0在[π4ꎬπ2]上恒成立.所以aɤ(x+1)cosx在[π4ꎬπ2]上恒成立.令g(x)=(x+1)cosxꎬ则gᶄ(x)=cosx-(x+1)sinx.当xɪ[π4ꎬπ2)时ꎬgᶄ(x)=cosx[1-(x+1) tanx].因为当xɪ[π4ꎬπ2)时ꎬcosx>0ꎬx+1>1ꎬtanx>1ꎬ所以gᶄ(x)<0.所以g(x)在[π4ꎬπ2)上单调递减ꎬ所以当xɪ[π4ꎬπ2]时ꎬg(x)ȡg(π2)=(π2+1)cosπ2=0.所以aɤ[g(x)]min=0.即a的取值范围为(-ɕꎬ0].(2)当a=1时ꎬf(x)=ln(x+1)-sinxꎬ则fᶄ(x)=1x+1-cosx.当x>e-1时ꎬln(x+1)>lne=1ȡsinxꎬ所以f(x)>0在(e-1ꎬ+ɕ)上恒成立.所以只需证f(x)在(π2ꎬe-1]上有且仅有一个零点.因为e-1<πꎬ所以当xɪ(π2ꎬe-1]时ꎬcosx<0ꎬ1x+1>0.所以fᶄ(x)>0在(π2ꎬe-1]上恒成立.所以f(x)在(π2ꎬe-1]上单调递增.又f(π2)=ln(π2+1)-sinπ2=ln(π2+1)-1<0ꎬf(e-1)=1-sin(e-1)>0ꎬ所以f(x)在(π2ꎬe-1]上有且仅有一个零点.即f(x)在(π2ꎬ+ɕ)上有且仅有一个零点.[责任编辑:李㊀璟]301。

新高考数学第一次模拟试题含答案

新高考数学第一次模拟试题含答案

新高考数学第一次模拟试题含答案一、选择题1.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<2.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③3.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0 B .1C .2D .34.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<< 5.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i6.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组7.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 8.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 49.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =c =( )A .3B .2C 2D .110.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .8011.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 312.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.15二、填空题13.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.14.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.15.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 16.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 17.若45100a b ==,则122()a b+=_____________. 18.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =1cos 3A =,则ABC △的面积为______. 19.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.22.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 23.如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,ABE 60∠=︒,G 为BE 的中点.(Ⅰ)求证:AG ⊥平面ADF ;(Ⅱ) 求AB 3=,BC 1=,求二面角D CA G --的余弦值.24.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .25.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at =+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且AB =a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.2.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3.A解析:A 【解析】【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的. 【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.4.C解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.5.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.6.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.7.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.8.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.9.B解析:B 【解析】1333,sin sin sin 22sin cos A B A A A ===3cos 2A =, 所以()22231323c c =+-⨯⨯,整理得2320,c c -+=求得1c =或 2.c若1c =,则三角形为等腰三角形,0030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想. 当求出3cos A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.10.C解析:C 【解析】分析:写出103152rrr r T C x -+=,然后可得结果详解:由题可得()5210315522rrrr r rr T C x C xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2= 所以22552240rr C C =⨯=故选C.点睛:本题主要考查二项式定理,属于基础题。

2024年高考第一次模拟考试——数学(新高考Ⅰ卷01)(全解全析)

2024年高考第一次模拟考试——数学(新高考Ⅰ卷01)(全解全析)

2024年高考数学第一次模拟考试数学(新高考I卷)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是,再根据共轭复数定义即可得结果....【答案】C【分析】根据奇偶性和赋值即可判断选项【详解】由2()sin ln f x x x f -=-⋅=-()x 是奇函数,且定义域为{BD ;π时,()2πsinπln π0f =⋅=,排除C.已知n S 是公差为d (0d ≠)的无穷等差数列}n a 的前n 项和,设甲:数列*N n ∈,均有0n S >,则(.甲是乙的充分条件但不是必要条件.甲是乙的必要条件但不是充分条件.甲是乙的充要条件.甲既不是乙的充分条件也不是乙的必要条件【答案】B【分析】利用定义法直接判断符合数列7.已知tan(+)αβ,tan(α-A .2-B .-【答案】D【分析】由题意可求出tan(α()()2ααβαβ=++-,2β式求值即可.【详解】因为tan(+)αβ,tan(所以tan(+)+tan()=a b a b --因为()()sin sin 2cos 2cos αβαβαβ++⎡⎣=+-⎡⎣()()()()tan tan 1tan tan αβαβαβαβ++-=++⋅-故选:D8.已知91ln ,,e 89a b c -===A .a b c>>二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。

新高考一模数学试卷答案

新高考一模数学试卷答案

一、选择题1. 下列选项中,函数y=2x-3的图像是()A. B. C. D.答案:A解析:由于函数y=2x-3的斜率为2,且y轴截距为-3,所以其图像是一条通过点(0,-3)且斜率为2的直线,故选A。

2. 已知等差数列{an}的公差为d,且a1=3,a4=11,则d=()A. 2B. 3C. 4D. 5答案:A解析:由等差数列的性质可知,a4=a1+3d,代入已知条件得11=3+3d,解得d=2。

3. 若复数z满足|z+1|=|z-1|,则z在复平面上的对应点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D解析:由复数的几何意义可知,|z+1|表示复数z到点(-1,0)的距离,|z-1|表示复数z到点(1,0)的距离。

由于|z+1|=|z-1|,所以复数z到这两个点的距离相等,即复数z位于这两个点的中垂线上。

由于点(-1,0)和点(1,0)位于x轴上,所以复数z位于x轴上,即第四象限。

4. 已知函数f(x)=x^2-4x+4,则f(x)的最小值为()A. -4B. 0C. 4D. 8答案:B解析:由于f(x)是一个二次函数,其开口向上,所以最小值在顶点处取得。

顶点的横坐标为x=-b/2a=-(-4)/21=2,代入f(x)得f(2)=2^2-42+4=0,所以f(x)的最小值为0。

5. 已知等比数列{an}的公比为q,且a1=2,a4=32,则q=()A. 2B. 4C. 8D. 16答案:B解析:由等比数列的性质可知,a4=a1q^3,代入已知条件得32=2q^3,解得q=4。

二、填空题6. 函数y=3x^2-6x+5的图像的对称轴方程为________。

答案:x=1解析:由于函数y=3x^2-6x+5是一个二次函数,其对称轴的方程为x=-b/2a,代入系数得x=-(-6)/(23)=1。

7. 已知数列{an}的前n项和为Sn,若an=2^n-1,则S10=________。

新高考数学第一次模拟试卷带答案

新高考数学第一次模拟试卷带答案

新高考数学第一次模拟试卷带答案一、选择题1.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .2.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 3.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<04.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .110B .310C .35D .255.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的6.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2) B .(0,1)C .(-1,0)D .(1,2)7.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A .10组B .9组C .8组D .7组8.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁11.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定12.已知,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥,则a 与b 的夹角是( ) A .6π B .3π C .23π D .56π 二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 15.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm . 17.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.18.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________. 19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .25.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】圆(y ﹣1)2+x 2=4的圆心为(0,1),半径r =2,与抛物线的焦点重合,可得|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A ,即可得出三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,利用1<y B <3,即可得出. 【详解】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3, ∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 【点睛】本题考查了抛物线的定义与圆的标准方程及其性质、三角形的周长,考查了推理能力与计算能力,属于中档题.2.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D. 【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.3.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .4.C解析:C 【解析】 【分析】设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤, 首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤. 【详解】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故本题选C .【点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.5.D解析:D 【解析】 【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =(1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.8.B解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).9.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.11.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.12.B解析:B 【解析】 【分析】利用向量垂直求得222a b a b ==⋅,代入夹角公式即可.【详解】设,a b 的夹角为θ;因为(2)a b a -⊥,(2)b a b -⊥,所以222a ba b ==⋅,则22|2,|2a a b b a b =⋅⋅=,则2212cos ,.23aa b a b aπθθ⋅===∴=故选:B 【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同解析:-34【解析】因为3sin sin αα=()2sin sin ααα+=22sin cos cos sin sin ααααα+=()22221sin cos cos sin sin ααααα+-=24sin cos sin sin αααα-=4cos 2α-1=2(2cos 2α-1)+1=2cos 2α+1 =135,所以cos 2α=45. 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 点睛:三角函数求值常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.15.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题 解析:12【解析】 【分析】 【详解】分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.16.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为 解析:423【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为:23. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.17.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.18.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr ∵含有x2的系数是54∴r =2∴54可得6∴6n ∈N*解得n =4故答案为4【点睛】本题考 解析:4【解析】 【分析】利用通项公式即可得出. 【详解】解:(1+3x )n 的展开式中通项公式:T r +1r n=(3x )r =3rr nx r .∵含有x 2的系数是54,∴r =2. ∴223n=54,可得2n=6,∴()12n n -=6,n ∈N *.解得n =4. 故答案为4. 【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.19.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定解析:16【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解.【详解】2b =,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==,∴可得:3cos 4B =,可得:sin B ==,∴可得:sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()13sin sin sin cos cos sin 484816A B C B C B C ∴=+=+=⨯+⨯=,11sin 2322S bc A ∴==⨯⨯=.. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.20.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:4【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABCh S ⨯⨯代入数据得到1313313332⨯⨯⨯=或者1319333 3.324⨯⨯⨯= 3393【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题21.(1)26cos 2sin 60ρρθρθ--+=(26525【解析】 【分析】(1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离. 【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+= 因为圆心()3,1C 到直线:l 210x y -+=的距离()231116555d ⨯+-⨯+==, 所以曲线C 上的点到直线l 的最大距离为6525d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .B =由正弦定理,得42sin sin c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+.又b=3,所以2292213a c +=+⨯=. 解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,22122sin 1cos 1().33B B =-=-= 由正弦定理,得22242sin sin 3c C B b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=172242233927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换. 23.(I )丙级;(Ⅱ)①;②.【解析】 【分析】(I )以频率值作为概率计算出相应概率,再利用判定规则的三个式子得出判断设备的性能等级。

新高考数学第一次模拟试卷含答案

新高考数学第一次模拟试卷含答案

新高考数学第一次模拟试卷含答案一、选择题1.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10 B .11 C .12D .15 2.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( )A .6B .8C .26D .423.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( ) A .22B .23C .28D .244.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角5.函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为()A .3-B .3 C .12D .12-6.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B .2 C .3D .27.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .272208.若实数满足约束条件,则的最大值是( )A .B .1C .10D .129.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .10.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .322± 12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.复数()1i i +的实部为 .15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.17.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)18.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.19.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.23.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.24.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.25.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --的余弦值是6,求直线PA 与平面EAC 所成角的正弦值.26.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】【详解】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类: 第一类:与信息0110有两个对应位置上的数字相同有246C =个;第二类:与信息0110有一个对应位置上的数字相同有14C 4=个;第三类:与信息0110没有位置上的数字相同有04C 1=个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有64111++=个, 故选B .2.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。

新数学高考第一次模拟试卷(带答案)

新数学高考第一次模拟试卷(带答案)

新数学高考第一次模拟试卷(带答案)一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0B .1C .2D .3 3.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -4.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .135.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( ) A .7B .10C .13D .46.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A .2B .3C .22D .327.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π8.对于不等式2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时,211+<1+1,不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,即2k k +<k+1. 那么当n=k+1时,()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<++++=+=(k+1)+1,所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确9.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 310.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .1011.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C 2D .212.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭二、填空题13.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .14.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =,b=1,则c =_____________15.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.16.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.17.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3c asinC ccosA =-. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3,求b ,c . 23.已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值. 24.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 25.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.26.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.A解析:A 【解析】 【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的.【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.3.B解析:B 【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--(),2a bi b a i ⇒+=-+-() ,2a b b a =-⎧⇒⎨=-⎩1b ⇒=- ,故选B. 4.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.5.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .6.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.7.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.8.D解析:D 【解析】 【分析】 【详解】题目中当n=k+1时不等式的证明没有用到n=k 时的不等式,正确的证明过程如下: 在(2)中假设n k = 时有21k k k +<+ 成立,即2(1)(1)(1)1k k k +++<++成立,即1n k =+时成立,故选D . 点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可. (2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.9.B解析:B 【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.10.D解析:D 【解析】试题分析:因为210:270:3007:9:10,=所以从高二年级应抽取9人,从高三年级应抽取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.11.C解析:C 【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c 2a = 则该双曲线的离心率为 e 2ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.12.C解析:C 【解析】 【分析】根据正弦函数的图象和性质,即可得到结论. 【详解】解:在[0,2π]内,若sin x 32-<,则43π<x 53π<, 即不等式的解集为(43π,53π), 故选:C . 【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.二、填空题13.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为 解析:423【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =,因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭, 故答案为:42. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.14.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.15.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4 【解析】 试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.16.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和 10【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可. 详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+39110i =-+=+=,故答案为10.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++17.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数 解析:6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动,结合2z 的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.18.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.19.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A 在跳舞B 在打篮球∵③C 在散步是A 在跳舞的充分条件∴C 在散步则D 在画画故答案为画画 解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A 在跳舞,B 在打篮球,∵③“C 在散步”是“A 在跳舞”的充分条件,∴C 在散步,则D 在画画,故答案为画画20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1); (2)36000;(3). 【解析】【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数.【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000.(Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.22.(1)3A π=(2)b c ==2【解析】【分析】【详解】(Ⅰ)由3sin cos c a C c A =-及正弦定理得 3sin sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A 故bc =4, 而2222cos a b c bc A =+-故22c b +=8,解得b c ==223.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.24.(1)1;(2)见解析【解析】【分析】 (1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果.【详解】(1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111 123m a b c ++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭23321112233b c a c a b a a b b c c=++++++++ 233233692233b c a c a b a a b b c c=++++++≥+=, 当且仅当2332 12233b c a c a b a a b b c c======时,等号成立. 所以239a b c ++≥. 【点睛】本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题. 25.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.26.(I )(4,),(2)24ππ(II )1,2a b =-= 【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-=联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C交点的极坐标为(4,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+= 由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得。

2024届广东新高考高三数学一模练习卷+答案

2024届广东新高考高三数学一模练习卷+答案

2024新高考数学一模练习卷(一)数学试卷本卷共6页,满分150分,完成时间120分钟.考生注意事项:1.答卷开始前,考生务必将自己的姓名,准考证号正确填涂于答题卡的指定区域;并检查试卷与答题卡的张数与印刷情况.2.在回答选择题时,每小题选出答案后,用2B铅笔在答题卡对应标号上将选项涂黑;若需改动,用橡皮擦干净后,再将改动后的选项标号涂黑.3.在回答非选择题时,用黑色字迹的签字笔或钢笔在答题卡的指定区域上填写答案;若需改动,将原答案划掉,再填上改动后的答案,改动后的答案也不得超出指定的答题区域.4.答卷结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合AA={xx|xx2−4xx+3<,BB={xx|yy=ln(xx−1)} ,则CC BB AA= ( * ).(A){xx|xx≥1} (B){xx|xx≥3}(C){xx|1≤xx≤3} (D){xx|xx≤3}2. 在复平面中,点ZZ1对应的复数为zz,点ZZ2对应的复数为zz̅,若|ZZ1|=|ZZ1ZZ2|=2 ,则OOZZ1��������⃗·OOZZ2��������⃗= ( * ).(A)−5(B)−4(C)4(D)53. 已知事件AA,BB,CC相互独立,且PP(AA) ,PP(BB) ,PP(CC)∈(0,1),则在以下说法中,错误的是( * ).(A)事件AA,BB,CC均为随机事件(B)事件AA,BB,CC均与必然事件MM相互独立(C)事件AA,BB,CC均与不可能事件NN不互斥(D)事件AA,BB,CC均与事件AA∩BB∩CC对立4. 记SS nn为数列{aa nn}的前nn项和,若aa1=1 ,SS nn=2aa nn+aa nn+1,则在aa1~aa2024中,整数的个数是( * ).(A)1012(B)1011(C)2024(D)20235. 中国是瓷器的故乡.“瓷器”一词最早见之于许慎的《说文解字》中.某瓷器如图1所示,该瓶器可以近似看作由上半部分圆柱和下半部分两个等高(高为 6cm )的圆台组合面成,其直观图如图2所示,已知圆柱的高为 20cm ,底面直径AABB=10cm ,底面直径CCCC=20cm ,EEEE=16cm ,若忽略该瓷器的厚度,则该瓷器的容积为( * ).图1 图2(A)669ππ cm3(B)1338ππ cm3(C)650ππ cm3(D)1300ππ cm36. 已知椭圆Γ:xx2aa2+yy2bb2=1 (aa>bb>0)过点�32√2,√2�,则下列直线方程不与Γ相切的是( * ).(A)3√3xx+4yy−16=0(B)3xx+4yy+12=0(C)4xx+6yy−17=0(D)xx−4yy−10=07. 已知函数ff(xx)=2sin�ωωxx+ππ6�在区间(0,ππ)上有ωω个极值点(ωω∈NN∗),则ωω的最小值是( * ).(A)1(B)2(C)3(D)48. 已知aa=1+sin110,bb=√ee10,cc=1.0110,dd=1716,则( * ).(A)bb>aa>dd>cc(B)bb>cc>aa>dd(C)bb>aa>cc>dd(D)bb>cc>dd>aa二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 2023年我国的生育率仅为每千人6.2人,再创新低,引发了社会广泛的关注和讨论.某课外小组就“您是否愿意生育孩子?”为问题对某某高校同学随机进行了采访,以下为其采访记录表:您是否愿意生育孩子愿意(XX=1)不愿意(XX=0)男同学40 60女同学60 40考虑到由于大学生的心智发展不成熟,不能完全代表当代年轻人,于是其又对年龄为25至30周岁的市民进行了采访调查,以下为其采访记录表:您是否愿意生育孩子愿意(XX=1)不愿意(XX=0)男士60 40女士70 30则( * ).(A)该两次的调查结果均服从两点分布,属于200重伯努利试验(B)高校大学生愿意生育孩子的期望为0.5,25至30周岁的为0.65(Cαα=0.005 的独立性检验,是否愿意生育孩子与年龄有关(D)通过下表的小概率值αα=0.005 的独立性检验,是否愿意生育孩子与性别有关注:χχ2=nn(aadd−bbcc)2(aa+bb)(cc+dd)(aa+cc)(bb+dd),其中nn=aa+bb+cc+ddαα0.10.050.01 0.005 0.001xxαα 2.706 3.841 6.635 7.897 10.82810. 由两个全等的正四棱台组合而得到的几何体1如图3,沿着BBBB1和CCCC1分别作上底面的垂面,垂面经过棱EEPP,PPPP,PPHH,HHEE的中点EE,GG,MM,NN,则两个垂面之间的几何体2如图4所示,若EENN=AABB=EEAA=2 ,则( * ).(A)BBBB1=2√2(B)EEGG//AACC(C)BBCC⊥平面BBEEBB1GG(D)几何体2的表面积为 16√3+8图3 图411. 已知椭圆EE:xx24+yy23=1 ,过椭圆EE的左焦点EE1的直线ll1交椭圆EE于AA、BB两点,过椭圆EE的左焦点EE2的直线ll2交椭圆EE于CC、CC两点,则( * ).(A)若AAEE1�������⃗=2EE1BB�������⃗,则ll1的斜率kk=√62(B)|AAEE1|+4|BBEE1|的最小值为274(C)以AAEE1为直径的圆与圆xx2+yy2=4 相切(D)若ll1⊥ll2,则四边形AABBCCCC面积的取值范围为�28849,6�图5 12. 已知正实数mm,nn,qq满足:�2mm+3nn=6qq2mm·3nn=5qq,则( * ).(A)ln2<qq<1(B)0<mmnn<12(C)√2<mm+nn qq<√6(D)ln5ln6<mm2+nn2<ln5+ln6三、填空题:本题共4小题,每小题5分,共20分.13. 在�√xx+1xx�4的展开式中,√xx的系数是________.(用数字作答)14. 函数ff(xx)=sin|xx|+|cos xx| ,xx∈(0,2ππ)的极值点个数为________.15. 已知函数ff(xx)=�(xx+1)2 ,xx≤0ln xx ,xx>0,若方程ff(xx)=mm有三个不同的实根aa,bb,cc,则SS=|aaff(aa)+bbff(bb)+ccff(cc)|的取值范围是__________.16. 若实数aa,bb满足aa2+bb2≤6aa,则(2aa+bb)(2bb−aa+3)≤0 的概率为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知在△AABBCC中,角AA、BB、CC所对的边分别为aa,bb,cc.且有 tan AA+tan BB−√3tan AA tan BB=−√3 .(1)求 sin CC;(2)若cc=2 ,记AABB的中点为MM,求CCMM的取值范围.18.(12分)在阅读完(选择性必修第三册)课本第53页《贝叶斯公式与人工智能》后,小李同学决定做一个相关的概率试验,试验过程如下:小李同学找来了小王同学;小李同学制作了三张标号,分别为1,2,3的相同规格纸片;每轮开始前,小李同学心里默想1,2,3中的一个随机数字;小王同学先选定一张纸片,小李同学将剩余2张纸片中挑走1张不与自己默想数字相同标号的纸片;小王同学再进行一次选择;小王同学选定最终结果后,若其选择的纸片标号与小李默想的一致,就记录一次1分,否则记录一次0分;重复进行多轮试验.(1)为了尽可能多计分,如果你是小王同学,第二轮选择时你会怎样选?说明理由;(2)在(1)的情境下,求进行2轮试验总计分的数学期望EE(XX2);19.(12分)记数列{aa nn}的前nn项和为SS nn,已知SS nn=nnaa nn+1−nn2−nn.(1)证明:{aa nn}是等差数列;(2)若aa1=43,证明:1SS1+1SS2+1SS3+⋯+1SS nn<2720.20.(12分)如图6,在四棱柱AABBCCCC−AA′BB′CC′CC′中,底面AABBCCCC和侧面BBBB′CC′CC均为正方形,AABB=2 .连接BB′CC,点EE、EE分别为BB′CC、CC′CC′的中点.(1)求AA′EE和CC′EE夹角的正弦值;(2)求平面AA′BBEE和平面CCCC′EE的夹角.图6 21.(12分)如图7,已知OO为坐标原点,抛物线的方程为xx2=2ppyy(pp>0),EE是抛物线的焦点,椭圆的方程为xx2aa2+yy2bb2=1(aa>bb>0),过EE的直线ll与抛物线交于MM,NN两点,反向延长OOMM, OONN分别与椭圆交于PP,HH两点.(1)求kk OOOO、kk OOOO的值;(2)若|OOPP|2+|OOHH|2=5 恒成立,求椭圆的方程;(3)在(2)的条件下,SS△OOOOOO SS△OOOOOO的最小值为1,求抛物线的方程.(其中SS△OOOOOO,SS△OOOOOO 分别是△OOMMNN和△OOPPHH的面积)图7 22.(12分)已知函数ff(xx)=aa ln xx−xx+ln aa−1 ,gg(xx)=aaxx aa ee xx+1−1 .(其中aa>0 )(1)若∃xx0>0 ,ff(xx0)≥ee2+1 ,求aa的取值范围;(2)若yy=ff(xx)与yy=gg(xx)有且仅有一个交点,求实数aa的值.2024年广东省新高考数学一模练习卷(一)数学参考答案一、选择题题号 1 2 3 4 5 6 7 8 答案 B D D A B C A B二、选择题题号9 10 11 12答案BCD ABC BCD ABC三、填空题题号13 14 15 16 答案 4 4 [0,ee−2]12四、解答题17.(1)由题 tan AA+tan BB−√3tan AA tan BB=−√3⇒tan AA+tan BB=−√3(1−tan AA tan BB)⇒tan AA+tan BB1−tan AA tan BB=−√3⇒tan(AA+BB)=−√3⇒tan CC=−tan(AA+BB)=√3⇒CC=ππ3所以 sin CC=√32.(2)如图所示,构造△AABBCC的外心NN,连接AANN,BBNN,CCNN,MMNN由题得AAMM=BBMM=1 ,AANN=CCNN=BBNN=RR=2cc sin CC=2√33,MMNN=12AANN=√33由三角形三边关系得CCNN−MMNN≤CCMM≤CCNN+MMNN,即√33≤CCMM≤√3 ,故CCMM∈�√33,√3�.18.(1)记事件 AA 1 为“第二次选择时不换纸片”,AA 2 为“第二次选择时换纸片”,BB 1 为“记1分”,BB 2 为“记0分”,由贝叶斯公式得:PP (BB 1|AA 1)=PP (BB 1)PP (AA 1|BB 1)PP (AA 1)=PP (BB 1)PP (AA 1|BB 1)PP (BB 1)PP (AA 1|BB 1)+PP (BB 2)PP (AA 1|BB 2)=13PP (BB 1|AA 2)=1−PP (BB 1|AA 1)=23>PP (BB 1|AA 1)所以如果我是小王同学,我会选择换纸片(2)记2轮的总得分为 XX ,结合(1)得 XX 的分布列为PP (XX =0)=19 ,PP (XX =1)=49 ,PP (XX =2)=49用表格表示 XX 的分布列,如下表所示:XX 012PP19 49 49 EE (XX 2)=0×19+1×49+2×49=43故进行2轮试验总计分的数学期望 EE (XX 2) 为 4319.(1)由题意 SS nn =nnaa nn+1−nn 2−nn ,SS nn +aa nn+1=SS nn+1=(nn +1)aa nn+1−nn 2−nn=(nn +1)(aa nn+1−nn )=(nn +1)aa nn+2−(nn +1)2−(nn +1)=(nn +1)(aa nn+2−nn −2),所以 aa nn+1−nn =aa nn+2−nn −2 ,即 aa nn+2=aa nn+1+2 ,所以 {aa nn } 是以2为公差的等差数列 (2)由(1)及题意得等差数列 {aa nn } 的前 nn 项和SS nn =nn 2(aa 1+aa nn )=nn 2�23+2nn�=nn �nn +13�1SS nn =1nn �nn +13�=3nn (3nn +1)1SS 1+1SS 2+⋯+1SS nn =3�11×4+12×7+⋯+1nn ×(3nn +1)� 即证 33×4+36×7+⋯+33nn ×(3nn +1)<920易知 (3nn −1)(3nn +2)<3nn (3nn +1)则 33nn (3nn +1)<3(3nn −1)(3nn +2)33×4+36×7+⋯+33nn ×(3nn +1)<14+�35×8+⋯+3(3nn −1)×(3nn +2)�=14+�15−18+18−111+⋯+13nn−1−13nn+2�<14+15=920原题得证,证毕20.(1)如图,以AA′为坐标原点,AA′BB′为x轴,AA′DD′为y轴,AA′AA为z轴,建立空间直角坐标系则AA(0,0,2),BB(2,0,2),CC(2,−2,2),DD(0,−2,2),BB′(2,0,0),CC′(2,−2,0),DD′(0,−2,0),EE(1,−1,1),FF(1,−2,0)则AA′FF�������⃗=(1,−2,0),CC′EE�������⃗=(−1,1,1),cos<AA′FF�������⃗ ,CC′EE�������⃗>=AA′FF�������⃗·CC′EE�������⃗|AA′FF�������⃗|×�CC′EE�������⃗�=−3√15=−√155sin<AA′FF�������⃗ ,CC′EE�������⃗>=�1−cos2<AA′FF�������⃗ ,CC′EE�������⃗>=2√55(2)设θθ为平面AA′BBFF和平面CCCC′EE的夹角由(1)得AA′BB�������⃗=(2,0,2),AA′FF�������⃗=(1,−2,0),设平面AA′BBFF的法向量nn1����⃗=(xx1,yy1,zz1),则有�2xx1+2zz1=0xx1−2yy1=0,令xx1=2 得�yy1=1zz1=−2,所以nn1����⃗=(2,1,−2);CC′CC�������⃗=(0,0,2),CC′EE�������⃗=(−1,1,1),设平面CC′CCEE的法向量nn2����⃗=(xx2,yy2,zz2),则有�2zz2=0−xx2+yy2+zz2=0,令xx1=1 得�yy2=1zz2=0,所以nn2����⃗=(1,1,0);cosθθ=cos<nn1����⃗ ,nn2����⃗>=nn1����⃗·nn2����⃗|nn1����⃗|×|nn2����⃗|=33√2=√22又因为θθ∈�0,ππ2�,所以θθ=ππ4,故平面AA′BBFF和平面CCCC′EE的夹角为ππ421.(1)设直线OOMM的斜率为kk1(kk1>0),直线OONN的斜率为kk2,由题可知,直线MMNN的斜率不为0,设MM(xx1, yy1), NN(xx2, yy2),设直线MMNN: yy=kkxx+pp2,则由�yy=kkxx+pp2xx2=2ppyy,可得xx2−2ppkkxx−pp2=0,易知 ΔΔ>0 ,由韦达定理得 xx 1xx 2=−pp 2,yy 1yy 2=(xx 1xx 2)24pp 2=pp 24,则 kk 1kk 2=yy 1xx 1⋅yy 2xx 2=−14 ; (2)设 PP (xx 3,yy 3), QQ (xx 4, yy 4), 由题可知,ll OO OO : yy =kk 1xx , ll OO OO :yy =kk 2xx ,其中kk 1kk 2=−14,联立方程�yy =kk 1xxxx 2aa 2+yy 2bb 2=1⇒xx 32=aa 2bb 2bb 2+aa 2kk12 ,同理 xx 42=16aa 2bb 2kk 12aa 2+16bb 2kk 12 ,因为:|OOPP |2+|OOQQ |2=xx 32+yy 32+xx 42+yy 42=xx 32+�1−xx 32aa 2�bb 2+xx 42+�1−xx 42aa 2�bb 2=2bb 2+�1−bb 2aa2�(xx 32+xx 42)=2bb 2+�aa 2−bb 2aa 2��aa 2bb 2bb 2+aa 2kk 12+16aa 2bb 2kk 12aa 2+16bb 2kk 12� =2bb 2+�aa 2−bb 2aa 2�⋅aa 2⋅aa 2bb 2+(32bb 4)kk 12+16aa 2bb 2kk 14aa 2bb 2+(aa 4+16bb 4)kk 12+16aa 2bb 2kk 14 =2bb 2+(aa 2−bb 2)aa 2bb 2+(32bb 4)kk 12+16aa 2bb 2kk 14aa 2bb 2+(aa 4+16bb 4)kk 12+16aa 2bb 2kk 14.因为 |OOPP |2+|OOQQ |2=5 为定值,所以上式与 kk 1 无关, 所以当 32bb 4=aa 4+16bb 4 ,即 aa 2=4bb 2 时,此时 aa 2+bb 2=5 ,所以 aa 2=4 , bb 2=1 ,所以椭圆的方程为xx 24+yy 2=1.(3)因为 SS △OOOOOOSS△OOOOOO=12|OOOO ||OOOO |ssss nn ∠OOOOOO 12|OOOO ||OOOO |ssss nn ∠OOOOOO =|OOOO ||OOOO ||OOOO ||OOOO |=�xx 1xx2xx 3xx 4� ,由(2)可知,当aa 2=4, bb 2=1时,xx 32=41+4kk12, xx 42=16kk 121+4kk 12, xx 1xx 2=−pp 2,SS △OOOOOO SS △OOOOOO =�xx 1xx 2xx 3xx 4�=pp 28|kk 1|1+4kk 12=pp 28�1|kk 1|+4|kk 1|�≥pp 22, 故pp 22=1⇒pp =√2,当且仅当kk 1=±12时,等号成立,此时抛物线方程为xx 2=2√2yy .22.(1)ff (xx )=aa ln xx −xx +ln aa −1 ,xx ∈RR + ,ff ′(xx )=aaxx −1=aa−xx xx,令 ff ′(xx )=0 得 xx =aa当 0<xx <aa 时,ff ′(xx )>0 ,ff (xx )↑ ;当 xx >aa 时,ff ′(xx )<0 ,ff (xx )↓ . 所以 ff (xx )max =ff (aa )=aa ln aa −aa +ln aa −1=(aa +1)(ln aa −1) . 令 ℎ(aa )=(aa +1)(ln aa −1) ,ℎ′(aa )=ln aa +1aa =aa ln aa+1aa,再令φφ(aa)=aa ln aa+1 ,φφ′(aa)=1+ln aa,令φφ′(aa)=0 得aa=1ee当 0<aa<1ee时,φφ′(aa)<0 ,φφ(aa)↓;当aa>1ee时,φφ′(aa)>0 ,φφ(aa)↑.所以φφ(aa)min=φφ�1ee�=1−1ee>0 ,即φφ(aa)>0 ,即ℎ′(aa)>0 ,所以ℎ(aa)↑,原题“∃xx0>0 ,ff(xx0)≥ee2+1”等价于“ff(aa)≥ee2+1”,即(aa+1)(ln aa−1)=ℎ(aa)≥ee2+1 ,观察到ℎ(ee2)=ee2+1 ,又由ℎ(aa)↑得:当 0<aa<ee2时,ℎ(aa)<ℎ(ee2)=ee2+1 ;当aa≥ee2时,ℎ(aa)≥ℎ(ee2)=ee2+1所以aa≥ee2,即aa的取值范围为[ee2,+∞).(2)令tt=ff(xx)=aa ln xx−xx+ln aa−1 ,则ee tt=ee aa ln xx−xx+ln aa−1=ee(ln aa+ln xx aa)−(xx+1)=aaxx aa ee xx+1所以gg(xx)=aaxx aa ee xx+1−1=ee tt−1 ,联立ff(xx)=gg(xx),即tt=ee tt−1 .令Φ(tt)=ee tt−1−tt,所以方程“tt=ee tt−1”的解等价于Φ(tt)的零点.Φ′(tt)=ee tt−1 ,令Φ′(tt)=0 得tt=0 ,当tt<0 时,Φ′(tt)<0 ,Φ(tt)↓;当tt>0 时,Φ′(tt)>0 ,Φ(tt)↑.所以Φ(tt)min=Φ(0)=0 ,所以方程“tt=ee tt−1”的解仅为tt=0 ,再由题意,tt=ff(xx)=0 有且仅有一根,即ff(xx)仅有唯一零点.ff(xx)=aa ln xx−xx+ln aa−1 ff(xx)=aa xx−1=aa−xx xx,令ff′(xx)=0 得xx=aa当 0<xx<aa时,ff′(xx)>0 ,ff(xx)↑;当xx>aa时,ff′(xx)<0 ,ff(xx)↓.所以ff(xx)max=ff(aa)=aa ln aa−aa+ln aa−1=(aa+1)(ln aa−1).又注意到当xx→0 时,ff(xx)−∞;当xx→+∞时,ff(xx)−∞;所以ff(xx)的唯一零点即其极值点,即(aa+1)(ln aa−1)=0 ,得aa=−1 (舍)或aa=ee. 故aa的值为ee.。

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)

2022年普通高等学校招生全国统一考试全真模拟测试(一)数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,,则下列结论错误..的是( ) A .B .C .D .2.设复数满足,则的实部为( ) A .0B .1C .-1D .i3.已知随机变量,,则( ) A .B .C .D .1 4.若一圆弧的长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数是 A .B .C .D .25.函数的部分图象如图所示,则f(1)+f(2)+…+f (2017)+f(2018)的值为()A.2+B.C.2+2D.06.已知函数,若方程有4个零点,则的可能的值为()A.B.C.D.7.定义在R上的奇函数满足,且对任意的正数a、b(),有,则不等式的解集是()A.B.C.D.8.已知外接圆圆心为,半径为,,且,则向量在向量上的投影为()A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知向量,其中m,n均为正数,且,下列说法正确的是()A.• 1B.与的夹角为钝角C.向量在方向上的投影为D.2m+n=410.已知,,则()A.B.C.D.11.在中,,,下述四个结论中正确的是()A.若为的重心,则B.若为边上的一个动点,则为定值2C.若,为边上的两个动点,且,则的最小值为D.已知为内一点,若,且,则的最大值为2 12.在棱长为1的正方体中,为侧面(不含边界)内的动点,为线段上的动点,若直线与的夹角为,则下列说法正确的是()A.线段的长度为B.的最小值为1C.对任意点,总存在点,便得D.存在点,使得直线与平面所成的角为60°三、填空题:本题共4小题,每小题5分,共20分.13.四面体的顶点和各棱中点共有10个点,在其中取四个不共面的点,不同的取法共有___________.14.设O是坐标原点,动点P在圆上,点Q在直线上,且,过点P且垂直于的直线l过定点__________.15.从数字1,2,3,4中任取一个数,记为,再从1至中任取一个整数,记为,则取到的为数字2的概率是___________.16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中, 平面, ,则该鳖臑的外接球与内切球的表面积之和为____.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知数列中,,.设(1)证明:数列是等比数列;(2)设,求数列的前项和.18.在中,角、、所对的边分别为、、,且满足,.(1)求角的大小;(2)若,求的面积.19.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?20.如图,在三棱锥中,三角形ABC是边长为2的正三角形.(1)若平面平面BCD,且,求证:;(2)若二面角的大小为,且,求直线AD与平面BCD所成角的大小. 21.在中,已知,,交于点,为中点,满足,点的轨迹为曲线.(1)求曲线的方程:(2)过点作直线交曲线于,两点,试问以为直径的圆是否恒过定点?若过定点求出定点,若不过定点说明理由.22.已知函数(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值和f(x)的单调区间;(2)设,其中为f(x)的导函数,证明:对任意.2022年普通高等学校招生全国统一考试全真模拟测试(一)数学答案1.C解:因为集合,,,所以,,,,2.A设,则,所以,故的实部为0.3.B由二项分布的性质知,即,所以.4.C设圆半径为r则由平面几何知识,内接正三角形的边长为r,所以由弧度制定义知,其圆心角的弧度数是r÷r=,故选C.5.A由图可知A=2,,T=8,,∴,∵周期为T=8,∴f(1)+f(2)+…+f(8)=0,∴f(1)+f(2)+f(3)+…+f(2018)=252•[f(1)+f(2)+f(3)+…+f(8)]+f(1)+f(2)=0+2sin +2=+2.6.B当,所以.令,得,依题意,的图象与的图象有四个不同的交点,画出和的图象如下图所示.由图可知,要使的图象与的图象有四个不同的交点,需,即.四个选项中只有B选项符合.另外注意:当时,,,,所以过的切线方程为,即,故此时切线方程过原点.也即与只有个公共点,不符合题意.故选:B7.C∵对任意的正数a、b(),有,∴函数在上单调递减,∴在上单调递减.又∵,∴令所以不等式等价为或∴或,∴或,∴或,即不等式的解集为.8.D由知:为中点,又为外接圆圆心,,,,,,,向量在向量上的投影为.故选:D.9.AD2×1+1×(﹣1)=1,故A正确;∵1>0,∴,的夹角不是钝角,故B错误;向量在方向上的投影为||•,故C错误;(1,2),∵,∴﹣n﹣2(m﹣2)=0,∴2m+n=4,故D正确.故选:AD.10.BC解:对于A,,,,即,故A错误,对于B,,,,,,,故B正确,对于C,,,,故C正确,对于D,,,,即,,即,故D错误.故选:BC.11.AC如图,以A为坐标原点,分别以AB,AC所在直线为x,y轴建立平面直角坐标系,则,因为为的重心,所以,则,所以,所以,故A正确;设,则,则,,故B错误;不妨设M靠近B,,得,则,当时,的最小值为:故C正确;由,且P为内一点,BP=1,则,即,令,则,因为,则,所以,所以的范围是,故D错误.故选:AC12.ABC建立如上图所示的空间直角坐标系,根据题意,可得:,,,,,,,设点,,由直线与的夹角为,则有:,故有:解得:为线段上的动点,则有:()解得:对选项,则有:,故选项正确;对选项,过点作平面的垂线,垂足为易知:(由于)故的最小值等价于求故有:当且仅当时成立,结合,可得此时故选项正确;对选项,若,则有:,,又则有:则有:又,则有:,故对任意点,总存在点,便得,故选项正确;对选项,易知平面的法向量为,若直线与平面所成的角为,即直线与平面的法向量成,则有:解得:,矛盾,故选项错误.故选:13.141利用间接法,用总的情况减去共面的情况,总的情况数为;共面的情况①四点均在侧面上,;②三点在一条棱上,第四点在该棱的对棱中点,共有6个中点,即6种情况;③四点均为中点,有3种情况;综上,.14.设,,可得:,由,所以,即,可得,则过点P且垂直于的直线l为:,即,所以,即,也即,所以直线l过定点.故答案为:15.解:设事件表示“取到的为数字1”,事件表示“取到的为数字2”,事件表示“取到的为数字3”,事件表示“取到的为数字4”,事件表示“取到的为数字2”.则.由条件概率易得,,,由全概率公式,可得. 故答案为:16.M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆的半径为AC=外接球的球心到平面ABC的距离为=1.可得外接球的半径R=.故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.17.(1)证明:因为,所以====2,又, 所以数列是以1为首项,2为公比的等比数列.(2)由(1)知,18.(1)解:由及正弦定理可得,,则,故,,,因此,.(2)解:,所以,,即,即,,则,,则,由正弦定理可得,则,,因此,.19.(1)设事件为“甲和乙先赛且共进行4场比赛”,则有两类:第一种是甲和乙比赛,甲胜乙,再甲与丙比赛,丙胜甲,再丙与乙比赛,乙胜丙,再进行第四场比赛;第二种是甲和乙比赛,乙胜甲,再乙与丙比赛,丙胜乙,再丙与甲比赛,甲胜丙,再进行第四场比赛;故所求概率,所以甲和乙先赛且共进行4场比赛的概率为;(2)设事件表示甲与乙先赛且甲获得冠军;事件表示甲与丙先赛且甲获得冠军;事件表示乙与丙先赛且甲获得冠军,则;;;因为,所以甲与乙进行首场比赛时,甲获得冠军的概率最大.20.(1)因为平面平面BCD,平面平面,因为,平面BCD,所以平面ABC,又平面ABC,所以.(2)过点A作平面BCD于点O,取BC的中点E,连接OD,OE,AE.因为三角形ABC是正三角形,点E为BC中点,所以.因为平面BCD,则OE为AE在平面BCD内的射影,由三垂线逆定理知. 所以是二面角的平面角,即.因为三角形ABC是边长为2的正三角形,所以.在中,.因为平面BCD,所以DO是AD在平面BCD内射影.所以是直线AD与平面BCD所成角.在中,,因为,所以.所以直线AD与平面BCD所成角的大小为.21.(1)设,,,,因为,所以,即,整理得:,即.在中,三顶点不可能共线,所以,故曲线的方程为.(2)结论:以为直径的圆经过定点若直线斜率不存在,可得圆:,若直线斜率为0,可得圆:,解得两个圆的公共点为,若直线斜率存在且不为0时,设其方程为,,可得,恒成立,设点,,可得韦达定理:,,即,以为直径的圆经过定点,综上所述,以为直径的圆经过定点22.(1)的定义域为.,所以,令,,所以在上递减,所以在区间上递增,在区间上递减.即的增区间为,减区间为.(2).由得.令,,所以在区间上递增;在区间上递减,所以.而在上递增,所以,所以对任意.。

2023年高考数学全真模拟试卷01(新高考专用)(解析版)

2023年高考数学全真模拟试卷01(新高考专用)(解析版)

2023年高考数学全真模拟试卷01(新高考专用)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅰ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.(2022秋·天津南开·高三南开翔宇学校校考期末)设全集为{}270U x N x x =∈-<,{}2,3,5UA =,{}2,5,6B =,则()UAB =( )A .{}1,4B .{}2,5C .{}6D .{}1,3,4,6 【答案】A【分析】把{}270U x N x x =∈-<化简,分别求出集合A ,UB ,然后求解()U A B ∩.【解析】{}{}{}270071,2,3,4,5,6U x N x x U x N x =∈-<∴=∈<<=又{}{}2,3,51,4,6U A A =∴=,又{}{}2,5,61,3,4U B B =∴=(){}1,4UAB ∴=,故选:A2.(2023秋·河北·高三统考阶段练习)复数()()231i 1i --在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【分析】根据复数的四则运算法则化简后,即可确定复数()()231i 1i --在复平面内对应的点的坐标,进而判断其所在象限.【解析】()()()()()232221i 1i 1i i 12i i 2i 1i 2i 2i 2i 2----==-⋅=+=+---,则复数()()231i 1i --在复平面内对应的点的坐标为()2,2-,位于第四象限,故选:D.3.(2023秋·黑龙江牡丹江·高三牡丹江市第三高级中学校考阶段练习)已知向量a ,b 满足1a =,2b =,且3a b +=,则a 与b 的夹角为( )A .π6B .2π3C .5π6 D .π3【答案】B【分析】先求得数量积1a b ⋅=-,再利用向量夹角公式即可求得a 与b 的夹角. 【解析】因为3a b +=,所以()22222523a b a ba b a b a b +=+=++⋅=+⋅=,则1a b ⋅=-.则11cos ,122a b a b a b⋅-===-⨯⋅. 又因为[],0,π∈a b ,所以2,π3a b =,即a 与b 的夹角为2π3.故选:B. 4.(2023秋·天津南开·高三崇化中学校考期末)我国著名数学家华罗庚曾说过:“数无形时少直观,形无数时难入微;数形结合百般好,隔离分家万事休”.函数()32sin22xx x f x +=的部分图像大致为( ) A . B . C .D .【答案】A【分析】根据函数的奇偶性和特殊点的函数值,即可得解. 【解析】∵()32sin22xx xf x += ,x ∈R , 33||||()2sin(2)2sin 2()()22x x x x x xf x f x --+-+-==-=- ,则()f x 是奇函数,其图像关于原点对称,排除选项B 、D ; 对12sin 2(1)02f +=> 故可排除选项C .故选:A . 5.(2022秋·宁夏吴忠·高三青铜峡市高级中学校考期末)已知等差数列{}n a 前9项的和为1027,8a =,则90a =( ) A .87 B .89C .88D .90【答案】C【分析】根据已知条件求得公差d ,从而求得正确答案. 【解析】设等差数列{}n a 的公差为d ,因为()199195927,22a a S aa a +⨯==+=,所以53a =.又因为108a =,所以1051105a a d -==-. 故()90109010188a a =+-⨯=.故选:C6.(2023秋·山西吕梁·高三统考期末)已知3ππ,2α⎛⎫∈ ⎪⎝⎭,若22sin 291cos 2αα+=-,则cos sin cos sin αααα+=-( )A .3-B .3C .97D .97-【答案】B【分析】由题知sin 0,cos 0αα<<,进而结合二倍角公式整理得sin cos 3sin ααα+=,即2sin cos αα=,再代入求解即可.【解析】因为3ππ,2α⎛⎫∈ ⎪⎝⎭,sin 0,cos 0αα<<,()()()()222221sin 2212sin cos sin cos 22sin 291cos 22sin sin 112sin αααααααααα++++====---,所以sin cos 3sin ααα+=,即2sin cos αα=所以cos sin 2sin sin 3cos sin 2sin sin αααααααα++==--.故选:B 7.(2023·全国·郑州中学校考模拟预测)设120231e 2023a =,2024ln2023b =,sin(0.2023)c =︒,则( )A .c b a >>B .a b c >>C .b a c >>D .c a b >>【答案】D【分析】构造函数()()()e ln 1,0,1xf x x x x =-+∈,利用导数确定函数的单调性可得()12023111e ln 100202320232023f f ⎛⎫⎛⎫=-+>= ⎪ ⎪⎝⎭⎝⎭,即可判断,a b 大小关系;估计实数12023与0.2023π0.2023180︒=的大小关系及大致倍数关系,构造函数()1e sin 6,0,1000xh x x x x ⎛⎫=-∈ ⎪⎝⎭,利用导数确定单调性可得()12023111e sin 600202320232023h h ⎛⎫⎛⎫=-⨯<= ⎪ ⎪⎝⎭⎝⎭,从而结合正弦函数的单调性可比较,a c 大小,即可得结论.【解析】设()()()e ln 1,0,1x f x x x x =-+∈,则()()11e 1xf x x x =+-+', 设()()()11e 1x g x f x x x==+-+',则()()()212e 01x g x x x =++>+'恒成立, 所以()f x '在()0,1上单调递增,所以()()00f x f ''>=恒成立,则()f x 在()0,1上单调递增,故()12023111e ln 100202320232023f f ⎛⎫⎛⎫=-+>= ⎪ ⎪⎝⎭⎝⎭,即12023112024e ln 1ln 202320232023⎛⎫>+= ⎪⎝⎭,所以a b >; 因为10.000494322023≈,0.2023π0.20230.0035308160.00049432180︒=≈>⨯, 则10.202362023︒>⨯,设()1e sin 6,0,1000x h x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()1e 6cos6xh x x x '=+-,又设()()()1e 6cos6xm x h x x x ==-'+,故()()2e 12sin60xm x x x =++>'恒成立,所以()h x '在10,1000x ⎛⎫∈ ⎪⎝⎭上单调递增,所以()110001111e 6cos 0100010001000h x h ⎛⎫⎛⎫<=+-< ⎪ ⎪⎝'⎭⎝⎭'恒成立,则()h x 在10,1000⎛⎫ ⎪⎝⎭上单调递减,则()12023111e sin 600202320232023h h ⎛⎫⎛⎫=-⨯<= ⎪ ⎪⎝⎭⎝⎭,1202311e sin 620232023⎛⎫<⨯ ⎪⎝⎭ 又()1sin 6sin 0.20232023⎛⎫⨯<︒ ⎪⎝⎭,则()120231e sin 0.20232023<︒,即c a >; 综上,c a b >>.故选:D .8.(2022·全国·统考高考真题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12C D 【答案】C【分析】方法一:先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值. 【解析】[方法一]:【最优解】基本不等式设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又设四棱锥的高为h ,则22r h 1+=,2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立.故选:C[方法二]:统一变量+基本不等式由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r则r =,所以该四棱锥的高h =13V a = (当且仅当22142a a =-,即243a =时,等号成立)所以该四棱锥的体积最大时,其高h ==.故选:C .[方法三]:利用导数求最值由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r则r =,所以该四棱锥的高h =13V a =令2(02)a t t =<<,V ()322t t f t =-,则()2322t f t t -'=, 403t <<,()0f t '>,单调递增, 423t <<,()0f t '<,单调递减,所以当43t =时,V最大,此时h =.故选:C.【整体点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;方法二:消元,实现变量统一,再利用基本不等式求最值;方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2023秋·山西吕梁·高三统考期末)近年来、新冠疫情波及到千家万户,人们的生活方式和习惯不得不发生转变,短视频成了观众空闲时娱乐活动的首选.某电影艺术中心为了解短视频平台的观众年龄分布情况,向各大短视频平台的观众发放了线上调查问卷,共回收有效样本4000份,根据所得信息制作了如图所示的频率分布直方图,则下列说法正确的是( )A .图中0.028a =B .在4000份有效样本中,短视频观众年龄在10~20岁的有1320人C .估计短视频观众的平均年龄为32岁D .估计短视频观众年龄的75%分位数为39岁 【答案】CD【分析】根据频率和为1可构造方程求得a ,知A 错误;由频率和频数的关系可求得观众年龄在10~20岁的人数,知B 正确;由平均数和百分位数的估计方法可验证知CD 正确. 【解析】对于A ,()0.0150.0330.0110.011101a ++++⨯=,0.03a ∴=,A 错误;对于B ,由频率分布直方图知:短视频观众年龄在10~20岁的人对应频率为0.15,∴短视频观众年龄在10~20岁的有40000.15600⨯=人,B 错误;对于C ,平均年龄()0.015150.033250.03350.011450.011551032x =⨯+⨯+⨯+⨯+⨯⨯=,C 正确;对于D ,设75%分位数为x ,则()0.015100.03310300.030.75x ⨯+⨯+-⨯=, 解得:39x =,D 正确.故选:CD.10.(2023·全国·高三专题练习)(多选题)如图,在正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,给出下列判断正确的是( )A .直线1B D ⊥平面1ACD ; B .1A P ∥平面1ACD ;C .异面直线1A P 与1AD 所成角的范围是π0,3⎛⎤⎥⎝⎦;D .三棱锥1D APC -的体积不变 【答案】ABD【分析】对于A ,利用线面垂直的判定定理证明判断; 对于B ,利用线面平行和面面平行的判定定理证明判断;对于C ,分P 与线段1BC 的B 端和1C 端以及线段1BC 的中点重合判断;对于D ,由11D APC P ACD V V --=,结合1BC ∥平面1AD C 判断. 【解析】对于A ,如图所示:连接BD ,根据正方体的性质,∵1BB ⊥平面ABCD ,且AC ⊂面ABCD ,∴1BB AC ⊥,又∵BD AC ⊥,且1BD BB B ⋂=,∴AC ⊥面1BB D , ∴1AC B D ⊥,连接1A D ,根据正方体的性质,∵11A B ⊥平面11A D DA ,且1AD ⊂面11A D DA ,∴111A B AD ⊥; 又∵11AD A D ⊥,且1111A B A D A =,∴1AD ⊥面11A B D , ∴11AD B D ⊥,且1ACAD A =,∴直线1B D ⊥平面1ACD ,故A 正确 对于B ,如图所示:连接111,A B A C ,在正方体中,∵AC ∥11A C , 且AC ⊂平面1ACD ,11AC ⊂/平面1ACD ,∴11A C ∥平面1ACD ,同理可证1BC ∥平面1ACD , 又∵11A C 、1BC ⊂平面11BA C ,且1111=AC BC C ,∴平面11//BA C 平面1ACD ,又∵1A P ⊂平面11BA C ,∴1//A P 平面1ACD ,故B 正确;对于C ,当P 与线段1BC 的B 端重合时,异面直线1A P 与1AD 所成角为11A BC ∠,∵11A BC 为等边三角形,∴11π3BC A =∠; 当P 与线段1BC 的1C 端重合时,异面直线1A P 与1AD 所成角为11AC B ∠,∵11A BC 为等边三角形,∴11π3AC B ∠=; ∴当P 与线段1BC 的中点重合时,1A P 与1AD 所成角取最大值,∴11A PC ∠为异面直线1A P 与1AD 所成角,又∵111A B AC =, 且P 为线段1BC 的中点,∴11π2A PC ∠=,故1A P 与1AD 所成角的范围是ππ,32⎡⎤⎢⎥⎣⎦,故C 错误;对于D ,11D APC P ACD V V --=,∵1BC ∥1AD , 且1BC ⊂/平面1AD C ,1AD ⊂平面1AD C ,∴1BC ∥平面1AD C ,∴点P 到平面1ACD 的距离不变,且1ACD △的面积不变, 所以三棱锥1P ACD -的体积不变,故D 正确;故选:ABD.11.(2023秋·河北·高三统考阶段练习)已知函数21e 1()e x x f x +-=,()f x '为()f x 的导函数,则( )A .方程()f x x =只有一个实根B .()f x '的最小值为2eC .函数()()()f x G x f x '=的值域为(1,1)- D .函数()()()F x f x f x '=⋅为偶函数【答案】BC【分析】由零点存在定理可知方程()f x x =不止一个实根;利用()f x ''的正负,求出()f x '的单调性,进而求得()f x '的最小值;利用分离常数法,求得2()1e 21x G x =+-,根据指数函数及不等式的性质即可求出函数的值域;2222()e e x x F x ---=-,而()()F x F x -=-不符合偶函数的定义.【解析】对于A ,方程()f x x =,即2111e 1e e 0ex x x x x x ---+---==-,显然0x =是方程的一个根,令()11ee x x x g x ---=--,由于()0201e e 1g --=-<,()1302e e 2g --=->,根据零点存在定理可知,函数()g x 在()1,2上有一个零点, 因此方程()f x x =不只有一个实根,A 选项错误;对于B ,2111e 1()e e ex x x x f x ---+-=-=,则()1111()e e e 1e 1+x x x x f x ------'⋅-⋅=-=,()1111()e 11e e e x x x x f x ------'==-'⋅+⋅-,令()0f x ''=,即110e e x x ----=,解得0x =,当0x <时,()0f x ''<,所以()f x '在(),0∞-上单调递减, 当0x >时,()0f x ''>,所以()f x '在()0,∞+上单调递增,因此()f x '的最小值为112+e(0)e e f --'==,B 选项正确; 对于C ,1122112221122+111()e e e e ()1()e e e e e x x x x x x x x x f x G x f x --------+-'====+-++=, 22222122011010220e 11e e e e 1x x x x x >⇒+>⇒<<⇒<<⇒-<-<+++, 则2111e 21x -<-<+,所以函数()G x 的值域为(1,1)-,C 选项正确; 对于D ,()()11112222()()()e e e e ee +x x x x x x F xf x f x ---------'-==-⋅= 而()22222222()ee e e ()x x x x F x F x ------=-==----,所以函数()()()F x f x f x '=⋅不是偶函数,D 选项错误;故选:BC.12.(2023·湖南岳阳·统考一模)已知抛物线23y x =上的两点()00,A x y ,()()000,0B x y x -≠及抛物线上的动点(),P x y ,直线PA ,PB 的斜率分别为1k ,2k ,坐标轴原点记为O ,下列结论正确的是( )A .抛物线的准线方程为32x =-B .三角形AOB为正三角形时,它的面积为C .当0y 为定值时,1211k k -为定值D .过三点()000,A y ,()000,B y -,()()000,00C x x ≠的圆的周长大于3π 【答案】BCD【分析】由抛物线方程判断A ,根据正三角形求出直线OA 斜率,联立抛物线求点A 坐标即可判断B ,直接计算1211k k -结合,A P 在抛物线方程上化简可判断C ,根据题意及圆的性质求出半径,结合点A 在抛物线上可得出半径范围,即可判断D.【解析】对A ,由抛物线23y x =知准线方程为34x =-,故A 错误;对B ,当三角形AOB 为正三角形时,不妨设A 在第一象限,则π6AOx ∠=,直线AO方程为y =,联立23y x =,可得009,x y ==故0||22AB y ==⨯=2||AOB S AB ==△B 正确; 对C ,001200,y y y y k k x x x x -+==--,当0y 为定值时 00000000022000020103((122)2)2)()()()331(x x x x y y x x y x x y x x y y y y k y y y y y k y x x -----===-+-+---=-=为定值,故C 正确;对D ,因为圆过三点()000,A y ,()000,B y -,()()000,00C x x ≠,所以可设圆心为(,0)a ,则0R x a =-=22000()()2y x ax =-,故20003()2x x ax =-,因为00x ≠,所以0230x a =+>,即32a >-,故0332R x a a =-=+>,所以圆的周长32π2π3π2R >⨯=,故D 正确.故选:BCD第Ⅰ卷三、填空题:本题共4小题,每小题5分,共20分13.(2023秋·广东·高三校联考阶段练习)()8111x x ⎛⎫-+ ⎪⎝⎭的展开式中2x 项的系数为___.(用数字作答)【答案】28-【分析】由二项式展开式的通项公式求解即可 【解析】()81x +的展开式通项为818C rrr T x-+=,所以22867C 28T x x ==,53368C 56T x x ==.故所求2x 的系数为1285628⨯-=-.14.(2023·广西梧州·统考一模)直线:l y x =与圆()()()222:120C x y a a -+-=>交A ,B 两点,若ABC 为等边三角形,则a 的值为______.【分析】结合几何关系和点到直线的距离即可求解.【解析】由条件和几何关系可得圆心C 到直线:l y x =a =. 15.(2022秋·宁夏吴忠·高三青铜峡市高级中学校考期末)已知()2e e x xmf x -=满足()()0f x f x -+=,且()f x 在()(),n f n 处的切线与21y x =+平行,则m n +=__________.【答案】1【分析】根据()()0f x f x -+=,可得函数()f x 是R 上的奇函数,从而可求得m ,再根据导数的几何意义可得()2f n '=,从而可求得n ,即可得出答案.【解析】函数()2e e x xmf x -=的定义域为R ,因为()()0f x f x -+=,所以函数()f x 是R 上的奇函数,所以()010f m =-=,解得1m =,经检验成立所以()2e 1e x xf x -=,则()()22222e e e 1e e 1e e x x x xx xxf x ⋅--+'==, 因为()f x 在()(),n f n 处的切线与21y x =+平行,所以()2e 12e n nf n +'==,解得0n =,所以1m n +=.16.(2022秋·江苏徐州·高三期末)已知椭圆C :()222210x y a b a b+=>>,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AB ,AP 的斜率之积为49,且BDO BOD ∠=∠,则椭圆C 的离心率为______.【分析】设点的坐标,求斜率,由题知220022222211x y a b m n a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,化简得22AP BP b k k a ⋅=-,结合BDO BOD ∠=∠,知2249AP ABb k k a ⋅==,再利用222c a b =-及离心率公式即可求解. 【解析】设()00,P x y ,(),A m n ,(),B m n --,则直线AP 的斜率为00y n x m --,BP 的斜率为00y nx m++,由题知220022222211x y a b m n a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22220022x m y n a b --=-, 即200200x m y n a y n b x m +-=-⨯+-,即221AP BP a k k b =-⨯,即22AP BP b k k a⋅=-, 又BDO BOD ∠=∠,则AB BP k k =-,即22AP ABb k k a⋅=, 即2249b a =,则2249b a =,所以2222224599c a b a a a =-=-=,即2259c a =,则椭圆C的离心率为c a =四、解答题:本小题共6小题,共70分。

数学-22年新高考模拟卷一(解析版)

数学-22年新高考模拟卷一(解析版)

本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.设集合(){}2log 11A x x =-≤,1122x B x -⎧⎫=≥⎨⎬⎩⎭,则A B =( )A .(],2-∞B .[]1,2C .(]1,2D .(]1,3【答案】C【分析】解指数不等式和对数不等式得集合,A B ,然后由交集定义计算.【详解】由题意(){}2log 11{13}A x x x =-≤=<≤,112{|2}2x B x x x -⎧⎫=≥=≤⎨⎬⎩⎭,所以{|12}A B x x =<≤.故选:C .2. i 是虚数单位,复数z 与复平面内的点()2,1Z 对应,设0i1iz z +=+,则0z =( ) A .1i - B .1 C .2 D 2 【答案】D【分析】依题意可得2i z =+,再根据复数代数形式的除法运算化简0z ,即可求出其模; 【详解】解:由题设可得:2i z =+,2i z =-,∴()()()021i i 2i i 21i 1i 1i 1i 1i 1i z z -+-+=====-++++-, ∴0112z =+ D.3.足球起源于中国东周时期的齐国,当时把足球称为“蹴鞠”.汉代蹴鞠是训练士兵的手段,制定了较为完备的体制.如专门设置了球场,规定为东西方向的长方形,两端各设六个对称的“鞠域”,也称“鞠室”,各由一人把守.比赛分为两队,互有攻守,以踢进对方鞠室的次数决定胜负.1970年以前的世界杯用球多数由举办国自己设计,所以每一次球的外观都不同,拼块的数目如同掷骰子一样没准.自1970年起,世界杯官方用球选择了三十二面体形状的足球,2022年新高考数学模拟卷(一)沿用至今.如图Ⅰ,三十二面体足球的面由边长相等的12块正五边形和20块正六边形拼接而成,形成一个近似的球体.现用边长为4.5cm 的上述正五边形和正六边形所围成的三十二面体的外接球作为足球,其大圆圆周展开图可近似看成是由4个正六边形与4个正五边形以及2条正六边形的边所构成的图形的对称轴截图形所得的线段AA ',如图Ⅱ,则该足球的体积约为( )参考数据:tan 72 3.1︒≈3 1.7≈,3π≈,222.5506.25=,322.511390.62=.A .35695.31cmB .32847.66cmC .31518.75cmD .31488.85cm【答案】A【详解】设正五边形的边长为a ,则 4.5a =,如下图,在正五边形中,内角为108,边长为4.5,Rt ABC 中,180108108722ACB -∠=-=,tan 72tan 722a AB BC =⋅=,因为在正六边形中,内角为120,边长为4.53a ,所以大圆的周长为()434tan 7224 1.72 3.12 4.567.52aa a +⋅+=⨯+⨯+⨯=,设球的半径为R ,则267.5R π=,可得67.52R π=, 所以,该足球的体积为333334467.522.511390.625695.31cm 33822V R πππ==⋅⋅=≈=.故选:A. 4.若函数()()sin 2f x x ϕ=-在区间(0,)2π上单调递减,则实数ϕ的值可以为( )A .23π B .2π C .3π D .4π 【答案】B【分析】将函数化为()()sin 2f x x ϕ-=-,求出2x ϕ-的范围,再根据正弦函数的单调性列出不等式组,即可得出答案.【详解】解:()()()s sin 22in f x x x ϕϕ=-=--,因为0,2x π⎛⎫∈ ⎪⎝⎭,则()2,x ϕϕπϕ-∈--,又因函数()()sin 2f x x ϕ=-在区间(0,)2π上单调递减,所以22,22k k Z k πϕπππϕπ⎧-≥-+⎪⎪∈⎨⎪-≤+⎪⎩,解得2,2k k Z πϕπ=+∈.当0k =时,2ϕπ=.故选:B. 5.已知椭圆2214x y +=,1F 、2F 分别是椭圆的左、右焦点,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2 B .2,3⎡⎣ C .2,4⎡⎤⎣⎦D .[]1,4【答案】D【分析】计算出12PF PF ⋅的取值范围,结合椭圆的定义可求得1211PF PF +的取值范围. 【详解】对于椭圆2214x y +=,2a =,1b =,3c =根据椭圆的定义可得1224PF PF a +==, 设1PF x =,则24PF x =-,且a c x a c -≤≤+,即2323x ≤≤ 则()()[]221244241,4PF PF x x x x x ⋅=-=-+=--+∈,所以,[]121212121141,4PF PF PF PF PF PF PF PF ++==∈⋅⋅.故选:D. 【点睛】本题考查利用椭圆的定义求解代数式的取值范围,考查计算能力,属于中等题. 6.已知,02πα⎛⎫∈- ⎪⎝⎭,且27cos sin 210αα+=,则2cos 1sin 2αα=+( ) A .1126B .4936 C .14D .136【答案】B【分析】由条件可得212tan 71tan 10αα+=+,结合条件求出1tan 7α=-,将所求化为2222cos 1cos sin 2sin cos 1tan 2tan ααααααα=++++,从而可得答案.【详解】由27cos sin 210αα+=,即222cos 2sin cos 7cos sin 10ααααα+=+即212tan 71tan 10αα+=+,所以27tan 20tan 30αα--=,即()()7tan 1tan 30αα+-= 所以1tan 7α=-或tan 3α=,由,02πα⎛⎫∈- ⎪⎝⎭,所以1tan 7α=-22222cos cos 1149121sin 2cos sin 2sin cos 1tan 2tan 361497ααααααααα====++++++-故选:B7.公元五世纪,数学家祖冲之估计圆周率π的范围是:3.1415926 3.1415927π<<,为纪念祖冲之在圆周率方面的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于3.14的不同数字的个数为( ) A .720 B .1440 C .2280 D .4080【答案】C【分析】以间接法去求解这个排列问题简单快捷. 【详解】一共有7个数字,且其中有两个相同的数字1.这7个数字按题意随机排列,可以得到77222520A A =个不同的数字.当前两位数字为11或12时,得到的数字不大于3.14当前两位数字为11或12时,共可以得到552240A =个不同的数字,则大于3.14的不同数字的个数为25202402280-=故选:C 8.若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b < B .ln b a < C .ln b a < D .ln a b <【答案】D【分析】设切点坐标为00(,)x y ,由切点坐标求出切线方程,代入坐标(,)a b ,关于0x 的方程有两个不同的实数解,变形后转化为直线与函数(构造新函数)图象有两个交点,由导数确定函数的性质后可得.【详解】设切点坐标为00(,)x y ,由于1y x'=, 因此切线方程为0001ln ()y x x x x -=-,又切线过点(,)a b ,则000ln a x b x x --=,001ln a b x x +=+, 设()ln a f x x x =+,函数定义域是(0,)+∞,则直线1y b =+与曲线()ln af x x x=+有两个不同的交点,221()a x a f x x x x-'=-=, 当0a ≤时,()0f x '>恒成立,()f x 在定义域内单调递增,不合题意; 当0a >时,0x a <<时.()0f x '<,()f x 单调递减,x a >时,()0f x '>,()f x 单调递增,所以min ()()ln 1f x f a a ==+,由题意知1ln 1b a +>+,即ln b a >.故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·广东高三月考)若甲组样本数据1x ,2x ,…,n x (数据各不相同)的平均数为2,方差为4,乙组样本数据13x a +,23x a +,…,3n x a +的平均数为4,则下列说法正确的是( ) A .a 的值为-2B .乙组样本数据的方差为36C .两组样本数据的样本中位数一定相同D .两组样本数据的样本极差不同【答案】ABD【解析】由题意可知:324a ⨯+=,故2a =-,故A 正确;乙组样本数据方差为9436⨯=,故B 正确;设甲组样本数据的中位数为i x ,则乙组样本数据的中位数为32i x -,所以两组样本数据的样本中位数不一定相同,故C 错误;甲组数据的极差为max min x x -,则甲组数据的极差为()()()max min max min 32323x x x x ---=-,所以两组样本数据的样本极差不同,故D 正确;故选:ABD10.数学家欧拉于1765年在其著作《三角形中的几何学》首次指出:ABC 的外心O ,重心G ,垂心H ,依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为欧拉线. 若4AB =,2AC =,则下列各式正确的是( )A .20GO GH +=B .4AG BC ⋅= C .6AO BC ⋅=-D .OH OA OB OC =++ 【答案】ACD【分析】根据欧拉线定理可判断A ;利用向量的加、减运算可判断B ;利用向量的数量积可判断C ;利用向量的加法运算以及欧拉线定理可判断D.【详解】A ,由题意可得12GO GH =-,即20GO GH +=,故A 正确;B ,由G 是ABC 的重心可得221111332233AG AM AB AC AB AC ⎛⎫==+=+ ⎪⎝⎭, 所以()()()2211433AG BC AB AC AC AB AC AB ⋅=+⋅-=-=-,故B 错误; C ,过ABC 的外心O 分别作,AB AC 的垂线,垂足为,D E ,如图,易知,D E 分别是,AB AC 的中点,则()AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅ cos cos AO AC OAE AO AB OAD =∠-∠2211622AE AC AD AB AC AB =-=-=-,故C 正确;D ,因为G 是ABC 的重心,所以0GA GB GC ++=,故()()()OA OB OC OG GA OG GB OG GC ++=+++++33OG GA GB GC OG =+++=, 由欧拉线定理可得3OH OG =,所以OH OA OB OC =++,故D 正确.故选:ACD11.已知点A 是圆C :()2211x y ++=上的动点,O 为坐标原点,OA AB ⊥,且||||OA AB =,O ,A ,B 三点顺时针排列,下列选项正确的是( )A .点B 的轨迹方程为()()22112x y -+-= B .||CB 的最大距离为12C .CA CB ⋅21 D .CA CB ⋅的最大值为2 【答案】BD【详解】如图,过O 点作//,OD AB OD AB =且则点()1,0C -,设点()00,A x y ,设xOA α∠=,则2xOD πα∠=-,设||OA a =,所以,0cos x a α=,0sin y a α=,所以,0cos sin 2D x a a y παα⎛⎫=-== ⎪⎝⎭,0sin cos 2D y a a x παα⎛⎫=-=-=- ⎪⎝⎭,即点()00,D y x -,因为()0000,OB OA OD x y y x =+=+-,设点(),B x y ,可得0000x x y y y x =+⎧⎨=-⎩,解得0022x y x x y y -⎧=⎪⎪⎨+⎪=⎪⎩,因为点A 在圆()2211x y ++=上,所以()220011x y ++=, 将0022x y x x y y -⎧=⎪⎪⎨+⎪=⎪⎩代入方程()220011x y ++=可得221122x y x y -+⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭, 整理可得()()22112x y ++-=,所以A 是错的,所以CB 的最大距离为12B 是对的, 设,090CAO θθ︒∠=≤≤,2o ()1||||cos(90)CA CB CA CA AB CA CA AB CA AB ⋅=⋅+=+⋅=+⋅-θ1|OA |sin 12cos sin 1sin 22=+=+=+≤θθθθ,所以CA CB ⋅的最大值为2,D 是对的.故选:BD10.在棱长为1的正方体中,点,分别足,,其中,,则( )A .当时,三棱锥的体积为定值B .当时,点,到平面的距离相等C .当时,存在使得平面D .当时, 【答案】ABD【解析】由即可判断A ;当时,点是的中点可判断B ;建立空间直角坐标系,计算可判断C ;设,求出所需各点坐标,计算可判断D ,进而可得正确选项.【详解】对于A :当时,,此时点位于点处,三棱锥,为定值,点到面的距离为是定值, 所以三棱锥的体积为定值,即三棱锥的体积为定值,故选项A 正确;1111ABCD A B C D -E F AE AB λ=BF BC μ=[]0,1λ=[]0,1μ∈1μ=11A B EF -12λ=A B 1B EF 12μ=λ1BD ⊥1B EF λμ=11A F C E ⊥111111A B EF A B EC C A B E V V V ---==12λ=E AB 110BD BF ⋅≠AE m =110A C E F ⋅=1μ=BF BC =F C 1111A B EF A B EC V V --=11C A B E V -=1111111111222A B ESA B AA =⨯⨯=⨯⨯=C 11A B E 1CB =11A B EC -11A B EF -对于B :当时,点是的中点,所以点,到平面的距离相等,故选项B 正确;对于C :当时,点是的中点,建立如图所示空间直角坐标系,则, ,,,可得,,所以,所以与不垂直,所以不存在使得平面,故选项C 不正确;对于D :设,则,,,所以,,因为,所以,故选项D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数,若,则______.【答案】【分析】本题首先可根据得出,然后根据即可得出结果.【详解】因为,所以,,则,故答案为:.14.函数()2|ln |2f x x x =--+的最大值为___________. 【答案】1ln 2-【分析】由题去绝对值分情况讨论,分别求导求最值,即可求得最大值. 【详解】由题知当1≥x 时,()2ln 2f x x x =--+,∴1()20f x x'=--<∴()f x 在[1,)+∞为减函数,∴max ()(1)0f x f ==; 当01x <<时,()2ln 2f x x x =-++,∴121()2=x f x x x -+'=-+,∴当1(0,)2x ∈时,()0f x '>,当1(,1)2x ∈时,()0f x '<,∴max 1()()1ln 22f x f ==-,综上可知,max ()1ln 2f x =-.故答案为:1ln 2-.12λ=E AB A B 1B EF 12μ=F BC ()1,1,0B ()10,0,1D ()11,1,1B 1,1,02F ⎛⎫⎪⎝⎭()11,1,0BD =--11,0,12B F ⎛⎫=-- ⎪⎝⎭()()()111110101022BD B F ⎛⎫⋅=-⨯-+⨯-+⨯-=≠ ⎪⎝⎭1BD 1B F λ1BD ⊥1B EF AE m =()1,,0E m ()1,1,0F m -()11,0,1A ()10,1,1C ()1,1,1A F m =--()11,1,1C E m =--11110A F C E m m ⋅=-+-+=11A F C E ⊥()3sin 1f x x x =++()2f a =()f a -=0()2f a =3sin 1a a +=()3sin 1f a a a -=--+()2f a =3sin 12a a ++=3sin 1a a +=()()()33sin 1sin 1110f a a a a a -=-+-+=--+=-+=015.如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.【答案】31+【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||3AC R =, 1(31)(||||)22R a AC BC -=-=,31==+c e a .故答案为:31+ 16.九连环是中国的一种古老智力游戏,它环环相扣,趣味无穷.长期以来,这个益智游戏是数学家及现代电子计算机专家们用于教学研究的课题和例子.中国的末代皇帝溥仪(1906–1967)也曾有一个精美的由九个翡翠缳相连的银制的九连环(如图).现假设有n 个圆环,用n a 表示按某种规则解下n 个圆环所需的最小移动次数.已知数列{}n a 满足下列条件:11a =,22a =,122n n n a a --=+()3,n n N*≥∈,记{}na 的前项和为nS,则:(1)9a =________;(2)100S =________.【答案】34110221543-.【分析】分n 为偶数和n 为奇数两种情况,由题中条件,利用叠加法,由等比数列的求和公式,求出数列的通项,即可求出9a ;再由分组求和的方法,即可求出100S . 【详解】(1)当n 为偶数时,113135135324622222222222n n n n n n n n n n n n n a a a a a ------------=+=++=+++=⋅⋅⋅=++++⋅⋅⋅+()()13531221212222222123n n n n n ---+-=+++⋅⋅⋅++==--; 当n 为奇数时,113135135224612222222222n n n n n n n n n n n n n a a a a a ------------=+=++=+++=⋅⋅⋅=++++⋅⋅⋅+()11352121212222121123n n n n n +---+-=+++⋅⋅⋅++==-- ∴()9191213413a +=-= (2)()()100139924100S a a a a a a =++⋅⋅⋅++++⋅⋅⋅+()()()()()()24100351011121212122222233⎡⎤⎡⎤=-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+-⎣⎦⎣⎦ ()()1022345100101112154222222150333-=++++⋅⋅⋅+++-=.故答案为:341;10221543-. 【点睛】求解本题的关键在于根据题中条件,讨论n 为奇数和n 为偶数两种情况,利用叠加法(累加法)求出数列的通项即可;在求数列的和时,可利用分组求和的方法求解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①cos cos a b A B =;②22tan tan a b A B=,这两个条件中任选一个,补充在下面问题中并作答.已知在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c , .(1)判断△ABC 的形状;(2)在(1)的条件下,若5cos A =b =10,AD 为BC 边上的中线,求AD 的长. 【答案】(1)选①,cos cos a b A B =,由正弦定理理sin sin cos cos A BA B=,即tan tan A B =,又,A B 是三角形ABC 内角,所以A B =,△ABC 是等腰三角形;选②,22tan tan a b A B =,由正弦定理得22sin sin tan tan A BA B =,所以sin cos sin cos A A B B =, sin 2sin 2A B =,又,A B 是锐角三角形内角,所以22A B =或22A B π+=,所以A B =或2A B π+=,所以△ABC 是等腰三角形或直角三角形;(2)选①,A B =,则10a b ==,5BD =,52cos 21045AB b A ==⨯= ABD △中,由余弦定理得:2222cos AD AB BD AB BD B=+-⋅225(45)5245565=+-⨯=,65AD =;选②,A B =时同选①得65AD2A B π+=时,5cos A =,则25sin A =tan 2A =,所以220BC AC ==,10CD =, 所以222AD AC CD =+=18.已知等差数列{}n a 为递增数列,且()2,14P a ,()4,14Q a 都在45y x x=+的图像上. (1)求数列{}n a 的通项公式和前n 项和n S(2)设()()11nnn a b n n -=+,求数列{}n b 的前n 项和nT,且1n T n λ<+,求λ取值范围.【答案】(1)2+1=n a n ,2+2n S n n =;(2)()11+1+1nn T n =--;()2-+∞,. 【分析】(1)由已知建立方程组,求得2459a a ==,,再利用等差数列的通项公式和求和公式可求得答案;(2)由(1)得()111+1n n b n n ⎛⎫=- ⎪+⎝⎭,分n 为奇数,n 为偶数两种情况,分别求得n T ,再将不等式等价于()()>11nn λ--+,令()()11nn c n =--+,由数列的单调性可求得答案. (1)解:由题意得224445+1445+14a a a a ⎧=⎪⎪⎨⎪=⎪⎩,即24a a ,是方程4514x x +=的两个根, 即24a a ,是方程()()905x x --=的两个根, 又数列{}n a 为递增数列,解得2459a a ==,, 所以等差数列{}n a 的公差429524242a d a --===--,所以1523a =-=, 所以()3+212+1n a n n =-=,()2132+22n n n n S n n -=+⨯=; (2)解:由(1)得()()()()()()112+1111+111nnn n n a n b n n n n n n --⎛⎫===- ⎪+++⎝⎭,当n 为奇数时,1111111+++++122334+1n T n ⎛⎫⎛⎫⎛⎫=--=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当n 为偶数时,1111111+++++1+22334+1n T n ⎛⎫⎛⎫⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()11+1+1nn T n =--. 由1n T n λ<+ ,即()11+1+11nn n λ--<+,得()()>11n n λ--+,令()()11nn c n =--+,当n 为奇数时,2n c n =--,且135>>>c c c ,当n 为偶数时,n c n =-,且246>>>c c c ,又13c =-,22>3c =--,所以>2λ-,故λ取值范围为()2-+∞,. 19.绿水青山就是金山银山,生态环境日益受大家重视.2021年广州市某公司为了动员职工积极参加植树造林,在3月12日植树节期间开展植树有奖活动,设有甲、乙两个摸奖箱,每位植树者植树每满15棵获得一次甲箱内摸奖机会,植树每满25棵获得一次乙箱内摸奖机会.每箱内各有10个球(这些球除颜色外全相同),甲箱内有红、黄、黑三种颜色的球,其中a 个红球、b 个黄球、5个黑球(*,a b N ∈),乙箱内有4个红球和6个黄球.每次摸出一个球后放回原箱,摸得红球奖100元,黄球奖50元,摸得黑球则没有奖金.(1)经统计,每人的植树棵数X 服从正态分布()20,25N ,现有100位植树者,请估计植树的棵数X 在区间()15,25内的人数(结果四舍五入取整数);(2)某人植树50棵,有两种摸奖方法:方法一:三次甲箱内摸奖机会;方法二:两次乙箱内摸奖机会;请问:这位植树者选哪一种方法所得奖金的期望值较大? 附参考数据:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈.【答案】(1)68人;(2)第二种方法所得奖金期望值大.【分析】(1)根据正态分布三段区间的概率值,求特殊区间概率,进而求得植树在()15,25内的人数.(2)由题设5a b +=,确定甲箱摸奖的概率,注意参数的取值范围求期望值的最值,再由乙箱摸奖的概率求期望值,比较它们的大小.【详解】(1)由题设,20,5μσ==,而(1525)()0.6827P X P X μσμσ<<=-<<+≈, ∴100位植树者中植树的棵数在()15,25内的人数为1000.682768⨯≈人. (2)摸甲箱:由题设知5a b +=,故中100元、50元、没中奖的概率分别为10a 、10b 、12; 摸乙箱:中100元、50元的概率分别为25、35,∴甲箱内一次摸奖,奖金可能值为{0,50,100}X =,且1(0)2P X ==,(50)10b P X ==,(100)10a P X ==,则1()05010051025521010b aE X b a a =⨯+⨯+⨯=+=+, ∴三次摸奖的期望为3()7515E X a =+,而a 可能取值为{1,2,3,4},即3()135E X ≤. 两次乙箱内摸奖,所得奖金可能值为{100,150,200}X =,22239(100)()525P X C ===,122312(150)()()5525P X C ===,22224(200)()525P X C ===,此时,期望奖金为19124()100150200140252525E X =⨯+⨯+⨯=元. 综上,13()135()140E X E X ≤<=,故第二种方案摸奖期望值大.20.如图,在直三棱柱111ABC A B C -中,13AB BC AA ===,AC 33=F 为棱1BB 上一点,1BF =,连接AF ,1C F .(1)证明:平面1AC F ⊥平面11BCC B ;(2)求平面1AC F 与平面11AA B B 所成锐二面角的余弦值.【答案】(1)证明见解析 39【分析】(1)作出辅助线,由相似,余弦定理和勾股定理逆定理得到线线垂直,进而证明线面垂直,面面垂直;(2)建立空间直角坐标系,利用空间向量进行求解.(1)如图,延长1C F 和CB 的延长线相交于点E ,连接AE ,则AE 为平面1AC F 与底面ABC 的交线,由已知得,12B F BF =,11B C F BEF ∽△△,所以32BE =,由AB 、BC 的长都为3,AC 的长为33120ABC ∠=︒,所以60ABE ∠=︒, 在三角形ABE 中,由余弦定理,得22332cos602AE AB BE AB BE =+-⋅⋅︒, 所以222AB AE BE =+,所以AE BE ⊥,即AE CE ⊥,又111ABC A B C -是直三棱柱,故1CC ⊥平面ABC ,又AE ⊂平面ABC ,所以1CC AE ⊥,因为1CE CC C ⋂=,所以AE ⊥平面11BCC B , 又AE ⊂平面1AC F ,所以平面1AC F ⊥平面11BCC B ;(2)以E 为坐标原点,EC ,EA 所在直线分别为x 轴、y 轴,平行于1BB 的直线为z 轴建立空间直角坐标系,则()0,0,0E ,33A ⎛⎫ ⎪ ⎪⎝⎭,19,0,32C ⎛⎫ ⎪⎝⎭,33EA ⎛⎫= ⎪ ⎪⎝⎭,19,0,32EC ⎛⎫= ⎪⎝⎭. 设平面1EAC 的法向量为(),,n p q r =,则1330,2930,2n EA n EC p r ⎧⋅==⎪⎪⎨⎪⋅=+=⎪⎩即0,320,q p r =⎧⎨+=⎩不妨设()2,0,3n =-,由(1)得3,0,02B ⎛⎫⎪⎝⎭,13,0,32B ⎛⎫ ⎪⎝⎭,333,22BA ⎛⎫=- ⎪ ⎪⎝⎭,()10,0,3BB =, 设平面1ABB 的法向量为()1,,n x y z =,则1113330,2230,n BA x y n BB z ⎧⋅=-+=⎪⎨⎪⋅==⎩即30,0,x z ⎧-+=⎪⎨=⎪⎩不妨设()13,1,0n =,设平面1AC F 与平面11AA B B 所成锐二面角为θ,则1139cos 13n n n nθ⋅==⋅, 所以平面1AC F 与平面11AA B B 39 21.设点(1,0)F ,动圆经过点F 且和直线1x =-相切,记动圆的圆心P 的轨迹为曲线E . (1)求曲线E 的方程;(2)过点F 的直线交曲线E 于A ,B 两点,另一条与直线AB 平行的直线交x 轴于点M ,交y 轴于点N ,若NAB △是以点N 为直角顶点的等腰直角三角形,求点M 的横坐标.【答案】(1)24y x = (2)3(13)2- 【分析】(1)根据抛物线的定义可得抛物线方程;(2)可设直线AB 的方程为1x my =+,联立抛物线方程,得到AB 中点C 坐标以及||AB ,再根据条件可知NC AB ⊥,从而求得点N 坐标,利用1||||2NC AB =,结合直线MN 的方程即可求得结果.(1)由题意,点P 到点F 的距离等于到直线1x =-的距离,所以点P 的轨迹是以()1,0F 为焦点,直线1x =-为准线的抛物线,2p = , 故曲线E 的方程是24y x =.(2)显然,直线AB 不与x 轴重合,设直线AB 的方程为1x my =+,与E 联立得:2440y my --= 设()()1122,,,A x y B x y ,则121244y y m y y +=⎧⎨=-⎩ 则1222y y m +=,2121212y y m m ++=+, 即AB 中点C 坐标为()221,2m m +,()()()21212||11444AB x x m y y m =+++=++=+由题意△NAB 是以点N 为直角顶点的等腰直角三角形,故NC AB ⊥,过C 与AB 垂直的直线,其方程为()2212y m x m m =---+,令0x =,得323y m m =+,故点N 坐标为()30,23m m +,又21||||222NC AB m ==+)22212122m m m ++=+, 21m t +=,则()22212t t t -=,由1t ≥,解得132t =,21312m +=,解得232m =又直线MN 的方程为3123y x m m m=++,令0y =,得到点M 横坐标为423(13)232M x m m -=--=. 22.已知函数()ln af x x x=+.(1)讨论()f x 的单调性;(2)若()()()12122f x f x x x ==≠,证明:212e a x x a <<.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数()f x 的导函数()f x ',再讨论()0f x '>或()0f x '<即可作答.(2)由(1)求出()0,e a ∈,把所证不等式分成两部分分别作等价变形,构造函数,利用导数探讨函数的单调性推理作答. (1)函数()ln a f x x x =+的定义域为()0,∞+,求导得:()2x af x x-'=, 当0a ≤时,()0f x '>恒成立,则()f x 在()0,∞+上单调递增,当0a >时,()0f x '<的解集为()0,a ,()0f x '>的解集为(),a +∞, 即()f x 的单调增区间为(),a +∞,单调减区间为()0,a , 所以,当0a ≤时,()f x 在()0,∞+上单调递增,当0a >时,()f x 在(),a +∞上单调递增,在()0,a 上单调递减.(2)因为()()()12122f x f x x x ==≠,由(1)知,0a >,且()()min ln 12f x f a a ==+<,解得()0,e a ∈,设12x x <,则120x a x <<<,要证212x x a >,即证221a x a x >>,即证()221a f x f x ⎛⎫> ⎪⎝⎭, 即证()211a f x f x ⎛⎫> ⎪⎝⎭,设()()()2()2ln 2ln ,0,a a xg x f x f x a x a x x a =-=+--∈,则()()222210x a a g x x x a ax --'=--=<,即()g x 在()0,a 上单调递减,有()()0g x g a >=, 即()()()20,a f x f x a x ⎛⎫>∈ ⎪⎝⎭,则()211a f x f x ⎛⎫> ⎪⎝⎭成立,因此212x x a >成立,要证12e x x a <,即证21e a a x x <<,即证()21e af x f x ⎛⎫< ⎪⎝⎭,即证()11e a f x f x ⎛⎫< ⎪⎝⎭,即证()1112ln ln 1,0,ex x a x a <-++∈,而1111ln 2(2ln )a x a x x x +=⇔=-,即证()()1111ln 2ln ,0,ex x x a <+-∈, 令()()()ln 2ln ,0,e ex h x x x =+-∈,则()()112ln e h x x x '=-+-, 设()()()2ln ,0,e x x x x ϕ=-∈,求导得()1ln 0x x ϕ'=->,即()x ϕ在()0,e 上单调递增,则有()()0e e x ϕϕ<<=,即()0h x '<,()h x 在()0,e 上单调递减,而(0,)(0,e)a ⊆,当()0,x a ∈时,()()()e 1h x h a h >>=,则当()0,x a ∈时,()1ln 2ln exx <+-成立,故有12e x x a <成立,所以,212e a x x a <<。

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)2022年普通高等学校招生全国统一考试全真模拟测试(一)-数学本试卷共4页,22小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,先划掉原来的答案,然后再写上新答案。

不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A = \{x \in R | 2\pi \leq x < 4\pi\}则 $A$ 中元素个数为()A。

2B。

3C。

4D。

52.设复数 $z$ 满足 $|z-1-2i|=1$,则 $z$ 的实部为()A。

1B。

-1C。

2D。

-23.已知随机变量 $X$ 的概率密度函数为f(x) = \begin{cases}kx^2.& 0 \leq x \leq 2 \\0.& \text{其他}end{cases}则 $P\{X>1\}$ 的值为()A。

$\frac{1}{3}$B。

$\frac{4}{9}$C。

$\frac{7}{9}$D。

$\frac{8}{9}$4.若一圆弧的长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数是()A。

$\frac{\pi}{3}$B。

$\frac{\pi}{2}$C。

$\frac{2\pi}{3}$D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高考数学第一次模拟试卷附答案一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .0.4 2.3y x =+ B .2 2.4y x =- C .29.5y x =-+D .0.3 4.4y x =-+4.在复平面内,O 为原点,向量OA 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB 对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+5.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的6.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2B .3C .5D .68.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种 B .10种C .18种D .20种9.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .10.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 A .12B .512C .14D .1611.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁12.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.17.函数()f x =________.18.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 19.已知1OA =,3OB =0OA OB •=,点C 在AOB ∠内,且AOC 30∠=,设OC mOA nOB =+,(,)m n R ∈,则mn=__________. 20.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.三、解答题21.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.22.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.23.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.24.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑25.已知(3cos ,cos )a x x =,(sin ,cos )b x x =,函数()f x a b =⋅.(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .3.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.4.A解析:A 【解析】 【分析】首先根据向量OA 对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -, 所以向量OB 对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.5.D解析:D 【解析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.B【解析】【分析】【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C41=4种方法.所以不同的赠送方法共有6+4=10(种).9.A解析:A【解析】【分析】确定函数在定义域内的单调性,计算1x=时的函数值可排除三个选项.【详解】x>时,函数为减函数,排除B,10x-<<时,函数也是减函数,排除D,又1x=时,1ln20y=->,排除C,只有A可满足.故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.10.B解析:B【解析】记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=23×14+13×34=512故选B.11.C解析:C【解析】【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.【详解】由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.12.B解析:B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<15.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去 解析:3【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】 【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。

相关文档
最新文档