工程数学 场论

合集下载

工程数学系列课---矢量分析与场论

工程数学系列课---矢量分析与场论

工程数学系列课---矢量分析与场论《矢量分析与场论》教学大纲Vector Analysis and Field Theory课程编号:1000120 课程类别:必修课适用专业:电气专业本科学时:36学分:3 教研室主任:刘照升大纲执笔人:王佳秋大纲审批人:一、本课程的教学目的、性质和任务《矢量分析与场论》是高等院校机电等专业一门重要的技术基础课程,也是一门工具课程。

本课程的任务是要求学生掌握矢量分析与场论方面的有关基本理论,并应用所学知识解决所从事专业及在科学、工程技术中实际问题的能力《矢量分析与场论》的主要内容:矢量分析、场论、哈米尔顿算子。

二、本课程的基本要求(一)矢量分析1.理解矢性函数、矢端曲线的概念;2.了解矢性函数极限及连续性概念;3.掌握矢性函数的导数与积分的求法,了解导矢的几何意义与物理意义;4.掌握矢性函数的积分求法(二)场论1.理解场的概念、数量场的等值面及矢量场的矢量线的概念;2.掌握数量场的梯度的物理意义,掌握梯度的求法及与方向导数的关系;3.掌握矢量场的散度的物理意义,掌握散度的求法及与通量的关系;4.掌握矢量场的旋度的物理意义,掌握旋度的求法及与环量的关系;5.知道几种重要的矢量场(有势场、管形场、调和场)。

(三)哈米尔顿算子∇1.掌握哈米尔顿算子《W.R.Hamilton》的记号及运算规则;2.能使用∇算子进行一些简单的计算及证明。

三、本课程与有其它课程的关系本课程是多元微积分学的延伸与高等数学、线性代数、复变函数等课程具有密切的关系,它是高等工科学校机电专业一门重要的技术基础课程及工具课程,通过本课程的学习,使学生掌握矢量分析与场论方面的有关知识及基本方法,为学好后继课程:电工学、电磁学、电动力学、流体力学、热力学的学习奠定良好的基础。

四、本课程的教学内容重点、难点1.第一章的重点是掌握矢性函数的概念及矢性函数极限与连续性概念,掌握矢性函数导数与微分、积分的求法。

工程数学场论

工程数学场论

目录 上页 下页 返回 结束
3.矢量场的矢量线 矢量线: 设 C 为矢量场
中的曲线,如果C
上每一点对应的矢量 都与 C 相切,则称之为矢量线.

为曲线上一点,
r OM xi yj zk
d r dxi dyj dzk
A
因为 d r A , 所以矢量线满足
dx dy dz Ax Ay Az
工程数学---------矢量分析与场论
目录 上页 下页 返回 结束
第二节 数量场的方向导数与梯度
1.方向导数
定义1:设
M
是数量场u
0
u(M
)
中的一点,若沿方向 l
l
lim u lim u(M ) u(M 0 )
M M0
M M0
M0M
存在,则称此极限为 在点
M M0
处沿 l 方向的方向导数,记作
A d S 0
S
推论3:若在矢量场 A 内某些点上有div A 0,或
div A不存在,而在其他点上div A 0,则穿出包围
这些点的任一封闭曲面的通量都相等.
工程数学---------矢量分析与场论
目录 上页 下页 返回 结束
例2. 求矢量场
A (3x2 2yz)i ( y3 yz2 ) j (xyz 3xz2 ) k
div A P Q R A x y z
证明:由奥-高公式
A d S P d y d z Q d z d x Rdx d y
S
S
(
P x
Q y
R z
)
d
v
工程数学---------矢量分析与场论
目录 上页 下页 返回 结束
又由中值定理得

场论知识点整理

场论知识点整理

*1.【圆函数】e (φ)=cos φi +sin φj .*2.a.弧长的微分ds =以点M 为界,当ds 位于s 增大一方时取正号;反之取负号.b.矢性函数的微分的模,等于(其矢端曲线的)弧微分的绝对值.矢性函数(其矢端曲线的)弧长s 的导数d r /ds 在几何上为一切单位矢量,恒指向s 增大的一方.+3.证明||.ds d d r t dt=证,d dx dy dz dtdt dtr i j k dt =++d dt r =由于ds 与dt 有相同的符号,故有.ds d dt dt r ===由此可知:矢端曲线的切向单位矢量.d d ds d d dt dt dt dtd r s r r r ==*4.【二重矢积】公式:a ×(b ×c )=(a ·c )b -(a ·b )c .+5.矢性函数A (t)的模不变的充要条件是.d d A A t•=0证假定|A |=常数,则有A 2=|A |2=常数.两端对t 求导[左端用导数公式],就得到.d d A A t •=0反之,若有.d d A A t •=0则有,d dt A =20从而有A 2=|A |2=常数.所有有|A |=常数.定常矢量A (t)与其导矢相互垂直.*6.''.A B A dt t B B A d ×=×+×∫∫''.A B A dt t B B A d •=•−•∫∫+7.一质点沿曲线r =rcos φi +rsin φj 运动,其中r,φ均为时间t 的函数.求速度v 在矢径方向及其垂直方向上的投影v r 和v φ.解将r 写成r =r e (φ),则有()().d dr d r dt dt v d r e e t ϕϕϕ==+1由此可知:,.r dr d v v r dt dtϕϕ==[使用圆函数e (φ),则e (φ)及e 1(φ)之方向即为矢径方向及与之垂直的方向.]*8.【矢量线】A =A x i +A y j +A z k 为单值、连续且有一阶连续导数。

考研工程数学知识点梳理

考研工程数学知识点梳理

考研工程数学知识点梳理一、数列与数学归纳法数列的概念与性质等差数列与等差数列的通项公式等比数列与等比数列的通项公式数学归纳法的基本思想与应用二、极限与连续函数函数极限的概念与性质极限的四则运算法则无穷大与无穷小连续函数与间断点利用极限计算函数的连续性与间断点初等函数的连续性与间断点三、导数与微分函数的导数概念与性质基本初等函数的导数公式导数的四则运算法则高阶导数与莱布尼兹公式隐函数求导参数方程求导微分的概念与性质高阶微分与泰勒展开四、定积分与不定积分定积分的概念与性质定积分的计算与应用牛顿—莱布尼兹公式不定积分的概念与性质不定积分的基本公式换元积分法分部积分法定积分与不定积分的关系五、微分方程常微分方程的基本概念与性质一阶常微分方程解法可分离变量方程一阶线性齐次方程与非齐次方程二阶常系数齐次线性方程解法二阶常系数非齐次线性方程解法常系数线性微分方程组应用问题的建模与求解六、无穷级数与幂级数数项级数的基本概念与性质正项级数的审敛法交错级数与绝对收敛性函数项级数与幂级数幂级数的收敛半径与收敛区间幂级数的逐项求导与逐项积分幂级数的和函数七、多元函数微分学二元函数的极限与连续性偏导数的定义与计算全微分的概念与计算多元函数的隐函数求导多元函数的极值与条件极值多元复合函数的导数多元函数的泰勒公式八、空间解析几何空间点、直线、平面的基本性质空间直线与平面的位置关系空间曲线与曲面的方程与性质曲线的切向量与法平面柱面与曲面的求交与切线空间曲线与曲面的参数方程九、多元函数积分学二重积分的概念与性质二重积分的计算方法三重积分与累次积分三重积分的计算方法曲线积分与曲面积分格林公式与高斯公式应用问题的建模与求解总结:本文对考研工程数学的知识点进行了梳理,包括数列与数学归纳法、极限与连续函数、导数与微分、定积分与不定积分、微分方程、无穷级数与幂级数、多元函数微分学、空间解析几何和多元函数积分学等内容。

每个知识点都有相应的概念、性质、公式和应用问题的求解方法,在文章中运用合适的格式进行叙述,使读者能够清晰地理解每个知识点的要点和重点。

场论_4

场论_4

2010年9月10日星期五
§4 几种重要的矢量场 单连域与复连域的概念: 一、单连域与复连域的概念:
( 1 )如果在一个空间区域G内的任何一条简单闭曲线l ,都 可以作出一个以l为边界且全部位于区域G内的曲面 S ,则 称此区域G为线单连域;否则,称为线复连域。例如空心球 体是线单连域,而环面体则为线复连域。 ( 2 )如果在一个空间区域G内的任一简单闭曲面S所包围的 全部点,都在区域G内(即S内没有洞),则称此区域G为面 单连域;否则,称为面复连域。例如环面体是面单连域, 而空心球体则为面复连域。 有许多空间区域既是线单 连域又是面单连域。例如 实心的球体、椭球体、圆 柱体,平行六面体等等。
STE_A.J.YUE
西安电子科技大学通信工程学院
14
§4 几种重要的矢量场
定理2说明,管形场中穿过同一个矢量管的所有横断面的 通量都相等,即为一常数,称其为此矢量管的强度。 比如在无源的流速场中,流入某个矢量管的流量和从管 内流出的流量是相等的。因此,流体在矢量管内流动,就 如同在真正的管子内流动一样,管形场因而得名。 定理3 定理 在面单连域内矢量场A为管形场的充要条件是:它 为另一个矢量场 B 的旋度场,即 A = rot B , 满足此式的矢量B,称为矢量场 A 的矢势量。
STE_A.J.YUE
西安电子科技大学通信工程学院
15
§4 几种重要的矢量场
四、调和场 如果在矢量场A中恒有divA = 0 与rot A = 0 ,则称此矢 量场为调和场。调和场是指既无源又无旋的矢量场。 例如位于原点的点电荷q所产生的静电场中,除去点电荷 所在的原点外,有 divD = 0 , rotD = 0 , 所以,电位移矢量 D 在除去原点外的区域内形成一个调和场。 电场强度 E 在除去原点外的区域内也形成一个调和场。

1-1复数及其运算

1-1复数及其运算
2
复变函数的应用背景
M.Kline指出 指出: 世界著名数学家 M.Kline指出:19 世纪最独特的创造是复变函数理论。 世纪最独特的创造是复变函数理论。 象微积分的直接扩展统治了18世纪 象微积分的直接扩展统治了18世纪 18 那样,该数学分支几乎统治了19世纪。 19世纪 那样,该数学分支几乎统治了19世纪。 它曾被称为这个世纪的数学享受, 它曾被称为这个世纪的数学享受, 也曾作为抽象科学中最和谐的理论。 也曾作为抽象科学中最和谐的理论。
Argz = arg z + 2kπ
k = 0, ± 1, ± 2,L
如何确定辐角? 已知复数 z = x + iy , 如何确定辐角?
24
z ≠ 0 辐角的主值
y x > 0, arctan x , ± π, x = 0, y ≠ 0, 2 arg z = arctan y ± π, x < 0, y ≠ 0, x π, x < 0, y = 0.
֠ 一般, 任意两个复数不能比较大小。 一般, 任意两个复数不能比较大小。
13
(3 + 4i )( −2 + 5i ) 求 Re z , 例1 设 z = 3i
z = ( −6 − 20) + (15 − 8)i = 7 + 26 i 解
3i 3 3 7 Re z = , 3
zz = (Re z )2 + (Im z )2 49 676 725 = + = 9 9 9
(imaginary part)
当 x = 0 , y ≠ 0 时 , z = iy 称为纯虚数 ; 当 y = 0 时 , z = x + 0 i , 我们把它看作实数 x .

第03讲预备知识-场论1

第03讲预备知识-场论1

e3
顺时针为负
置换符号说明: i、j 、k取值不同值时, εijk取1 或-1(6个),其余分量(21个)为零。即:
e2 e1 逆时针为正
ε 123 = ε 231 = ε 312 = 1
ε 132 = ε 213 = ε 321 = −1
置换法则:任意2个自由指标对换后差一个负号 正负取值规律:按右图中,逆时针取值为正,顺时针取值为负。
a = ax i + a y j + az k
任意一点M的矢径 矢径微分
r = xi + yj + z k
M z y o x
a
dr = dxi + dyj + dzk
dr × a = 0
r
叉积为零:
这就是向量线的微分方程(Differential Equation) 在直角坐标系(System Of Rectangular Coordinates)当中表示为
可以列表表示:
e1
′ e1
e2
e3
α 11 α12 α13 α 21 α22 α23
α 31 α 32 α 33
ei′ = α ij e j ei = α ji e ′j
e′ 2
′ e3
上述关系可简写为:
同理,老坐标的单位向量可用新坐标的单位向量表示:
根据上述单位向量的性质和关系可导出:
ei ⋅ e j = e′ ⋅ e′j i
a ⋅ bc = (a ⋅ b)c = (b ⋅ a )c = c (a ⋅ b)
ab ⋅ cd = a (b ⋅ c )d = (b ⋅ c )ad = ad (c ⋅ b) c ⋅ ab ⋅ d = (c ⋅ a )(b ⋅ d ) = (b ⋅ d )(c ⋅ a )

工程数知识点总结

工程数知识点总结

工程数知识点总结工程数学是工程领域中的一门基础学科,它是数学的一个分支,旨在为工程问题建立数学模型,并使用数学方法解决工程中的问题。

工程数学的研究内容非常广泛,包括微积分、线性代数、概率统计、离散数学等多个方面的知识。

本文将从工程数学的基本概念和基本原理出发,系统地介绍工程数学的各个知识点。

一、微积分微积分是工程数学中最重要的一个分支,它是研究函数的极限、导数、积分和级数的数学方法。

在工程领域中,微积分被广泛应用于求解各种问题,包括曲线的长度、曲线下面积、物体的体积和表面积、动力学分析、电路分析等。

因此,对微积分的学习是工程学生的必修课程。

1.1 函数的极限与连续性几乎所有的微积分知识都是建立在函数的极限和连续性基础上的。

函数的极限是描述函数在某一点附近的变化趋势,它是微积分的基本概念。

函数在某一点处的极限存在的充分必要条件是函数在该点处连续。

因此,函数的连续性也是微积分中的重要内容。

1.2 导数与微分导数是描述函数在某一点处的变化率,它是微积分的重要概念。

在工程中,导数被广泛应用于求解问题的最优解,如最小化成本、最大化收益等。

微分是导数的一种近似表达,它被应用在函数近似和微分方程的求解中。

1.3 积分与不定积分积分是描述函数下方的面积,它是微积分的另一重要概念。

在工程领域中,积分被广泛应用于求解曲线下的面积、物体的体积和表面积等。

不定积分是积分的一种形式,它是积分的反运算,常用于求解不定积分方程。

1.4 微分方程微分方程是描述自变量和因变量及其导数之间关系的方程,它是微积分在实际问题中的应用。

在工程领域中,微分方程被广泛应用于描述动力学系统、电路系统、热传导系统、弹性系统等,因此它是工程数学中非常重要的知识点。

二、线性代数线性代数是研究向量空间和线性变换的数学方法,它是工程数学中的另一个重要分支。

在工程问题中,线性代数被广泛应用于解决线性方程组、矩阵运算、特征值和特征向量等问题,因此对线性代数的学习也是工程学生的必修课程。

工程数学知识点(简版).docx

工程数学知识点(简版).docx

工程数学知识点第一篇线性代数第1章行列式1.二阶、三阶行列式的计算F 22.行列式的性质(转置,换行,数乘,求利数乘求和)P3, P4, P52—-3(2)3.行列式展开(代数余子式)P74.利用性质及行列式展开法则计算行列式(造零降阶法)5.字母型行列式计算(爪型)P53——5 (2)6.矩阵的定义、矩阵的行列式的定义及矩阵与行列式的区别7.矩阵的运算I加减P20、数乘P21、乘法P22、转置P26、方阵的幕、乘法不滅足交疾卿消去律)(枫次口)8.特殊的矩阵(对角、数量、单位矩阵(E)、三角形矩阵)9.矩阵的初等变换(三种)、行阶梯形、行最简形10.逆矩阵的定义、运算性质11.伴随矩阵P3812.利用初等变换求逆矩阵—P44例31 (两阶更简单)13.矩阵的秩的概念及利用初等变换求矩阵的秩第2章线性方程组1.线性方程组的求解〈分非齐次的和齐忧扪P65例3、例4第3章特征值的求解(特征向量不作要求)P89例1笫二篇概率论第4章概率的基木概念及计算1.基本概念:必然现象、随机现象、随机试验、样本空间、样本点、随机事件(事件)、基本事件(样本点)、不可能事件、必然事件、事件的包含与相等、和(并)事件、积(交)事件、互不相容(互斥)的事件、逆事件、频率、概率、概率的可加性(互不和容)、概率的加法公式(相容)、古典(等可能)概型P130、放回抽样方式、不放回抽样方式P132——例13、事件相互独立、条件概率P135引例2、基本公式:n概率的可加性(互不相容)P(£U舛…U A”)=£P(4)概率的加法公式(相容)P (AU B) = P (A) + P(B)- P(AB)击落飞机问题概率的乘法公式P (AB )= P (B )P (A/B )事件A 和B 独立,妙歹P (AB ) = P (A )P (B )3、基本结论:当事件A 和B 相互独立时,我们可以证明,事件亦相互独立。

第5章随机变量1、基本概念:随机变量、离散型和连续型随机变量、离散型随机变量的概率分布律、概率分布函数(F (x ) = P{X5x},-ooVxv+oo )、连续型随机变量的 概率密度函数(密度函数或密度)、分布函数6P{X<x} = F(x) = J v /(zM-oo<x<+oo , P{X>x} = l-P{X<x} ; P158、P161——例20、随机变量的独立、随机变量的函数及其分布(P192 定理)2、 基本公式:六种分布的分布律或概率密度函数3、基本结论:连续型随机变量在某一点的概率为0,即P{X=x}=0 第6章 随机变量的数字特征、几个极限定理1、基本概念:痔散劉口连续型随机变量的数学期望PL90、方差P 恢 及其性 质、随机变量函数的数学期望P195——例12、k 阶(原点)矩、k 阶中心 矩 2、基木公式:(1)数学期望(平均值、期望值、均值人1) E(X) = £xf{X =兀} = £壬口,E(X) = ^2 xf {x)dx /=l i=l f2 ) Y = g(X\E (y )= E(g(X)) = Yg(Xi )Pi ,E(Y) = E(g(X))=匚g (兀)代x)必Z=1 YE(C) = C, E(CX) = CE(X),E(X + 丫)二 E(X) + E(Y),E(XY) = E(X)E(Y)(X, 丫独立)(2)方差:1) D (X) = E[X-E(X)]2=£x-E(X)]2p=匚[兀—E(X)]2/(Q 心i=l f服从正态分布的随机变量的概率计算P165 例23、例25D (C )=o,o (cx )= C 2D (X ),o (x + y )= D (X )+o (y )(x, 丫独立) (3)标准差(均方差):EX ) = JD (X )(与随机变量有相同的量纲) 3、基本结论:(1) 0-1 (p )分布:(P151 表格形式)P{X=k} = p k (\-p )[-\k = ^\ E(X) = p , D(X) = pq = p(l_p)(2) n 重贝努里试验、二项分布(b(n,p)):p[X=k} = C^p k (\-p)n 'k,k = 0,1,2,…,M P153 ——例 10 E(X) = np , D(X) = npq - np(\ - p)(3) 泊松公布(Poisson 龙(2)): P{X = £} = ・一K = 0丄2,… k\ E(X) = a, D(X) = A***在实际计算中,当n >10,p<0」时,我们有如下的泊松近似公式E(X) = “,D(X) = CT 2,(T (X) =(T 1 上(7)标准正态分布(N0角):(p{x )^-=e \-00<%<+00,①(兀)+①(_尢)=1yjl/l (5)均匀分布 5,b )): /(x)= 1 b-a 0 a<x<b ,F(x)= 其它 x-a b-a x<a a <x<b x>b(6)正态分布 (N(“Q 2)): /(x) 1y/27T (T (4)指数分布(E(/t),A>0): f(x) =p, F(x) = x<0 1-e~Ax 0 x>0 x<0(8) n 个相互独立的正态随机变量的线性函数述是服从正态分布(P202)第三篇数理统计第7章数理统计的基本概念1、 基本概念:总体(母体)、个体、样本(子样)、样本观测值(实现)、简单 随机样本(随机性、独立同分布性)、统计量的判断P218、统计量的观测值、 抽样分布2、 基本公式:(1) 样本平均值:x=-Yx i(2) 样本方差:s 2 =-Y (X i -X )2 =-^—(YX i 2 -nX 2)n — 1 匸] n — l /=i (3) 样本标准差:s =1 ”(4)样本k 阶原点矩:人=一£X :,k 八2 (5)样本k 阶中心矩:B 严一工(X 厂戈Y,k = \,2,…53、基本结论:设X 〜N (O ,I ),X 「X2,・・・X ”,为X 的一个样本,它们的平方各也是 一个随机变量,记才=X : + X ;,+・・・+ X :,则才〜X \ri )设X 〜), “和,已知,X|, X?,…X”,为X 的一个样本,2 于是于〜叽),曰,2,..“则有辛宁)〜以)• (3)若力2〜力2⑺),则E (才)二仏D (力2 )二2n才分布的可加性:若};〜/("),岭〜才(“2),且片与冬独立, 则W+E 〜力2(厲+$)y(5) 定理3:若X 〜N (O,1),Y 〜才(心且X 与Y 独立,则-r (/?)y/Y/n(6) 定理4:若X 〜才(加,Y 〜力2何,且x 与Y 独立,贝怀=兰少.〜F ("〃)Yin(7) 定理5:若Xi ,X2,・・・Xn 为总体N (“Q 2)的一个样本,则样本均值X-N(1) 定理2: P221 例 1(jU,(y2/n)若X] ,X 2,••-X”为正态总体N(//Q 2 )的一个样本,则对于样本 均值尢和样本方差严有(8) 定理6: (1 mO51 2相互独立(2) ("-1严 ~力2(”_1)(3) £(S 2) = a 2,D(S 2) = —n-\若X\,X“…X”为正态总体N(“Q 2 )的一个样本,则 定理 7: X-/A ( n吋心)若乂皿“…乂珂和也,…匕2分别为总体N (耳,于)和川(〃2&)的(10) 定理&相互独立的样本,样本均值分别为壬和习样本方差分别为S :和S ;$2 二(厲-1)S ; +(〃2 -1)S ;" q + § _ 2 设x…x 2,••-X 叭和齐必,…人分别为总体N (角,于)和"(“2 Q )的(11) 定理9:相互独立的样木,样木方差分别为S :和S ;,o2 2贝IJ 诂灼~弘厂1”一1)S 2^11 工(12) Z 分布:69(x) = /— e 2 — oovxv+ooZ 的上侧 a 分位点 Z/ P{Y>b} =「f(y)dy = a,b[]z f/Z 的下侧a 分位点Z\y :P{Y<a} = J ; f{y)dy =久或 P{ Y >4 =厂 fWy = i~^aD £z 的双侧G 分位点佥/2,Z,-a/2:P{a<Y <b} = ^ f (y )dy = l-a,aU 乙如=S ,加(9) 2 则(1 )X-y~AT (^-//2A+处)或[/ = (2)当材未知,(乂 仏)其屮(13)才⑺)分布:才⑺的上侧G分位点力;⑺):P{Y >/?} =「/(刃心=%加龙:(72)X2 S)的卜侧。

1第一章-场论与张量基本知识

1第一章-场论与张量基本知识

(r), a(r)
1.1 标量、矢量、场
场的几何表示
标量场可用函数等值面(线)来表示。 可直观看出函数值的大小分布,以及变 化快慢
矢量场可用矢量线来表示。 任一点的矢量方向可由矢量线的切线方 向定出;也可以从矢量线的疏密程度估 计矢量在各点的大小。
1.2 标量场的梯度
方向导数(Directional Gradient)
1. 如果一个方程式或表达式的一项中,一种下标只出现一次,则 称之为自由指标,自由指标在表达式或方程的每一项中必须只 出现一次。 2. 如果在一个表达式或方程的一项中,一种指标正好出现两次, 则称之为哑指标,它表示从1到3求和。哑指标在其他任何项中 可以刚好出现两次,也可以不出现。 3. 如果在一个表达式或方程中的一项中,一种指标出现的次数多 于两次,则是错误的。
2 3
2
ij ij ij ij
i 1 j 1
3
3
1111 1212 1313 21 21 22 22 23 23 31 31 32 32 33 33
1.4 张量表示法
自由指标: 定义:凡在同一项内不重复出现的指标。如
i j k x y z
是一个矢性微分算子,即在运算中具有矢量和微分的双重性质, 其运算规则是:
u u u u i j k x y z
Ay Ax A A i j z k x y z
Az Ay Ax Az Ay Ax A y z i z x j x y k
2 ( ) ( ),ij xi x j
uk ,ij
2uk xi x j
1.5 坐标变换与张量定义

数学分析22.4场论初步(含习题及参考答案)

数学分析22.4场论初步(含习题及参考答案)

第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。

工程数学知识要点

工程数学知识要点

《工程数学》知识要点
1.复变函数的基本概念及基本计算,初等函数计算
2.柯西-古萨定理及推广和柯西积分公式及其推论的应用(积分计算)
3.解析函数的泰勒展式与洛朗展式计算,收敛范围计算
4.孤立奇点的留数及计算
5.傅氏变换的概念、单位脉冲函数及其傅里叶变换性质,简单计算
6.拉氏变换(含正变换、逆变换)的概念、性质及基本计算与应用
7.古典概率基本计算(条件概率,独立性概念及应用,全概率公式及贝叶斯公式)
8.随机变量(分布函数,二项分布,泊松分布,均匀分布,正态分布相关性质及应用),二维随机向量的基本概念与基本计算
10.期望与方差的基本概念与计算,常用分布的期望与方差,以及基本应用
11.大数定律与中心极限定理的计算和应用
题型:填空题(共5小题,每个3分,共15分)《复变函数与积分变换》3小题,《概率》2小题
计算题:《复变函数与积分变换》4题
《概率论》3题
一共8大题。

场论基本公式

场论基本公式
4
4
5
定理 1 (Green公式)
D R2为平面有界闭区域; L为 D 的边界曲线 (也记作D), 是由有
限条分段光滑的简单闭曲线围成;
函数P, Q C 1(D);

D
Q x
P y
dxdy
Pdx Qdy
L
5
5
证 不失一般性,以下
y
C
y y2(x)
分三种情况作证明.
DB
(1) 先设积分区域 D是
1
3
再用Gauss公式
29
29
1
1 4 3
3
(1 1 1)dxdydz
x2 y2 z2 2
3 3
3
4
3. Stokes 公式
将Green公式推广至空间,Stokes 公 式给出了沿空间曲线C的第二型线积分与 C上所张开的曲面的面积分之间的关系。 ( C 作为该曲面的边界曲线也可记为 D )
22
22
例3 求曲面积分
I x3dydz y3dzdx (z3 x2 y2 )dxdy
S
其中(1) S为球面 x2 y2 z2 R2外侧;
(2) S为上半球面 z R2 x2 y2上侧 .
解 (1) 由Gauss公式,可得
I
V
x
(x3)
y
(
y3)
z
(z3
x2
y2 )dxdydz
Gauss公式给出空间区域 D上的三重积分与 其边界面 S (也记作 D) 上的第二型曲面积分 之间的关系。
定理 2(Gauss公式)设
D R3 为空间有界闭区域; D 的边界D 由分片光滑曲面组成;则 函数P, Q, R C 1(D);

场论与复变函数(FunctionsofComplexVariables)教学大纲

场论与复变函数(FunctionsofComplexVariables)教学大纲

场论与复变函数(Functions of Complex Variables) 教学大纲付小宁课程编号: SC1112004 学分数:3学分课内时数:46 课程性质:必修课适用专业:测控技术与仪器先修课程:数学分析开课学期:第四学期开课院系:04院自动化/电气/测控一、该课程的地位、基本要求、与其他课程的联系和分工《复变函数》课程是研究复数域上函数的一门学科,为“测控技术与仪器专业”的必修课,属于专业基础课性质。

本课程讲述复变函数及其相互关系的研究、计算复变函数的各种方法,包括复数及复变函数、解析函数、复变函数的积分、级数、留数和保角映射。

通过本课程的学习,可以进一步培养学生的逻辑思维能力,扩展学生的数学知识,为学生掌握复变函数在自然科学和工程技术中的应用打下基础。

数域从实数域扩大到复数域后,产生了复变函数论,并且深刻地深入到代数学、微分方程、概率统计、拓朴学等数学分支。

二十世纪以来,已被广泛地应用到理论物理、天体力学等方面,发展到今天已成为一个内容非常丰富,应用极为广泛的数学分支,成为理工科大学的必修课程。

掌握场论的有关内容、概念和方法,使学生理解和掌握在力学、电学、电磁学等学科中所遇到的场的数学背景,掌握其运算的一般规律,使学生得到抽象科学思维的训练,提高学生数学素养和能力,为学生学习有关后续课程以及进一步扩大数学知识奠定必要的数学基础。

二、课程内容及学时分配第一章复数与复变函数 3学时第一节复数及其代数运算第二节复数的几何表示第三节复数的乘幂与方根第四节区域第五节复变函数第六节复变函数的极限和连续性。

要求:[1]. 熟练掌握复数的各种表示方法及其运算。

[2]. 了解区域的概念。

[3]. 熟悉简单图形或区域的复变函数表示[4]. 掌握复变函数的极限与连续性。

第二章解析函数 6学时第一节解析函数的概念第二节函数解析的充要条件第三节初等函数第四节解析函数与调和函数的关系。

要求:[1]. 了解复变函数等价于一对实二元函数,理解有关导数及解析的概念。

场论第二章2-5

场论第二章2-5
即表达式 A dl Pdx Qdy Rdz是函数u的全微 分,也称函数u为表达式 A dl Pdx Qdy Rdz的 原函数.
一般地,称具有曲线积分M M A d l 与路径
0
无关性质的矢量场为保守场. 在线单连域内,以下四个命题彼此等价: 1) 场有势(梯度场); 2) 场无旋; 3) 场保守; 4)表达式 A dl Pdx Qdy Rdz是某个函数的 全微分.
U 2 xdy 3 x y dz 3 xz yz 2 xy
y z 0 0
V 2z 3 y dz 3 yz z 2
z 0
令 B 3 xz yz 2 xy i 3 yz z 2 j k
W 1
S
即 或
A dS 0
n S
A dS A dS A dS 0
n n n S1 S2 S3
其中An表示 A在闭曲面S的外向法矢n的方向上
的投影.注意到场中矢量A是与矢量线相切的, 从而也就与矢量管的管面相切, 所以在管面S3 上有An 0.因此上式成为
A S3 A
x
4 xyz sin y 2 x 2 z 2 x2 z 2 x2 y 2 xz 2
y z
得rotA 0, 故A为有势场。
由上面的公式可求出
u 0dx cos ydy 2 x 2 yzdz sin y x 2 yz 2
0 0 0
2 2 v u sin y x yz 于是得势函数
k i z x R ux
j y uy
k z uz
( uzy uyz ) i ( uxz uzx ) j (uyx uxy ) k

[数学]工程数学复变函数 积分变换 场论

[数学]工程数学复变函数 积分变换 场论
吴新民
- 11 -
z ; 2 z 1
3)
1 ; 2 z ( z 1)
第五章 留数
第一节
留数
4) e
1 z 1
4) z 1 是函数 e
第五章 留数
1 z 1
的本性奇点,利用留数的定义
计算函数的留数,由于 1 1 n z ( 1) e z 1 n ! n 0 1 1 1 0 | z 1 | 2 z 1 2( z 1) 所以
第五章 留数
所以
1 d m 1 c 1 lim m 1 [( z z0 )m f ( z )] ( m 1)! z z0 dz
即 (5.2.6) 成立, 特别 m 1 时,就是 (5.1.5) 式。
吴新民
-8-
第一节
留数
Q( z ) , 其中 P ( z ), Q( z ) 在 z0 处解 规则III 设 f ( z ) P(z) 析, 且 P ( z0 ) 0, P ( z0 ) 0, Q( z0 ) 0, 则 Q ( z0 ) (5.1.7) Res[ f ( z ), z0 ] P ( z 0 )
Res[ f ( z ), z0 ] c1 1 从而有 Res[ f ( z ), z0 ] f ( z )dz 2 i C (5.1.2) (5.1.3)
内的洛朗级数中的
第五章 留数
( z z0 )1 的系数 c1 为函数 f ( z ) 在点 z0 处的留数,
其中 C 为 0 | z z0 | 内的环绕 z0 正向简单闭曲线。
- 17 -
第五章 留数
吴新民
第一节
留数
1 1 cos z Res[ ,0] 因此 6! z7 1 cos z dz , 我们又可用高阶导数公式 在计算积分 7 z | z | 1 1 cos z 2 i (6) dz (1 cos z ) 7 z 0 6! z | z | 1 2 i 2 i cos z z 0 6! 6!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档