中考数学专项复习圆与解直角三角形的综合练习
中考《解直角三角形》复习练习题及答案

中考数学复习专题练习解直角三角形一、选择题:1、在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=3、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2 B. C. D.4、在Rt ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.5、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.6、在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长是()A. B.2 C.1 D.27、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB值为( )A. B. C. D.8、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10mB.mC.15m D.m9、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米D.24米10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图,已知的三个顶点都在方格图的格点上,则的值为( )A. B. C. D.12、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、在△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C=________.14、已知在Rt△ABC中,∠C=90°,AB=15,cosB=,则BC= .15、如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.16、如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.17、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .18、如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(+) tan+tan.(填“>”“=”“<”)19、如图在四边形ABCD中,∠ACB=∠BAD=105°,∠B=∠D=45°若 AD=,则AB=__________20、如图所示的半圆中,是直径,且,,则的值是.21、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.22、如图,在中,是边边上的中线,如果,tanB值是________23、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米.24、如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°= .三、简答题:25、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.26、已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值.27、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)28、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)29、张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)30、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.31、中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)参考答案1、A.2、C.3、B.4、D.5、B.6、B.7、B.8、A.9、B.10、A.11、D.12、B.13、答案为:60°14、答案为:9.15、答案为:(米).16、答案为24.17、答案为:4.3 18、答案为:>. 19、答案为:.20、答案为: ;21、答案为:2 ;22、答案为:23、答案为:137.24、答案为:2﹣.25、解:∵方程(5+b)x2+2ax+(5-b)=0有两个相等的实数根,且c=5,∴△=(2a)2-4(c+b)(c-b)=0,∴a2+b2=c2,则△ABC为直角三角形,且∠C=90°.设x1,x2是方程2x2-(10sin A)x+5sin A=0的两个根,则根据根与系数的关系有x1+x2=5sin A,x1·x2=sin A.∴x12+x22=(x1+x2)2-2x l·x2=(5sin A)2-2×sin A=6,解得sinA=或sinA=-(舍去),∴a=csin A=3,b==4,S△ABC=ab==18.26、解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.27、【解答】解:(1)过C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离约为60海里.28、【解答】解:过点C作CE∥AD,交AB于E∵CD∥AE,CE∥AD∴四边形AECD是平行四边形∴AE=CD=50m,EB=AB﹣AE=50m,∠CEB=∠DAB=30°又∠CBF=60°,故∠ECB=30°∴CB=EB=50m∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m答:河流的宽度CF的值为43m.29、解:如图,过B作BE⊥CD交CD延长线于E,∵∠CAN=45°,∠MAN=30°,∴∠CAB=15°∵∠CBD=60°,∠DBE=30°,∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.30、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.31、【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.。
中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。
中考数学专项复习(12)(解直角三角形)练习 试题

乏公仓州月氏勿市运河学校解直角三角形〔12〕一、选择题1.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,假设渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,那么B、C之间的距离为〔〕A.20海里B.10海里C.20海里D.30海里2.如图,港口A在观测站O的正向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,那么该船航行的距离〔即AB的长〕为〔〕A.4km B.2km C.2km D.〔 +1〕km二、填空题3.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,那么海岛C到航线AB的距离CD等于海里.4.如图,轮船在A处观测C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测C位于北偏西25°方向上,那么C与码头B的距离是海里.〔结果精确到个位,参考数据:≈,≈,≈〕三、解答题5.一次数学活动课上,老师带着学生去测一条东西流向的河宽,如下列图,小明在岸点A处观测到河对岸有一点C在A的南偏西59°的方向上,沿河岸向西前行20m到达B处,又测得C在B的南偏西45°的方向上,请你根据以上数据,帮助小明计算出这条河的宽度.〔参考数据:tan31°≈,sin31°≈〕6.如图,新城区新建了三个商业城A,B,C,其中C在A的正向,在A处测得B在A的南偏东52°的方向,在C处测得B在C的南偏东26°的方向,A和B的距离是1000m.现有甲、乙两个工程对修建道路,甲修〔结建一条从A到C的笔直道路AC,乙修建一条从B到直线AC最近的道路BD.求甲、乙修建的道路各是多长.果精确到1m〕〔参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05〕7.背景材料:近年来由于世界各国大力开展海洋经济、加强海洋能力开发,海洋争端也呈上升趋势.为增强海洋执法能力、维护海洋领土,近期我国多个部门联合进行护航、护渔演习.解决问题:〔1〕如图,我国渔船〔C〕在钓鱼岛海域正被某国不明船只袭扰,“中国海政310”船〔A〕接到陆地指挥中心〔B〕护渔命令时,渔船〔C〕位于陆地指挥中心正南方向,位于“中国海政310”船西南方向,“中国海政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国海政310”船最大航速为20海里/小时.根据以上信息,请你求出“中国海政310”船赶往渔船所在位置进行护渔至少需要多长时间?〔2〕如果〔1〕中条件不变,此时位于“中国海政310”船〔A〕南偏东30°海域有一只某国HY舰〔O〕,AO=560海里,其火力打击范围是500海里,如果渔船沿着正南方向继续航行,是否会驶进这只HY舰的打击范围?8.如图,在一笔直的海岸线l上有AB两个观测站,A在B的正向,AB=2〔单位:km〕.有一艘小船在点P 处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.〔1〕求点P到海岸线l的距离;〔2〕小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.〔上述两小题的结果都保存根号〕9.如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离〔参考数据:≈1,≈3,≈5,结果精确到0.1〕10.如图,我国的一艘海监船在钓鱼岛A附近沿正向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?11.如下列图,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.〔结果精确到0.1km〕12.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时2海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?〔参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4〕13.据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A 处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?〔参考数据:≈,≈〕14.钓鱼岛及其附属岛屿是中国固有领土〔如图1〕,A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点〔如图2〕,点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.假设一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达〔结果保存小数点后两位〕?〔参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19〕15.小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船〔如下列图〕.小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米〔精确到1米〕?〔参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1,≈3〕16.为了维护海洋权益,新组建的国家HY加强了海洋巡逻力度.如图,一艘海监船位于P的南偏东45°方向,距离100海里的A处,沿正北方向航行一段时间后,到达位于P的北偏东30°方向上的B处.〔1〕在这段时间内,海监船与P的最近距离是多少?〔结果用根号表示〕〔2〕在这段时间内,海监船航行了多少海里?〔参数数据:, 32, 49.结果精确到0.1海里〕17.如图,位于A处的海上救援中心得悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正向B处,现救生船沿着航线CB前往B处救援,假设救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?〔结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80〕18.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.〔1〕求渔船从A到B的航行过程中与小岛M之间的最小距离〔结果用根号表示〕;〔2〕假设渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间〔结果精确到0.1小时〕.〔参考数据:≈1,≈3,≈5〕19.两个城镇A、B与两条公路ME,MF位置如下列图,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部〔1〕那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.〔不写、求作、作法,只保存作图痕迹〕〔2〕设AB的垂直平分线交ME于点N,且MN=2〔+1〕km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.20.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.〔1〕求点C与点A的距离〔精确到1km〕;〔2〕确定点C相对于点A的方向.〔参考数据:≈14,≈32〕21.钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.假设甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.〔参考数据:cos59°≈0.52,sin46°≈0.72〕22.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.A、B两船相距100〔+1〕海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.〔1〕分别求出A与C,A与D之间的距离AC和AD〔如果运算结果有根号,请保存根号〕.〔2〕距观测点D处100海里范围内有暗礁.假设巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?〔参考数据:≈1,≈3〕23.如图:我渔政310船在南海海面上沿正向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.假设渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?〔渔船C捕鱼时移动距离忽略不计,结果不取近似值.〕24.海中两个A、B,其中B位于A的正向上,渔船跟踪鱼群由西向东航行,在点C处测得A在西北方向上,B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得A在北偏西60°方向上,求A、B间的距离.〔计算结果用根号表示,不取近似值〕25.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上〔其中A、B、C在同一平面上〕.求这个标志性建筑物底部A到岸边BC的最短距离.26.如图,一艘海轮在A点时测得C在它的北偏东42°方向上,它沿正向航行80海里后到达B处,此时C在它的北偏西55°方向上.〔1〕求海轮在航行过程中与C的最短距离〔结果精确到0.1〕;〔2〕求海轮在B处时与C的距离〔结果保存整数〕.〔参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈28,tan42°≈0.900,tan35°≈0.700,tan48°≈11〕27.如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离〔结果保存整数,参考数据:≈1,≈5〕28.如图,海中有一P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得P 在北偏东60°方向上;航行40分钟到达B处,测得P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?29.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.〔温馨提示:sin53°≈0.8,cos53°≈0.6〕30.某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B 船的北偏东78°方向.〔1〕求∠ABC的度数;〔2〕A船以每小时30海里的速度前去救援,问多长时间能到出事地点.〔结果精确到0.01小时〕.〔参考数据:≈14,≈32〕。
圆与相似,解直角三角形综合题精选有答案

解直1. (2012江苏镇江6分)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC =FE 。
(1)求证:FC 是⊙O 的切线;(2)若⊙O 的半径为5,2cos FCE=5,求弦AC 的长。
【答案】解:(1)连接OC,∵FC=FE,∴∠FCE=∠FEC(等边对等角)。
∵OA=OC,∴∠OAC=∠OCA(等边对等角)。
又∵∠FEC=∠AED(对项角相等),∴∠FCE=∠AED(等量代换)。
又∵DF⊥AB,∴∠OAC+∠AED=900(直角三角形两锐角互余)。
∴∠OCA+∠FCE =900(等量代换),即∠OCF =900。
∴OC⊥CF(垂直定义)。
又∵OC是⊙O的半径,∴FC是⊙O的切线(切线的定义)。
(2)连接BC。
∵AB是⊙O的直径,∴∠ACB=900(直径所对圆周角是直角)。
∵OB=OC。
∴∠OBC=∠OCB(等边对等角)。
∵∠OCB=∠ACB-∠ACO=900-∠ACO=∠OCF-∠ACO=∠FCE,∴∠OBC=∠FCE。
又∵2cos FCE=5∠,∴2cos OBC=5∠。
又∵⊙O的半径为5,∴AB=10。
在Rt△ABC中,2 BC AB cos OBC=1045 =⋅∠⋅=∴AC=【考点】等腰三角形的性质,对项角的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,锐角三角函数定义,勾股定理。
【分析】(1)要证FC是⊙O的切线,只要FC垂直于过C点的半径,所以作辅助线OC。
由已知条件,根据等腰三角形的等边对等角性质,直角三角形两锐角互余的关系,经过等量代换即可得到。
(2)构造直角三角形ABC,由等量代换得到∠OBC=∠FCE,从而得到2 cos OBC=5∠,应用锐角三角函数知识和勾股定理即可求得弦AC的长。
2 (2012四川巴中10分)如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°。
(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为6cm,AE=10cm,求∠ADE的正弦值。
中考数学总复习《圆与三角形综合压轴综合题》专题训练-附答案

中考数学总复习《圆与三角形综合压轴综合题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知△ABC是△O的内接三角形,点P是ABC的中点,过点P作PD△AB,交AB延长线于点D,连接BP.(1)求证:△CBP=△PBD;(2)过P作PG△BC交BC于G点,若AB=6,BD=4,求BC的长.2.如图,在锐角三角形ABC中,AB=AC,O是ABC的外接圆,连结AO,BO,延长BO交AC于点D.(1)求证:AO平分BAC∠;(2)若O的半径为5,AD=6,求DC的长;(3)若ODmOB=,求ADDC的值(用含m的代数式表示).3.如图,AB是△O的直径,过点B作△O的切线BM,弦CD△BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.4.已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,△PAB=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出此时a,b的值.5.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C 的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作△Q与y轴的另一个交点为E,延长DQ交△Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:△BDE=△ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.6.如图1,ABC和CDE是等边三角形,且点B、C、E在同一条直线上,连接AE,BD.(1)求证:ACE BCD ≌;(2)如图2,若ABC 的外接圆O 交BD 于点F ,请你证明CD 是O 的切线;(3)若51BF FD =::,CE=12,求AE 的边长.7.如图,ABC 为O 的内接三角形,AD BC ⊥,垂足为D ,直径AE 平分BAD ∠,交BC 于点F ,连结BE .(1)求证:AEB AFD ∠=∠;(2)若105AB BF ==,,求DF 的长;(3)若点G 为AB 的中点,连结DG ,若点O 在DG 上,求BF FC :的值.8.已知钝角三角形ABC 内接于O E D ,、分别为AC BC 、的中点,连接DE .(1)如图1,当点A D O 、、在同一条直线上时,求证:12DE AC =. (2)如图2,当A D O 、、不在同一条直线上时,取AO 的中点F ,连接FD 交AC 于点G ,当2AB AC AG +=时.①求证:DEG 是等腰三角形;②如图3,连OD 并延长交O 于点H ,连接AH .求证:AH FG .9.如图1,△O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足△AFB ﹣△BFD =△ACB ,设△ACB =α.(1)用含α的代数式表示△BFD .(2)如图2,若FG△AC 交BC 于点G ,BE =FG ,连结BD ,DG ,求证:△BDE△△FDG . (3)在(2)的条件下,如图3,当AD 为△O 的直径,AB 的长为2时,求AC 的长.10.如图,点G 在线段AC 上,AG=6,点B 是线段AG 上一动点,以AB 为边向下方作正方形ABEF ,以BC 为腰向下方作等腰直角三角形BCD ,△CBD=90°,当AB <BC 时,2BG -DE=4.(1)如下表,某同学分别用特殊值法和一般法求CG 的长,请你将解答过程补充完整.探究1假设BG=3,求CG 的长.探究2设BG=x ,求CG 的长.解:…解:…(2)过点A ,F ,G 的△O 交边CD 于点H .①连结GH ,FH ,若△CGH 是等腰三角形,求AB 的长.②当△O 与边CD 有两个交点时,求AB 的取值范围.11.等腰三角形AFG 中AF AG =,且内接于圆O ,D 、E 为边FG 上两点(D 在F 、E 之间),分别延长AD 、AE 交圆O 于B 、C 两点(如图1),记BAF α∠=和AFG β∠=.(1)求ACB ∠的大小(用α,β表示);(2)连接CF ,交AB 于(H 如图2)若45β=︒,且.BC EF AE CF ⨯=⨯求证:2AHC BAC ∠=∠;(3)在(2)的条件下,取CH 中点M ,连接OM 、(GM 如图3),若245OGM α∠=-︒①求证://GM BC 12GM BC =; ②请直接写出OMMC的值. 12.定义:两个角对应互余,且这两个角的夹边对应相等的两个三角形叫做“青竹三角形”.如图1,在△ABC 和 DEF 中,若 90A E B D ∠+∠=∠+∠=︒ ,且 AB DE = ,则△ ABC 和 DEF 是“青竹三角形”.(1)以下四边形中,一定能被一条对角线分成两个“青竹三角形”的是 ;(填序号) ①平行四边形;②矩形;③菱形;④正方形.(2)如图2,△ ABC 90ACB ∠=︒ AC=BC ,点D 是 AB 上任意一点(不与点A 、B 重合),设AD 、BD 、CD 的长分别为a 、b 、c ,请写出图中的一对“青竹三角形”,并用含a 、b 的式子来表示 2c ;(3)如图3,△O 的半径为4,四边形ABCD 是△O 的内接四边形,且△ABC 和△ADC 是“青竹三角形”.①求 22AD BC + 的值;②若 BAC ACD ∠=∠ 75ABC ∠=︒ 求△ABC 和△ADC 的周长之差.13.定义:三角形内部有一小三角形与原三角形相似,其中小三角形的三个顶点在原三角形的三边上(顶点可重合) 则称这两个三角形是星相似三角形例如:如图1 Rt ABC 中90BCA CEA ∠=∠=︒ ACE 和 ABC 是星相似三角形.如图2 D 是 AB 的中点 以CD 为直径画圆 交 AB BC 于点 E F 1AC = .(1)①若 2BC = 求 DE 的长. ②设 BC x =GDy GO= 试写出 y 与 x 的函数关系式. (2)若 CG CE = 则 CEG 与哪个三角形星相似 并证明. (3)在(2)的条件下 求 BC 的长.14.已知如图ABC 是腰长为4的等腰直角三角形 90ABC ∠=︒ 以A 为圆心 2为半径作半圆A 交BA 所在直线于点M N .点E 是半圆A 上仟意一点.连接BE 把BE 绕点B 顺时针旋转90°到BD 的位置 连接AE CD .(1)求证:EBA DBC ≌;(2)当BE 与半圆A 相切时 求弧EM 的长; (3)直接写出BCD 面积的最大值.15.如图 在锐角三角形ABC 中 AB BC = 以BC 为直径作O 分别交AB AC 于点DE 点F 是BD 的中点 连接BE CF 交于点G.(1)求证: CE DE = .(2)若 45ABC ∠=︒ BO r = 求线段AD 的长(用含r 的代数式表示). (3)若 3BC AD = 探索CG 与FG 的数量关系 并说明理由.16.如图 在锐角三角形ABC 中 AB AC = 以BC 为直径的O 分别交AB AC ,于点D E ,连接OD OE DE ,,.(1)若50A ∠=︒ 求DE 的度数; (2)求证:DE BC ;(3)若O 半径为m 2tan ABC ∠= 求四边形ADOE 的面积(用含m 的代数式表示).17.如图ABC 是O 的内接三角形 AB 是O 的直径 点D 在O 上 且2ABC BAD ∠=∠过点D 作BC 的垂线与BC 的延长线交于点E .(1)求证:DE 是O 的切线;(2)若3DE = 1BE = 求O 的半径.18.如图 锐角三角形ABC 内接于△O △BAC 的平分线AG 交△O 于点G 交BC 边于点F 连结BG 。
2020-2021中考数学专题复习分类练习 圆的综合综合解答题含答案解析

2020-2021中考数学专题复习分类练习圆的综合综合解答题含答案解析一、圆的综合1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E ,OE=BE ,∴DO=DE+OE=(A′E+BE )=AB=OA ,∴A′C 与半圆O 相切;(2)当BA′与半圆O 相切时,则OB ⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB ,∴∠O′AB=30°,∴∠AB O′=60°,∴α=30°,(3)∵点P ,A 不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B ;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B .当α继续增大时,点P 逐渐靠近点B ,但是点P ,B 不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B .综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.2.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.3.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(Ⅰ)求∠ACB 的大小;(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.【答案】(Ⅰ)60°;(Ⅱ)33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO=34,∴S△ACP=33,4∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2024年中考数学高频压轴题训练——圆与三角形的综合应用及参考答案

2024年中考数学高频压轴题训练——圆与三角形的综合应用1.定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图①,在ABC 中,90C ∠=︒,5AB =,3AC =,则BC 边上的伴随圆的半径为.(2)如图②,ABC 中,5AB AC ==,6BC =,直接写出它的所有伴随圆的半径.(3)如图③,ABC 中90ACB ∠=︒,点E 在边AB 上,2AE BE =,D 为AC 的中点,且90CED ∠=︒.①求证:CED 的外接圆是ABC 的AC 边上的伴随圆;②DE CE 的值为▲.2.定义:有两边之比为1的三角形叫做智慧三角形.(1)如图1,在智慧三角形ABC 中,2AB BC AD ==,为BC 边上的中线,求AD AC的值;(2)如图2,ABC 是O 的内接三角形,AC 为直径,过AB 的中点D 作DE OA ⊥,交线段OA 于点F ,交O 于点E ,连结BE 交AC 于点G .①求证:ABE 是智慧三角形;②如图3,在(2)的条件下,当53AF FG =::时,则EG EF =▲.(直接写出结果)3.定义:若两个三角形中,有两组边对应相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏等三角形.(1)如图1,点C 是弧BD 的中点,DAB ∠是弧BD 所对的圆周角,AD AB >,连接AC 、DC CB 、,试说明ACB 与ACD 是偏等三角形.(2)如图2,ABC 与DEF 是偏等三角形,其中A D AC DF BC EF ∠=∠==,,,猜想结论:一对偏等三角形中,一组等边的对角相等,另一组等边的对角.请填写结论,并说明理由.(以ABC 与DEF 为例说明);(3)如图3,ABC 内接于63045O AC A C ∠∠==︒=︒ ,,,,若点D 在O 上,且ADC 与ABC 是偏等三角形,AD CD >,求AD 的值.4.如图1,已知ABC 是O 的内接三角形,AB 为直径,38A ∠=︒,D 为 AB 上一点.图1图2(1)当点D 为 AB 的中点时,连接DB ,DC ,求ABC ∠和ABD ∠的大小;(2)如图2,过点D 作O 的切线,与AB 的延长线交于点P ,且DP AC ,连接DC ,OC ,求OCD ∠的大小.5.定义:若两个不全等三角形中,有两组边对应相等且其中一组相等的边所对的角也相等,我们就称这两个三角形为偏等三角形.(1)如图1,四边形ABCD 内接于O ,AD AB >,点C 是弧BD 的中点,连接AC ,试说明ACB 与ACD 是偏等三角形.(2)如图2,ABC 与ABD 是偏等三角形,AD BC =,30BAC ABD ∠=∠=︒,8BD =,12AC =,求AB 的长.(3)如图3,ABC 内接于O ,8AC =,30A ∠=︒,45C ∠=︒,若点D 在O 上,且ADC 与ABC是偏等三角形,AD CD >,求AD 的值.6.如图1,△ABC 是⊙O 内接三角形将△ABC 绕点A 逆时针旋转至△AED ,其中点D 在圆上,点E 在线段AC 上.(1)求证:DE=DC ;(2)如图2,过点B 作BF ∥CD 分别交AC 、AD 于点M 、N ,交⊙O 于点F ,连结AF .求证:AN·DE=AF·BM :(3)在(2)的条件下,若13AB AC =时,求BF BC的值.7.如果两个三角形的两边对应相等,且它们的夹角互补,那么这两个三角形叫做互补三角形.如图1,AD ABC 是的中线,则ABD 和ACD 就是互补三角形.(1)根据定义判断下面两个命题的真假(填“真”或“假”)①互补三角形一定不全等.命题②互补三角形的面积相等.命题(2)如图2,ABC 和ADE 为互补三角形,AB AE AC AD AF =,=,是ABC 的中线.求证:12AF DE =;(3)如图3,在(2)的条件下,若B E D ,,三点共线,连结CE ,CD ,四边形ABEC 为圆内接四边形.当120BAE ∠ =时,求BD AF CD -的值.8.如图,锐角三角形ABC 内接于⊙O ,∠ABC=2∠ACB ,点D 平分 AC ,连接AD ,BD ,CD .(1)求证:AB=CD .(2)过点D 作DG ∥AB ,分别交AC ,BC 于点E ,F ,交⊙O 于点G .①若AD=a ,BC=b ,求线段EF 的长(用含a ,b 的代数式表示).②若∠ABC=72°,求证:FG 2=EF·DF .9.已知钝角三角形ABC 内接于O E D ,、分别为AC BC 、的中点,连接DE .(1)如图1,当点A D O 、、在同一条直线上时,求证:12DE AC =.(2)如图2,当A D O 、、不在同一条直线上时,取AO 的中点F ,连接FD 交AC 于点G ,当2AB AC AG +=时.①求证:DEG 是等腰三角形;②如图3,连OD 并延长交O 于点H ,连接AH .求证:AH FG .10.如图,在1111⨯的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的111A B C ;(2)作出△ABC 绕点C 顺时针旋转90°后得到的22A B C ;(3)在(2)的案件下,求点B 旋转到点2B 所经过的路径长.11.如图1,在等腰三角形ABC 中,AB AC =,O 为底边BC 的中点,AB 切O 于点D ,连接OD ,O 交BC 于点M ,N .(1)求证:AC 是O 的切线;(2)42B ∠=︒,①若4OD =,求劣弧DM 的长;②如图2,连接DM ,若4DM =,直接写出OD 的长.(参考数据:sin24︒取0.4,cos24︒取0.9,tan 24︒取0.45)12.如图,ABC 是O 的内接三角形,CD 为O 的直径,过点A 的直线交CD 的延长线于点E ,连接AD ,且AD DE =,DAB ACD ∠=∠.(1)求证:AE 是O 的切线;(2)若2DE =,=60B ∠︒,75BAC ∠=︒,求AB 和BC 的长度.13.如图,ABC 为O 的内接三角形,P 为BC 延长线上一点,PAC B ∠=∠,AD 为O 的直径,过C 作CG AD ⊥交AD 于E ,交AB 于F ,交O 于G .(1)判断直线PA 与O 的位置关系,并说明理由;(2)求证:2AG AF AB =⋅;(3)若O 的直径为10.AC =AB =AE FG ⋅的值.14.如图,ABC 是O 的内接三角形,60ACB ∠=︒,AD 经过圆心O 交O 于点E ,连接BD ,30ADB ∠=︒.(1)判断直线BD 与O 的位置关系,并说明理由;(2)若AB =,求图中阴影部分的面积.15.如图,ABC ∆是等腰直角三角形,90ACB ∠=︒,以BC 为直径作O 交斜边AB 于点D ,点M 是 CD中点,过点M 作直线ME AB ⊥于点E ,交AC 于点F.(1)证明:EF 是O 的切线;(2)若ME =.16.如图,在等腰三角形ABC 中,AB AC =,D 是AB 上任意一点,以D 为圆心,DB 为半径作D ,分别交AB 、BC 于点E 、F ,过点F 作FG AC ⊥,垂足为G .(1)判断直线FG 与D 的位置关系并证明.(2)若2AE =,3BC =,2BF CG=,求D 的半径.17.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“准互余三角形”.(1)若ABC 是“准互余三角形”,9060C A ∠>︒∠=︒,,则B ∠=.(2)如图(1),AB 是半圆的直径,106AB BC C ==,,是半圆上的点,D 是 AC 上的点,BD 交AC 于点E.①若D 是 AC 的中点,则图中共有▲个“准互余三角形”;②当DEC 是“准互余三角形”时,求CE 的长;③如图(2)所示,若F 是 BC 上的点(不与B C 、重合),G 为射线AF 上一点,且满足2CBG CAB ∠=∠.当ABG 是“准互余三角形”时,求AG 的长.18.已知,锐角三角形ABC 内接于⊙O.(1)如图1,当点A 是 BAC的中点时,①求证:AO BC ⊥.②若BC =8,AB =,求⊙O 的半径.(2)如图2,当AB AC >时,连接BO 并延长,交边AC 于点D.若45A ∠= ,23OD OB =,求AD DC.19.如图1,ABC 是圆内接等腰三角形,其中AB AC =,点P 在 BC上运动(点P 与点A 在弦BC 的两侧),连接PA PB PC ,,,设αBAC ∠=,PB PC y PA+=,小明为探究y 随α的变化情况,经历了如下过程:(1)若点P 在 BC 的中点处,α90=︒时,y 的值是;(2)小明探究α变化获得了一部分数据,并以表中各组对应值为点的坐标在如图2平面直角坐标系中进行描点,并画出函数图象.从图象或表格中可知,y 随着α的变化情况是;y 的取值范围是.α…25°50°75°100°125°150°170°…y …0.430.85 1.221.53 1.55 1.93 1.99…(3)从变化趋势上看,当α=▲时,PB PC PA +=.并证明你的结论.20.如图,ABC 是⊙O 的内接三角形,AD BC ⊥于点D ,直径AE 平分∠BAD ,交BC 于点F ,连接BE .(1)求证:AEB AFD ∠=∠;(2)若10AB =,5BF =,求AD 的长;(3)若点G 是AB 的中点,当点O 在DG 上时,探究BF 与FD 存在的数量关系,并说明理由.答案解析部分1.【答案】(1)2(2)解:ABC 的伴随圆的半径分为83或209或12049.(3)解:①证明:如图(4)连接OE 、OB ,∵CED 为直角三角形,∴CED 的外接圆圆心O 在CD 中点上,设O 的半径为r ,则2DC r =,3OA r =,∴23AD AO =,∵2EA BE =,∴23EA AB =,∴AD EA AO AB =,∴PD OB ,∴12∠=∠,3=4∠∠,∵OE OD =,∴32∠=∠,∴14∠=∠,在BCO 和BEO 中O =O ∠1=∠4O =O ,∴BCO BEO ≌,∴90BEO BCO ∠=∠=︒,∴AB 是O 的切线.∴CED 的外接圆是ABC 某一条边上的伴随圆;②222.【答案】(1)解:AD 是BC 的中线,2AB BC ==,,12BD BC ∴==,22BD AB AB BC ∴==,B B ∠=∠ ,ABD CBA ∴~ ,2AD BD AC AB ∴==;(2)解:①如图,连结OE ,设ABE α∠=,22AOE ABE α∴∠=∠=,OA OE = ,()11802902OAE αα∴∠=︒-=- ,DE OA ⊥ ,90AED OAE ∴∠+∠=︒,9090AED α∴∠+︒-=︒,AED ABE a ∴∠=∠=,EAD BAE ∠=∠ ,ADE AEB ∴ ∽,AE AD AB AE ∴=,2AE AD AB ∴=⋅,D 是AB 的中点,12AD AB ∴=,2212AE AB ∴=,AB ∴=,即1AE AB =:,ABE ∴ 是智慧三角形;②83.【答案】(1)解:∵点C 是弧BD 的中点,∴BC=CD ,BAC DAC ∠=∠.又∵AC=AC ,∴ACB 与ACD 是偏等三角形(2)解:互补;如图,在线段DE 上取点G ,使DG=AB ,连接FG.由题意可知在ABC 和DGF 中AB DG A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ABC DGF ≅ ,∴B DGF ∠=∠,BC GF =.∵BC EF =,∴GF EF =,∴E FGE ∠=∠.∵180DGF FGE ∠+∠=︒,∴180B E ∠+∠=︒,即另一组等边的对角互补.(3)解:分类讨论:①当BC=CD时,如图,∵BC=CD ,30CAB ∠=︒,∴30DAC ∠=︒.∵180105ABC CAB ACB ∠=︒-∠-∠=︒,∴180********ADC ABC ∠=︒-∠=︒-︒=︒,∴180180307575ACD DAC ADC ∠=︒-∠-∠=︒-︒-︒=︒,∴ADC ACD ∠=∠,ACD DAC ∠>∠,∴AD>CD 符合题意,∴AD=AC=6;②当AB=CD 时,如图,过点D 作DE AC ⊥于点E ,∵AB=CD ,45ACB ∠=︒,∴45DAC ∠=︒,∴AE DE =,180180457560ACD DAC ADC ∠=︒-∠-∠=︒-︒-︒=︒,∴ACD DAC ∠>∠,∴AD CD >,符合题意.设CE=x ,则AE DE ==,∵AC AE CE =+,即6x =+,∴1)x =,∴1)9AE DE ===-∴(9AD ==-=.综上可知AD 的值为6或-.4.【答案】(1)解:如图1,连接OD ,图1∵AB 是O 的直径,∴90ACB ∠=︒.∵38BAC ∠=︒,∴9052ABC BAC ∠=︒-∠=︒.∵D 为 AB 的中点,∴ AD AD =.∴1180902AOD BOD ∠=∠=⨯︒=︒.∴1452ABD AOD ∠=∠=︒.(2)解:如图2,连接OD ,图2∵OA OC =,OC OD =,∴38OAC OCA ∠=∠=︒,OCD ODC ∠=∠.设OCD ODC x ∠=∠=︒.∴()38ACD OCA OCD x ∠=∠+∠=+︒.∵DP 为O 的切线,∴OD DP ⊥.∴()9090CDP ODC x ∠=︒-∠=-︒.∵DP AC ,∴CDP ACD ∠=∠.即9038x x -=+,解得:26x =.∴26OCD ∠=︒.5.【答案】(1)解:∵点C 是弧BD 的中点,∴BC CD =,BAC DAC ∠=∠,又∵AC AC =,∴ACB 与ACD 是偏等三角形;(2)解:作DE AB ⊥于E ,CF AB ⊥于F ,∵30BAC ABD ∠=∠=︒,8BD =,12AC =,∴4DE =,6CF =,∴AF ==,BE ==,∵设EF x =,∴AE x =,BF x =,∵AD BC =,∴2224)6)x x +=+,∴1033x =,∴3AB AE EF BF =++=;(3)解:①当BC CD =时,如图,∵BC CD =,30CAB ∠=︒,∴30DAC ∠=︒,∵180105ABC CAB ACB ∠=︒-∠-∠=︒,∴180********ADC ABC ∠=︒-∠=︒-︒=︒,∴180180307575ACD DAC ADC ∠=︒-∠-∠=︒-︒-︒=︒,∴ADC ACD ∠=∠,ACD DAC ∠∠>,∴AD CD >符合题意,∴8AD AC ==;②当AB CD =时,如图,过点D 作DE AC ⊥于点E ,∵AB CD =,45ACB ∠=︒,∴45DAC ∠=︒,∴AE DE =,180180457560ACD DAC ADC ∠=︒-∠-∠=︒-︒-︒=︒,∴ACD DAC ∠∠>,∴AD CD >,符合题意,设CE x =,则AE DE ==,∵AC AE CE =+,即8x =+,∴1)x =,∴12AE DE ==-,∴AD ==综上可知AD 的值为8或6.【答案】(1)证明:∵将△ABC 绕点A 逆时针转至△AED∴BC=DE ,∠BAC=∠EAD ∴ BCCD =所以BC=CD∴DE=CD(2)解:∵∠F=∠ACB∠AMF=∠BMC∴△AMF ∽△BMC ∴AM AF BM BC=由题间可知BC=DEAC=AD∵BF ∥CD ∴AM AN AC AD=∴AM=AN∴AN AF AD DE=即AN·DE=AF·BM(3)解:设AB 为a ,则AC 为3a 由△CDE ∽△CAD 可得,CD CE CA CD=即CD 2=3a·2a=6a 2∵CD>0∴a∵AC=AD∴ AC AD=∵BF ∥CD ∴ BCFD =∴ AB AF=∴AB=AF∴∠ABF=∠AFB=∠ACB ∴△ABM ∽△ACB ∴AB AM BM AC AB BC==即3a AM a a ==∴AM=13a BM=63a 根据据对称轴可知FN=63a 由△AMN ∽△ACD 可得∴AM MN AC CD=即133a a =∴MN=9∴a∴79BF CD ==7.【答案】(1)假命题;真命题(2)证明:延长BA 至点G ,使AG =AB ,连结CG ,又∵F 为BC 的中点,∴12AF CG =∵∠BAC +∠DAE =∠BAC +∠CAG =180°,∴∠DAE =∠CAG ,∵AB =AE ,AB =AG ,∴AG =AE ,∵AD =AC ,∴△ADE ≌△ACG (SAS ),∴DE =CG ,∴12AF DE =(3)解:∵∠BAC +∠DAE =180°,∴∠BAE +∠DAC =180°,∵∠BAE =120°∴∠DAC =60°∵AD =AC ,∴△ADC 为等边三角形,∵AB =AE ,∴∠ABE =∠AEB =30°,∴BE =,∠ACB =∠AEB =30°,∴BC 是AD 的垂直平分线∴BD =AB ∴1152ABC DBC ABE ∠=∠=∠=︒,∴∠AEC =∠ABC =15°,∴∠DEC =45°,∵∠ACE =180°-∠ABE =150°,∠ACD =60°∴∠DCE =90°,∴∠EDC =45°=∠DEC ,∴DC =CE ,设AF a =,由(2)知,22DE AF a ==,∴CE DC ==,∵BE =,BE=BD+DE ,BD=AB ,∴)3112BD DE a +===∴162a aBD AF CD --=8.【答案】(1)证明:∵点D 平分 AC ,∴ AD CD=∴12ABD CBD ABC ∠=∠=∠.∵∠ABC =2∠ACB ,∴∠ACB =∠CBD .∴ AB CD=,∴AB=CD.(2)解:①∵ AD CD=∴∠ADB =∠DBC ,∴AD ∥BC .又∵DG ∥AB ,∴四边形ABFD 是平行四边形.由(1)得 AB CDAD ==∴AB =AD .∴四边形ABFD 是菱形.∴AB =BF =DF =AD =a .∴CF =b -a .∵DG ∥AB ,∴△CEF ∽△CAB .∴EF CF AB BC=,∴2ab a EF b-=.②连接CG .∵∠ABC =72°,∴∠ABD =∠DBC =∠ACB =36°,∵DG ∥AB ,∴∠BDG =∠ABD =36°.∵∠BCG =∠BDG ,∠DGC =∠DBC ,∴∠BCG =∠DGC ,∴FC =FG .∵∠ABC +∠ADC =180°,∴∠ADC =108°.∵在菱形ABFD 中,∠ADG =∠ABC =72°,∴∠FDC =36°,∴∠ACB =∠FDC .又∵∠DFC =∠CFE ,∴△CDF ∽△ECF ,∴FC DF EF FC=,∴2FC EF DF =⋅,∴2FG EF DF =⋅.9.【答案】(1)证明:∵D 是BC 的中点,点A D O 、、在同一条直线上,∴OD BC ⊥,∴ AB AC =,∴AB AC =,∵E D 、分别为AC BC 、的中点,∴DE 是ABC 的中位线,∴12DE AB =,∴12DE AC =.(2)证明:①∵E D 、分别为AC BC 、的中点,∴22AB DE AC AE ==,,∵2AB AC AG +=,∴222DE AE AG +=,∴DE AE AG +=,∵AE EG AG +=,∴DE EG =,∴DEG 是等腰三角形.②延长HO 交O 于点N ,连接OB OC BN CN ,,,,∵DE EG =,∴EDG EGD ∠=∠,∴2AED EDG EGD EGD ∠=∠+∠=∠,∴12EGD AED ∠=∠,∵DE AB ,∴180BAC AED ∠+∠=︒,∵180BAC BNC ∠+∠=︒,∴AED BNC ∠=∠,∵HO BC ⊥,∴2BOC COH ∠=∠,∵2BOC BNC ∠=∠,∴COH BNC ∠=∠,∵1122CAH COH BNC ∠=∠=∠,∴CAH EGD ∠=∠,∴AH FG .10.【答案】(1)解:如图,△A 1B 1C 1即为所求;(2)解:如图,设C 点为原点,则A (-3,-2),B (-1,-4),A 点绕C 点顺时针旋转90°后A 2的坐标为(-2,3),B 点绕C 点顺时针旋转90°后B 2的坐标为(-4,1),连接相应顶点,22A B C 即为所求;(3)解:勾股定理可得BC ==,∴B ,∴点B 旋转到点2B 所经过的路径长为90π1717π1802︒⨯=︒.11.【答案】(1)证明:过点O 作OE AC ⊥于点E ,连接OA ,如图,AB AC = ,O 为底边BC 的中点,AO ∴为BAC ∠的平分线,OD AB ⊥ ,OE AC ⊥,OD OE ∴=,OD 为O 的半径,OE ∴为O 的半径,∴直线AC 到圆心O 的距离等于圆的半径,AC ∴是O 的切线(2)解:①∵AB 切O 于点D ,∴90ODB ∠=︒,∵42B ∠=︒,∴48BOD ∠=︒,∵4OD =,∴劣弧DM 的长为4841618015ππ⨯⨯=;②过点O 作OF DM ⊥于点F ,如图,OF DM ⊥ ,122DF MF DM ∴===,OD OM = ,OF DM ⊥,OF ∴为DOM ∠的平分线,1242DOF BOD ∴∠=∠=︒.在Rt ODF 中,sin DF DOF OD ∠=,2sin 24OD ∴︒=,225sin 240.4OD ∴=≈=︒.12.【答案】(1)证明:如图,连接OA ,CD 为O 的直径,90CAD ∴∠=︒,90CAO OAD ∴∠+∠=︒,OA OC = ,CAO ACD ∴∠=∠,DAE ACD ∠=∠ ,DAE CAO ∴∠=∠,90DAE OAD ∴∠+∠=︒,90OAE ∴∠=︒,OA 是O 的半径,AE ∴是O 的切线;(2)解:如图,过点A 作AF BC ⊥于点F ,60B ∠=︒ ,30BAF ∴∠=︒,75BAC ∠=︒ ,45FAC ∴∠=︒,AFC ∴ 是等腰直角三角形,CD 为O 的直径,90CAD ∴∠=︒,2AD DE == ,60ADC ∠=︒,AC ∴=,在Rt AFC 中,AF CF ==,3BF AF ∴==2AB BF ∴==,BC BF CF =+=.13.【答案】(1)解:PA 与O 相切,理由:连接CD ,AD 为O 的直径,90ACD ∴∠=︒,90D CAD ∴∠+∠=︒,B D ∠=∠ ,PAC B ∠=∠,PAC D ∴∠=∠,90PAC CAD ∴∠+∠=︒,即DA PA ⊥,点A 在圆上,PA ∴与O 相切.(2)证明:如图2,连接BG ,AD 为O 的直径,CG AD ⊥,∴ AC AG =,AGF ABG ∴∠=∠,GAF BAG ∠=∠ ,AGF ∴ ∽ABG ,AG ∴:AB AF =:AG ,2AG AF AB ∴=⋅;(3)解:如图3,连接BD ,AD 是直径,90ABD ∴∠=︒,2AG AF AB =⋅ ,AG AC ==AB =2AG AF AB∴==CG AD ⊥ ,90AEF ABD ∴∠=∠=︒,EAF BAD ∠=∠ ,AEF ∴ ∽ABD ,AE AF AB AD ∴=,510=,解得:2AE =,1EF ∴=,4EG == ,413FG EG EF ∴=-=-=,236AE FG ∴⋅=⨯=.14.【答案】(1)解:直线BD 与O 相切,理由:如图,连接BE ,∵60ACB ∠=︒,∴60AEB C ∠=∠=︒,连接OB ,∵OB OC =,∴OBE 是等边三角形,∴60BOD ∠=︒,∵30ADB ∠=︒,∴180603090OBD ∠=︒-︒-︒=︒,∴OB BD ⊥,∵OB 是O 的半径,∴直线BD 与O 相切;(2)解:如(1)中图,∵AE 是O 的直径,∴90ABE ∠=︒,∵AB =∴433602AB sin AEB sin AE AE ∠=︒===,∴8AE =,∴4OB =,∵OB BD ⊥,30ADB ∠=︒∴3303OB tan ADB tan BD ∠=︒==,∴3BD =,∴图中阴影部分的面积2160π48π423603OBD BOES S ⨯=-=⨯⨯= 扇形.15.【答案】(1)证明:连接OM 、BM∵点M 是弧CD 中点,∴DBM OBM∠=∠∵OB OM=∴OMB BMO∠=∠∴DBM BMO∠=∠∴BE OM(2)解:连接CD 交OM 于点N 、连接OD∵BC 是直径,∴CD BD ⊥,∵ABC ∆是等腰直角三角形,∴45B ∠=︒,∴BDC ∆也是等腰直角三角形,∴BD CD =,OD CD ⊥.∵OM EF ⊥,EF BE ⊥,CD BD ⊥,∴四边形MNDE 是矩形,∴DN EM =,∵ME =DN =∵OM CD ⊥,∴2CD DN ==∴4BC =∴2OD OB ==,∵OBDBOD S S S ∆=-阴影扇形∴90π4122π23602S ⋅=-⨯⨯=-阴影16.【答案】(1)解:直线FG 是D 的切线;证明:连接DF ,如图所示:∵在ABC 中,AB AC =,∴B C ∠=∠.∵DB DF =,∴DBF DFB ∠=∠,∴DFB C ∠=∠,∴DF AC ,∴180DFG AGF ∠+∠=︒,∵FG AC ⊥于点G ,∴90AGF ∠=︒,∴90DFG ∠=︒,∴DF FG ⊥,∵DF 是D 的半径,∴直线FG 是D 的切线.(2)解:连接EF ,如图所示:∵BE 是D 的直径,∴90BFE ∠=︒,∵90FGC ∠=︒,∴BFE FGC ∠=∠,∵B C ∠=∠,∴BFE CGF ∽,∴BF BE CG CF =,∵2BF CG =,∴2BE CF =,设D 的半径为x ,则2BE x =,BD CF x ==,∵DF AC ,∴BF BD CF AD=,∵2AE =,∴2AD x =+,∴2BF x x x =+,∴22x BF x =+,∴222222x x x BC BF FC x x x +=+=+=++.∵3BC =,∴22232x x x +=+,解得:2x =或32x =-(舍去),经检验,2x =是原方程的根,∴D 的半径为2.17.【答案】(1)15°(2)解:①1;②由题意AB 是半圆的直径,106AB BC ==,,∴∠ACB=90°,∴8AC ==,根据题意△DEC 是“准互余三角形”时分两种情况:当∠D+2∠DCE=90°时,∵A ,B ,C ,D 在同一圆上,∴∠D=∠CAB ,∠DCE=∠DBA ,∴∠CAB+2∠ABE=90°,又∠CAB+∠ABC=90°,∴∠CBA=2∠CBD ,即BD 平分∠ABC ,过E 作EF AB ⊥于F (如图(1)),∴EF=CE ,∵∠BCE=∠BFE ,∠CBE=∠FBE ,∴CBE FBE ∆≅∆(AAS ),∴BC=BF ,由勾股定理即知:222AF EF AE +=,∴()()222AB BF CE AC CE -+=-,即()()2221068CE CE -+=-,解得CE=3;当2∠D+∠DCE=90°时(如备用图),∵A ,B ,C ,D 在同一圆上,∴∠D=∠CAB ,∠DCE=∠DBA ,∴2∠CAB+∠ABE=90°,连接AD ,∵∠DAC=∠CBE ,∴ADE BCE ~ ,∴AD AE BC BE =,即86AD CE BE -=,∵2∠CAB+∠ABE=90°,又∠DAB+∠ABE=90°,∴∠DAE=∠CAB ,∴ADE ABC ~ ,∴84105AD AC AE AB ===,又∵ADE BCE ~ ,∴AD AE BC BE =,即AD BC AE BE =,故645BE =,∴152BE =∴由勾股定理得92CE ==;③如图将ABC 沿AB 翻折得到ABM ,∵2CBG CAB ∠=∠,∴CBG CAM ∠=∠,∵∠CAB+∠CBA=90°,∴∠MAB+∠MBA=90°,∴∠CAM+∠CBM=180°,∴∠CBM+∠CBG=180°,∴M 、B ,G 三点共线,∵ABG 是“准互余三角形”,∴2∠CAB+∠G=90°或∠CAB+2∠G=90°,∵∠CAM+∠G=90°,∵∠CAB<∠BAM ,∴290CAB G ∠+∠≠︒,故∠CAB+2∠G=90°,∴∠CAM+∠G=∠CAB+2∠G ,∴∠BAM =∠G ,又∠M =∠M ,∴AMB GMA ∆~∆,∴AM MB MG AM =,即868MG =,解得:323MG =,由勾股定理得:403AG =;18.【答案】(1)解:①证明:连接OB ,OC ,设AB 与BC 交于点P ,∵点A 是 BAC的中点,∴ AB AC=,∴AB =AC ,又∵OB =OC ,∴AO 是BC 的垂直平分线,∴AO ⊥BC ;②∵AB =AC ,AP ⊥BC ,∴BP =CP =4,∴AP 8=,∵BO 2=OP 2+BP 2,∴BO 2=(8−OB )2+16,∴BO =5,∴⊙O 的半径为5;(2)解:延长BD 交⊙O 于点H ,连接CH ,CO ,AH ,∵23OD OB =,∴设BO =3a =OC =OH ,OD =2a ,∴DH =a ,∵∠BAC =45°,∴∠BOC =2∠BAC =90°,∴CD=,CH=,∵BH 是直径,故∠BAH=90°,∵∠BAC =∠BHC =45°∴∠CAH=90°-∠BAC =45°=∠CHD又∵∠ACH =∠DCH ,∴△ACH ∽△HCD ,∴AC CH CH CD=,=,∴AC∴AD =AC−CD,∴ADCD=513AD CD ==.19.【答案】(1(2)y 随着α的增大而增大;0<y <2(3)解:60°;当α60=︒时,PB PC PA +=,证明如下:如图所示,延长BP 到D ,使得PD CP =,连接CD,∵四边形ABPC 是圆内接四边形,∴180120BPC BAC ∠=︒-∠=︒,∴18060CPD BPC ∠=︒-∠=︒,∴CPD 是等边三角形,∴60CP CD PD PCD ∠===︒,,∵α60BAC AB AC ∠==︒=,,∴ABC 是等边三角形,∴60AC BC ACB ∠==︒,,∴ACB BCP DCP BCP ∠∠∠∠+=+,即BCD ACP ∠=∠,∴()SAS BCD ACP ≌,∴AP BD =,∵BD BP PD BP CP =+=+,∴AP BP CP =+,∴当α60=︒时,PB PC PA +=.20.【答案】(1)证明:∵AE 是⊙O 的直径,∴90ABE ∠=︒,∴90BAE AEB ∠+∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,∴90AFD DAF ∠+∠=︒,∵AE 平分∠BAD ,即BAE ∠=,∴AEB AFD ∠=∠;(2)解:∵AEB AFD ∠=∠,AFD BFE ∠=∠,∴AEB BFE ∠=∠,∴5BE BF ==,∴在Rt ABE 中,AE ==如图,过点B 作BH EF ⊥于点H ,∴1122ABE S AB BE AE BH =⋅=⋅ ,即105BH ⨯=,解得:BH =∴在Rt BHE 中,EH ==,∴EF =,AF AE EF =-=,∵BFH AFD ∠=∠,BHF ADF ∠=∠,∴BHF ADF ∽,∴BF BH AF AD =AD=,解得:6AD =;(3)解:BF =,理由如下:∵G 是AB 的中点,O 是AE 的中点,∴OG BE ,∴OG AB ⊥,∴AD BD =,∵AD BC ⊥,∴ABD 是等腰直角三角形,∴45ABD ∠=︒,过点F 作FP AB ⊥于点P ,∵AF 平分∠BAD ,∴FD FP =,∵45ABD ∠=︒,∴BF ==.。
中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图 O 是ABC 的外接圆 AB 是O 的直径 FH 是O 的切线 切点为F FH BC ∥ 连接AF 交BC 于E 连接BF .(1)证明:AF 平分BAC ∠(2)若ABC ∠的平分线BD 交AF 于点D 4EF = 6DE = 求tan EBF ∠的值.2.如图① OA 是O 的半径 点P 是OA 上一动点 过P 作弦BD ⊥弦AC 垂足为E连结AB BC CD DA .(1)求证:BAO CAD ∠=∠.(2)当OA CD ∥时 求证:AC BC =.(3)如图① 在(2)的条件下 连结OC .①若ABC 的面积为12 4cos 5ADB求APD △的面积. ①当P 是OA 的中点时 求BD AC 的值.3.如图 ABC 内接于O AB ,是①O 的直径 过点C 作O 的切线交AB 的延长线于点D BE CD ⊥ EB 的延长线交O 于F CF ,交AB 于点G BCF BCD ∠=∠.(1)求证:BE BG =(2)若1BE = 求O 的半径.4.如图 O 是ABC 的外接圆 AB 是O 的直径 BD 是O 的切线 连接AD 交O 于点E 交BC 边于点F 若点C 是AE 的中点.(1)求证:ACF BCA ∽△△(2)若1CF = 2BF = 求DB 的长.5.如图1 锐角ABC 内接于O 点E 是AB 的中点 连结EO 并延长交BC 于D 点F 在AC 上 连结AD DF BAD CDF ∠=∠.(1)求证:DF AB .(2)当9AB = 4AF FD ==时①求tan CDF ∠的值①求BC 的长.(3)如图2 延长AD 交O 于点G 若::1:4:3GC CA AB = 求BED DFC S S△△的值.6.如图 AB 为O 的直径 弦CD AB ⊥于点E 连接AC BC .(1)求证:CAB BCD ∠=∠(2)若4AB = 2BC = 求CD 的长.7.如图 四边形ABCD 内接于O BC 为O 的直径 O 的切线AP 与CB 的延长线交于点P .(1)求证:PAB ACB ∠=∠(2)若12AB = 4cos 5ADB求PB 的长.8.在Rt ABC 中 90BCA ∠=︒ CA CB = 点D 是ABC 外一动点(点B 点D 位于AC 两侧) 连接CD AD .(1)如图1 点O 是AB 的中点 连接OC OD 当AOD △为等边三角形时 ADC ∠的度数是______(2)如图2 连接BD 当135ADC ∠=︒时 探究线段BD CD DA 之间的数量关系 并说明理由(3)如图3 O 是ABC 的外接圆 点D 在AC 上 点E 为AB 上一点 连接CE DE 当1AE = 7BE =时 直接写出CDE 面积的最大值及此时线段BD 的长.9.如图 AB 为O 的直径 AB AC = BC 交O 于点DAC 交O 于点E 45BAC ∠=︒.(1)求EBC ∠的大小(2)若O 的半径为2 求图中阴影部分的面积.10.如图 点C 是弧AB 的中点 直线EF 与O 相切于点C 直线AO 与切线EF 相交于点E 与O 相交于另一点D 连接AB CD .(1)求证:AB EF ∥(2)若3DEF D ∠=∠ 求DAB ∠的度数.11.如图1 BC 是O 的直径 点A 在O 上 AD ①BC 垂足为D AE AC = CE 分别交AD AB 于点F G .(1)求证:FA FG =(2)如图2 若点E 与点A 在直径BC 的两侧 AB CE 的延长线交于点G AD 的延长线交CG 于点F .①问(1)中的结论还成立吗?如果成立 请证明 如果不成立 请说明理由①若2tan3BAD∠=求cos BCE∠.12.如图1四边形ABCD内接于O连结BD AC交于点G点E是AB上一点连结CE交BD于点F且满足ACD ACF∠=∠.(1)求证:ACE ABD∠=∠(2)若点C是BD的中点①求证:CE CD=②若34CFCD=3tan4BDC∠=时求EFFD的值.(3)如图2当点F是BG的中点时若2AB=3AC=求CG的值.13.如图 四边形OABC 中90OAB OCB ∠=∠=︒ BA BC =.以O 为圆心 以OA 为半径作O .(1)求证:BC 是O 的切线(2)连接BO 形延长交O 于点D 延长AO 交O 于点E 与BC 的延长线交于点F ①补全图形①若AD AC = 求证:OF OB =.14.如图 在ABC 中 AB AC = AO BC ⊥于点O OE AB ⊥于点E 以点O 为圆心 OE 为半径作圆O 交AO 于点F .(1)求证:AC 是O 的切线(2)若60AOE =︒∠ 3OE = 在BC 边上是否存在一点P 使PF PE +有最小值 如果存在请求出PF PE +的最小值.15.如图1 在O 中 P 是直径AB 上的动点 过点P 作弦CD (点C 在点D 的左边) 过点C 作弦CE AB ⊥ 垂足为点F 连接BC 已知BE ED =.(1)求证:FP FB =.(2)当点P 在半径OB 上时 且OP FB = 求FPFC 的值.(3)连接BD 若55OA OP ==. ①求BD 的长.①如图2 延长PC 至点G 使得CG CP = 连接BG 求BCG 的面积.参考答案:1.(1)解:连接OF 如图所示:FH 是O 的切线OF FH ∴⊥①FH BC ∥OF BC ∴⊥BF CF ∴=BAF CAF ∴∠=∠AF ∴平分BAC ∠(2)解:如图作出ABC ∠的平分线BD 交AF 于点DABD CBD ∠=∠ BAF CAF CBF ∠=∠=∠ 且FBD CBD CBF ∠=∠+∠ BDF ABD BAF ∠=∠+∠FBD BDF ∴∠=∠4610BF DF EF DE ∴==+=+= AB 是O 的直径90AFB ∴∠=42tan 105EF EBF BF ∴∠===.2.(1)解:延长AO 交圆O 与F 连接BF .①90ABF ∠=︒①BD AC ⊥与E①90AED ABF ∠=∠=︒又AOE AFB ∠=∠①ABF AED ∽①BAF EAD ∠=∠即BAO CAD ∠=∠.(2)连接CF①AF 是O 的直径①90ACF ∠=︒①90AFC FAC ∠+∠=︒①OA CD ∥①FAC ACD ∠=∠①BD AC ⊥与E①90AED ∠=︒①90CDE ACD ∠+∠=︒①AFC CDE ∠=∠又①AFC CBA ∠=∠ CDE CAB ∠=∠①CBA CAB ∠=∠①AC BC =.(3)①①4cos 5ADB①45DE AD = ①45DE AD =①2235AE AD DE AD =- ①ACB ADB①45CE BC = 设4CE a = 则5BC a AC == ①223BE BC CE a -①5BC AC a ==①AE AC EC a =-=①53AD a = 43DE a = ①OP CD ①14OE AE DE CE == ①13PE a = 53PD a = ①211552236APD SPD AE a a a =⋅=⨯⨯= ①11531222ABC S AC BE a a =⋅=⨯⨯= 解得:22415a = ①25524466153APD S a ==⨯=. ①过点O 作OH AC ⊥于H①22AC AH CH ==①PE AC ⊥①PE OH ∥①P 是OA 的中点①E 是AH 的中点设AE k = 则2AH k = 4AC k= 3CE k = 4BC AC k ==①BE①ADB ACB ∠=∠ AED BEC∠=∠①AED BEC ∽ ①AEDEBE CE =①AE CEDE BE ⋅===①BD =①74BD AC k ==故BDAC3.(1)证明:如图 连接OC①CD 是①O 的切线①OC CD ⊥①90OCB BCD ∠+∠=︒①OC OB =①OCB OBC ∠=∠①BCF BCD ∠=∠①90BCF OBC ∠+∠=︒①90BGC ∠=︒ 即BG CF ⊥①BCF BCD ∠=∠,BE CF ⊥①BE BG =(2)解:①AB 是O 的直径 CF AB ⊥①BC BF =①BC BF =①BCF F ∠=∠①BE CD ⊥ BCF BCD ∠=∠①30BCF BCD F ∠=∠=∠=︒①60OBC ∠=︒①1BE =①2BC =①60OB OC OBC =∠=︒,①OBC △为等边三角形①2OB BC ==即O 的半径为2.4.(1)解:①AB 是O 的直径①090ACB FCA ∠=∠=①点C 是AE 的中点①AC EC =①CAE CBA ∠=∠①ACF BCA ∽△△(2)ACF BCA ∵∽△△2AC CF CB =⋅∴1CF = 2BF =23AC CF CB =⋅=∴AC ∴090ACB ∠=AB ∴==1sin 2CA ABC AB ∴∠=== 30CAE CBA =︒∠=∠∴903060BAC ∴∠=︒-︒=︒603030BAD ∴∠=︒-︒=︒BD 是O 的切线 90ABD ∴∠=︒tan D B B BA D A ∠==∴2DB ∴=5.(1)证明:①点E 是AB 的中点 且DE 过圆心①AB DE ⊥①AD BD =①B BAD ∠=∠有①BAD CDF ∠=∠①B CDF ∠=∠①DF AB . (2)①DFAB ①CDF CBA △△∽①DF CF BA CA=即:494CF CF=+ 解得:165CF = 又①AF FD =①CAD FDA ∠=∠①DF AB①FDA BAD CDF ∠=∠=∠①CAD CDF ∠=∠又C C ∠=∠①CDF CAD ∽ ①=CD CA CF CD①2161657645525CD CF AC ⎛⎫=⋅=⨯+= ⎪⎝⎭ ①245CD = ①CDF CBA △△∽①DC DF BC BA= 即24459BC = ①545BC = ①5424655BD BC DC =-=-= ①1922AE AB == 在ADE 中222293762DE AD AE ⎛⎫=-=- ⎪⎝⎭①3772tan tan 92DE CDF EAD AE ∠=∠=== 综上 17tan CDF ∠ 545BC =. (3)①::1:4:3GC CA AB =①它们所对圆心角度数比为1:4:3.根据同弧所对圆周角为原心角的一半 可知它们所对的圆周角度数比为1:4:3 即1::1:4:3B C ∠∠∠=设1∠=α 则4B α∠= 3C α∠=则14ADB C α∠=∠+∠=①AD BD =①4BAD B α∠=∠=①4ADB BAD B α∠=∠=∠=①ADB 为等边三角形①460α=︒①15α=︒①345C α∠==︒过点E 作EM BC ⊥交BC 于M 过点A 作⊥AP BC 交BC 于P 过点F 作FN BC ⊥交BC 于N设2BD m =①=60B ∠︒ 90BED ∠=︒①1cos6022BE BD m m =⋅︒=⨯= sin sin 60EM BE B m m =⋅=⋅︒==①211222BED S EM BD m =⋅=⋅=同理sin 2sin 602AP AB B m m =⋅=⨯︒== ①45C PAC ∠=∠=︒①PC AP == ①12PD BD m ==①)1CD PC PD m =-=①45C NFC ∠=∠=︒设FN CN n ==①DF AB60FDN B ∠=∠=︒ ①3tan 60FN DN ==︒ 又①CD DN NC =+ 即)331m n =+ 解得:()233n m = ①)()211953313322DFC S DC FN m m -=⋅=⨯⨯= ①2253332953BED DFC S m S -+△△. 6.(1)证明:①直径AB CD ⊥①BC BD =.①A BCD ∠=∠(2)解:连接OC①直径AB CD ⊥①CE ED =.①直径4AB =①2CO OB ==①2BC =①OCB 是等边三角形①60COE ∠=︒①30OCE ∠=︒ ①112OE OC == 在Rt COE △中①CE①2CD CE ==7.(1)证明:如图 连接OA①AP 为O 的切线①OA AP ⊥①90OAP ∠=︒①90OAB PAB ∠+∠=︒①OA OB =①OAB OBA ∠=∠①90OBA PAB①BC 为O 的直径①90ACB OBA ∠+∠=︒①PAB ACB ∠=∠(2)由(1)知PAB ACB ∠=∠ 且ADB ACB ∠=∠ ①ACB PAB ADB ∠=∠=∠ ①4cos cos cos 5ACB PAB ADB ∠=∠=∠= 在Rt ABC 中 3tan 4AB ACB AC ∠== ①12AB =①16AC =①2220BC AB AC +=①10OB =过B 作BF AP ⊥于F①ADB FAB ∠=∠ 4cos 5ADB①4cos 5FAB ∠=①3sin 5FAB ∠= ①在Rt ABF 中 36sin 5BF AB FAB =⋅∠=①OA AP BF AP ⊥⊥,,①BF OA ∥ ①PBF POA ∽①BF PB OA PO ①3651010PB PB =+①1807PB = 故PB 的长为1807. 8.(1)解:90BCA ∠=︒ BC AC = 点O 是AB 的中点 90COA ︒∴∠= 12CO AB OA == AOD 是等边三角形OD OA ∴= 60ODA DOA ∠=∠=︒OC OD ∴= 906030COD COA DOA ∠=∠-∠=︒-︒=︒ ()()11180180307522ODC COD ∴∠=︒-∠=⨯︒-︒=︒ 7560135ADC ODC ODA ∴∠=∠+∠=︒+︒=︒故答案为:135︒(2)解:线段BD CD DA 之间的数量关系为:BD DA =+ 理由如下: 过点C 作CH CD ⊥交AD 的延长线于点H 如图2所示:则180********CDH ADC ∠=︒-∠=︒-︒=︒ DCH ∴△是等腰直角三角形CH CD ∴= HD90BCA ∠=︒ACH BCD ∴∠=∠()ACH BCD SAS ∴≌BD AH HD DA AD ∴==+=+ (3)解:连接OC 如图3所示:90BCA ∠=︒ BC AC =ACB ∴是等腰直角三角形45ABC ∴∠=︒ O 是ABC 的外接圆O ∴是AB 的中点OC AB ∴⊥ ()()111174222OC OA AB AE BE ===+=⨯+= 413OE OA AE ∴=-=-=在Rt COE △中 由勾股定理得:2222435CE OC OE ++ CE 是定值∴点D 到CE 的距离最大时 CDE 面积的面积最大 AB 是O 的直径过点O 作ON CE ⊥于N 延长ON 与O 的交点恰好是点D 时 点D 到CE 的距离最大 CDE 面积的面积最大1122OCE S OC OE CE ON =⋅=⋅431255OC OE ON CE ⋅⨯∴===4OD OC ==128455DN OD ON ∴=-=-=此时 在直角CNO 中 222212164()55CN OC ON =-=-=在直角CND △中 222216885()()55CD CN DN +=+=在直角ABD △中 222228BD AB AD AD =-=- 由(2)知 8581022BD CD AD AD AD =+==2228108()AD AD ∴-=+610AD ∴=8108106101410BD AD ∴+=即CDE 面积的面积最大值为4 此时 1410BD .9.(1)解:①AB 为O 的直径①90AEB ∠=︒又①45BAC ∠=︒①=45ABE ∠︒.又①AB AC =①67.5ABC C ∠=∠=︒①22.5EBC ∠=︒.(2)解:连接OE 如图所示:①45ABE BAE ∠=∠=︒①AE BE =①OA OB =①OE AB ⊥①2OA OB OE ===①OBE OBE S S S =-阴影扇形29021223602π⨯⨯=-⨯⨯2π=-.10.(1)证明:连接OC 如图①直线EF 与O 相切于点C①OC EF ⊥.①点C 是AB 的中点①OC AB ⊥.①AB EF ∥.(2)解:①OC EF ⊥①90OCE ∠=︒.①90DEF EOC ∠+∠=︒.①2EOC D ∠=∠ 3DEF D ∠=∠①590D ∠=︒.①18D ∠=︒.①331854DEF D ∠=∠=⨯︒=︒.①AB EF ∥①54DAB DEF ∠=∠=︒.11.(1)证明:BC 为直径90BAC ∴∠=︒90ACE AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACE ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=(2)解:①(1)中的结论成立理由如下: BC 为直径90BAC ∴∠=︒即:=90GAC ∠︒90ACG AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACG ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=①如图2 过点G 作GM BC ⊥交CB 的延长线于点M90GMB ADB ∴∠=∠=︒又ABD GBM ∠=∠GBM ABD ∴∽ ∴BMMGBD DA = ∴BM BDMG DA =90BAD ABD ∠+∠=︒90BAD DAC ∠+∠=︒ABD DAC ∴∠=∠ACE ABD ∠=∠DAC ACE ∴∠=∠AF CF ∴=又AF GF =CF GF ∴=∴点F 为CG 的中点2tan 3BD BAD AD ∠== ∴23BMBD MG DA ==90ADB ADC ∠=∠=︒ABD CAD ∴∽ ①23BDAD AD CD ==设2BD x = 则3AD x =①233x x x CD= 解得:92CD x =AD BC ⊥ GM BC ⊥AD GM ∴∥①点D 为CM 的中点29CM CD x ∴==92DM CD x ∴== BM DM BD ∴=-52x = ①23BM MG = 32MG BM ∴=154x = CG ∴22MG CM +()221594x x ⎛⎫+ ⎪⎝⎭394x = cos BCE ∴∠CM CG =. 9394xx = 1213=. 12.(1)①ACD ACF ∠=∠ ACD ABD ∠=∠ ①ACE ABD ∠=∠(2)①①点C 是BD 的中点①BAC DAC ∠=∠ BC DC =①BAC DAC DBC ∠=∠=∠①BEC BAC ACE ∠=∠+∠ ABC ABD DBC ∠=∠+∠ ①BEC ABC ∠=∠①CE BC =①CE CD =②延长CE 交O 于点P 连接PB 连接CO 交BD 于点M由①得BAC DAC DBC ∠=∠=∠ BC DC = ①CM BD ⊥ ①12DM BM BD ==①BAC BPC ∠=∠①DBC DPC ∠=∠①BCF PCB ∠=∠①CBF CPB ∽ ①CB CF CP CB = ①34CF CD = 设3CF k = 4DC CE CB k === 则EF k = ①434k k CP k= 则163PC k = ①43PE PC CF EF k =--=①在Rt CMD 中 3tan 4CM BDC DM ∠== 设BDC ∠的对边为3CM m = 则4DM m = ①由勾股定理得5CD m = ①44cos 55DM m BDC CD m ∠=== ①4cos 5DM BDC DC ∠==①165DM k = 由12DM BM BD == ①3225BD DM k ==①BPF CDF ∠=∠ PBF DCF ∠=∠ ①BPF CDF ∽ ①PF BF DF CF= 设DF y = 由4733PF PE EF k k k =+=+= 325BF BD DF k y =-=- ①732353k k y y k-= 解得15y k = 275y k = ①155EF k DF k ==或5775EF k DF k == 综上可知EF DF 的值为15或57(3)过F 作FH AB ∥ 交AC 于点H同理FHG CHF ∽ ①FH HC HG FH= ①点F 是BG 的中点则设AH HG a == ①FH HC HG FH = 即131a a -= 整理得2310a a -+= 解得:135a +=(舍去) 235a -=①325CG a =-13.(1)证明:如图 连接BO90OAB OCB ∠=∠=︒ BA BC = BO BO =①()Rt Rt HL ABO CBO ≌①AO CO =CO ∴是O 的半径又①90BCO ∠=︒①BC 是O 的切线(2)①解:依照题意画出图形 如图所示①证明:①Rt Rt ABO CBO ≌ ①AOB BOC ∠=∠①AOD COD ∠=∠①AD AC =①AOC AOD ∠=∠①120AOC AOD COD ∠=∠=∠=︒ ①60AOB BOC ∠=∠=︒①90BCO ∠=︒①30OBC ∠=︒①60AOB OBC F ∠=∠+∠=︒①30F OBC ∠=︒=∠①OB OF =.⊥与点D如图14.(1)证明:过点O作OD AC⊥=AO BCAB AC∠∴平分BACAO⊥OE AB⊥OD AC∴=OD OEOE是圆的半径OD∴是圆的半径这样AC经过半径OD的外端且垂直于半径OD∴是O的切线AC(2)解:在BC边上存在一点P使PF PE+有最小值.延长AO交O于点G连接EG交BC于点P连接PF则此时PF PE+最小连接EF过点E作EH AO⊥于点H如图∠=︒OE OFAOE60=∴为等边三角形OEF∴===3EF OE OF⊥EH OF1322OH HF OF ∴=== 39322GH OG OH ∴=+=+= 在Rt EHO 中sin EH AOE OE ∠=EH OE ∴=在Rt EHG △中EG BC FG ⊥ OG OF = PG PF ∴=PE PF PE PG EG ∴+=+==∴在BC 边上存在一点P 使PF PE +有最小值.PF PE +的最小值为 15.(1)①BE ED = ①BCE DCE ∠=①CE AB ⊥①90CFP CFB ∠=∠=︒ 在CPF 和CBF 中 DCE BCE CF CFCFP CFB ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA CPF CBF ≌ ①FP FB =.(2)由(1)得 FP FB = ①OP FB =①OP FB FP ==设3OA a =①OP FB FP a === ①2OF OP PF a =+= 连接OE①在Rt OFE △中 ()()225FE OE OF a - ①AB 为O 的直径 CE AB ⊥ ①5CF EF a == ①55FP FC a ==(3)①连接OE 如图①AB 为O 的直径 CE AB ⊥ ①CB BE =①BE ED =①BE ED CB == ①CB BE BE BD +=+ ①CE BD =①CE BD =①55OA OP == ①1OP =①FP FB = 5FP FB OP ++= ①2FP FB ==①3OF =在Rt OFE △中 FE =①4FE =①12CF FE CE == ①8CE = ①8BD = ①①CG CP = FP FB = ①点F 点C 是线段PB GO 的中点 ①CF 为PGB △的中位线 ①12CF GB = 12CF GB ∥ ①4CF = ①8GB = ①CF AB ⊥ ①BG AB ⊥ ①BCG 中BG 边上的高等于BF 的长①BCG 的面积为:1182822BG BF ⨯=⨯⨯=.。
2023年中考数学专题专练--圆与三角形问题的综合(含答案)

2023年中考数学专题专练--圆与三角形问题的综合1.如图,在Rt△ABC中,△ACB=90°,D为AB边上的一点,以AD为直径的△O交BC于点E,过点C作CG△AB交AB于点G,交AE于点F,过点E作EP△AB交AB 于点P,△EAD=△DEB.(1)求证:BC是△O的切线;(2)求证:CE=EP;(3)若CG=12,AC=15,求四边形CFPE的面积.2.已知:AB是△O的直径,BD是△O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE△AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为△O的切线.3.如图,AB是△O的直径,C是弧AB的中点,延长AC至D,使CD=AC,连接DB.E是OB的中点,CE的延长线交DB的延长线于点F,AF交△O于点H,连接BH.(1)求证:BD是△O的切线;(2)△O 的直径为2,求BH 的长.4.如图,在 O 中,半径 OA ⊥ 弦 BC 于点 H ,点 D 在优弧 BC 上.(1)若 50AOB ∠=︒ ,求 ADC ∠ 的度数;(2)8BC = , 2AH = ,求 O 的半径.5.如图,已知四边形ABCD 内接于圆O ,连结BD ,△BAD=105°,△DBC=75°.(1)求证:BD=CD ;(2)若圆O 的半径为3,求 BC 的长.6.如图,在△ABC 中,△C = 90°,以AC 为直径的⊙O 交AB 于点D ,连接OD ,点E 在BC 上, B E=DE .(1)求证:DE 是△O 的切线;(2)若BC =6,求线段DE 的长;(3)若△B =30°,AB =8,求阴影部分的面积(结果保留 π ).7.如图在Rt△ABC 中,△C=90°,BD 平分△ABC ,过D 作DE△BD 交AB 于点E ,经过B ,D ,E 三点作△O .(1)求证:AC与△O相切于D点;(2)若AD=15,AE=9,求△O的半径.8.如图,△I是△ABC的内切圆,切点分别是D、E、F.(1)若△B=50°,△C=70°,求△DFE的度数.(2)若△DFE=50°,求△A的度数.(3)连接DE,直接判断△DFE的形状为.9.如图,△O是△ABC的外接圆,BC为△O的直径,点E为△ABC的内心,连接AE 并延长交△O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为△O的切线.10.如图所示,已知AB为圆O的直径,CD是弦,且AB△CD于点E,连接AC、OC、BC.(1)求证:△ACO=△BCD;(2)若EB=2cm,CD=8cm,求圆O的直径.11.如图,直线PA 与O 相切于点A ,弦AB OP ⊥于点C ,OP 与O 相交于点D .30APO ∠=︒,4OP =.(1)求弦AB 的长;(2)求阴影部分的周长.12.如图,AB 是△O 的直径,CD 是弦,AB 与CD 相交于点E ,连接AC 、AD ,AC =AD .(1)求证:AB△CD .(2)若AB =12,BE =2,求CD 的长.13.如图,ABC 内接于O ,AC 是O 的直径,点D 是O 上一点,连接CD 、AD ,过点B 作BE AD ⊥,交DA 的延长线于点E ,AB 平分CAE ∠.(1)求证:BE 是O 的切线;(2)若30ACB ∠=︒,O 的半径为6,求BE 的长.14.如图,在半径为5的扇形AOB 中,△AOB=90°,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD△BC ,OE△AC ,垂足分别为D 、E .(1)当BC=6时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.15.已知AB 是△O 的直径,BD 为△O 的切线,切点为B .过△O 上的点C 作CD AB ,交BD 点D .连接AC ,BC .(1)如图①,若DC 为△O 的切线,切点为C .求△BCD 和△DBC 的大小; (2)如图②,当CD 与△O 交于点E 时,连接BE .若△EBD =30°,求△BCD 和△DBC 的大小.16.如图,AB 是△O 的直径,AC 与△O 交于点C ,△BAC 的平分线交△O 于点D ,DE△AC ,垂足为E .(1)求证:DE 是△O 的切线;(2)若直径AB =10,弦AC =6,求DE 的长.17.如图,在 Rt ABC ∆ 中, 90C ∠= , 在 AC ,上取一点 D ,以 AD 为直径作 O ,与 AB 相交于点 E ,作线段 BE 的垂直平分线 MN 交 BC 于点 N ,连接 EN .(1)求证: EN 是 O 的切线;(2)若 3,4AC BC == , O 的半径为 1 .求线段 EN 与线段 AE 的长.18.如图, ,,A B C 是 O 上的三个点, AB AC = ,点D 在 O 上运动(不与点 ,,A B C 重合),连接 DA , DB , DC .(1)如图1,当点D 在 BC 上时,求证: ADB ADC ∠=∠ ;(2)如图2,当点D 在 AB 上时,求证: 180ADB ADC ∠+∠=︒ ; (3)如图2,已知 O 的半径为 254 , 12BC = ,求 AB 的长. 19.如图,AB 是O 的直径,点P 是O 外一点,PA 切O 于点A ,连接OP ,过点B 作BC OP 交O 于点C ,点E 是AB 的中点,且106AB BC =,=.(1)PC 与O 有怎样的位置关系?为什么?(2)求CE 的长.20.如图,点A ,B ,C ,D 是直径为AB 的△O 上的四个点,C 是劣弧 BD 的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作△O的切线,交AB的延长线于点H,求△ACH 的面积.答案解析部分1.【答案】(1)证明:连接OE,∵OE=OD,∴△OED=△ADE,∵AD是直径,∴△AED=90°,∴△EAD+△ADE=90°,又∵△DEB=△EAD,∴△DEB+△OED=90°,∴△BEO=90°,∴OE△BC,∴BC是△O的切线.(2)证明:∵△BEO=△ACB=90°,∴AC△OE,∴△CAE=△OEA,∵OA=OE,∴△EAO=△AEO,∴△CAE=△EAO,∴AE为△CAB的角平分线,又∵EP△AB,△ACB=90°,∴CE=EP;(3)解:连接PF,∵CG=12,AC=15,∴AG===9,∵△CAE=△EAP,∴△AEC=△AFG=△CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG△AB,EP△AB,∴CF△EP,∴四边形CFPE是平行四边形,又∵CE=PE,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵△CAE=△EAP,△EPA=△ACE=90°,CE=EP,∴△ACE△△APE(AAS),∴AP=AC=15,∴PG=AP﹣AG=15﹣9=6,∵PF2=FG2+GP2,∴CF2=(12﹣CF)2+36,∴CF=152,∴四边形CFPE的面积=CF×GP=152×6=45.【解析】【分析】(1)由等腰三角形的性质得出直径定理得出△AED=90°,△DEB=△EAD,由余角的性质得出△DEB+△OED=90°,进而得出△BEO=90°,即可得出结论;(2)由平行线的性质和等腰三角形的性质可证AE为△CAB的角平分线,由角平分线的性质得出CE=EP;(3)连接PF,先证出四边形CFPE是菱形,可得出CF=EP=CE=PF,由AAS可证△ACE△△APE,可得AP=AC=15,由勾股定理求出CF的长,即可求解。
九年级数学专题复习之《圆》的综合训练卷

九年级数学专题复习之《圆》的综合训练卷一.选择题(共10小题)1.如图,矩形ABCD中.AB=3,BC=6,以点B为圆心、BA为半径画弧,交BC于点E,以点D为圆心、DA为半径画弧,交BC于点F,则阴影部分的面积为()A.B.6π﹣C.D.2.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF=,则BF的长为()A.B.1C.D.3.已知⊙O的半径为2,A为圆内一定点,AO=1.P为圆上一动点,以AP为边作等腰△APG,AP=PG,∠APG=120°,OG的最大值为()A.1+B.1+2C.2+D.2﹣14.如图,⊙O中,弦AB⊥CD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD 于M,过F作FH⊥AC,垂足为G,以下结论:①=;②HC=BF:③MF=FC:④+=+,其中成立的个数是()A.1个B.2个C.3个D.4个5.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连接CD交AB于点F,点P从点A出发沿AO向终点O运动,在整个运动过程中,△CFP与△DFQ的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大6.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是()A.5B.6C.7D.87.如图,已知OA=6,OB=8,BC=2,⊙P与OB、AB均相切,点P是线段AC与抛物线y=ax2的交点,则a的值为()A.4B.C.D.58.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则△AMN周长的最小值是()A.3B.4C.5D.69.如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是()A.πB.π+C.D.2π10.如图,半径为1的⊙O与直线l相切于点A,C为⊙O上的一点,CB⊥l于点B,则AB+BC 的最大值是()A.2B.C.D.二.填空题(共10小题)11.已知如图,AB=4,AC=2,∠BAC=60°,所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为.12.已知圆锥的侧面积是40π,底面圆直径为2,则圆锥的母线长是.13.如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=8,点D是BC上一点,BC=3CD,点P是线段AC上一个动点,以PD为直径作⊙O,点M为的中点,连接AM,则AM 的最小值为.14.如图,等边△ABC中,AB=2,点D是以A为圆心,半径为1的圆上一动点,连接CD,取CD的中点E,连接BE,则线段BE的最大值与最小值之和为.15.如图,AB是半圆O的直径,点C在半径OA上,过点C做CD⊥AB交半圆O于点D.以CD,CA为边分别向左、下作正方形CDEF,CAGH.过点B作GH的垂线与GH的延长线交于点I,M为HI的中点.记正方形CDEF,CAGH,四边形BCHI的面积分别为S1,S2,S3.(1)若AC:BC=2:3,则的值为;(2)若D,O,M在同条直线上,则的值为.16.如图,直线y=﹣x+m(m>0)与x轴、y轴分别交于点A,B,C是AB的中点,点D 在直线y=﹣2上,以CD为直径的圆与直线AB的另一交点为E,交y轴于点F,G,已知CE+DE=6,FG=2,则CD的长是.17.如图1,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,设PB+ PD的值为a,如图2,⊙O是正方形ABCD的内切圆,AB=4,点P是⊙O上一个动点,设AP+DP的值为b,如图3,MN=4,∠M=75°,MG=3.点O是△MNG内一点,设点O到△MNG三个顶点的距离和的值为c,则a2+b2+c2的最小值为.18.如图,正六边形ABCDEF中,G,H分别是边AF和DE上的点,GF=AB=2,∠GCH =60°,则线段EH长.19.如图,边长为5的圆内接正方形ABCD中,P为CD的中点,连接AP并延长交圆于点E,则DE的长为.20.已知:如图,在矩形ABCD中,AB=6,BC=9,点E是对角线AC上的一点,经过C,D,E三点的⊙O与AD,BC分别交于点F,G,连接ED,EF,EG,延长GE交AD于点H.若当△HEF是等腰三角形时,CE的长为.三.解答题(共10小题)21.如图,O是△ABC的外心,I是△ABC的内心,连AI并延长交BC和⊙O于D、E两点.(1)求证:EB=EI;(2)若AB=4,AC=3,BE=2,求AI的长.22.如图,AB是⊙O的直径,P在AB的延长线上,PD与⊙O相切于点D,C在⊙O上,PC=PD.(1)求证:PC是⊙O的切线;(2)连接AC,若AC=PC,PB=1,求⊙O的半径.23.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连接DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE (1)求证:OA=OB;(2)已知AB=4 ,OA=4,求阴影部分的面积.25.已知⊙O为△ABC的外接圆,直线l与⊙O相切于点P,且l∥BC.(1)连接PO,并延长交⊙O于点D,连接AD.证明:AD平分∠BAC;(2)在(1)的条件下,AD交BC于点E,连接CD.若DE=2,AE=6.试求CD的长.26.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.27.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,连接MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.28.如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AC=8,求S△BDE.29.如图,在△ABC中,BE是∠ABC的平分线,∠C=90°,点D在AB边上,以DB为直径的半圆O经过点E.(1)求证:AC是⊙O的切线.(2)若BC=3,⊙O的半径为2,求BE的长.30.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.。
中考数学专项复习圆与解直角三角形的综合练习

圆与解直角三角形的综合1.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A. B. C .2 D.55255122.如图,⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,且AB ⊥CD ,垂足为P ,AB =8 cm ,则sin ∠OAP 的值是( )A. B. C. D. 344535433. 如图,⊙A 经过点E 、B 、O 、C ,且C(0,8),E(-6,0),O(0,0),则cos ∠OBC 的值为( )A. B. C. D. 3545343164.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于点E ,则sinE 的值是( )A. B. C. D.121355325.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB =8,则tan ∠CBD 的值等于( )A. B. C. D.434535346.如图,在半径为6的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =6,垂足为E ,则tan ∠OEA 的值是( )A. B. C. D.346315621597.如图,△ABC 内接于⊙O ,连结OA 、OC ,⊙O 的半径为3,且sinB = ,则弦AC 的长为( )56A. B .5 C. D.1156538.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是 ____.9.在半径为1的⊙O 中,弦AB 、AC 的长分别为1和 ,则∠BAC 的度数为.210.在△ABC 中,AB =AC =10,cos B = ,如果圆O 的半径为2,3510且经过点B 、C ,那么线段AO 的长等于 __________.11.如图所示,以锐角△ABC 的边AB 为直径作⊙O ,交AC 、BC 于E 、D 两点,若AC =14,CD =4,7sin C =3tan B ,则BD = _____.12. 如图所示,在⊙O 中,直径AB =6,AB 与弦CD 相交于点E ,连结AC 、BD ,若AC =2,则cos D 的值为____.13. 如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连结AF 交CD 于点N.(1)求证:CA =CN ;(2)连结DF ,若cos ∠DFA = ,AN =2 ,求⊙O 的直径的长度.4510参考答案:1---7 DCAAD DB8. 89. 15°或105°10. 6或1011. 612. 1313. 解:(1)证明:连结OF ,则∠OAF =∠OFA.∵ME 与⊙O 相切,∴OF ⊥ME.∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF.∵ME ∥AC ,∴∠M =∠ACM =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠ACM =90°,∴∠ANC =90°-∠OAF ,∠BAC =90°-∠ACM =90°-2∠OAF ,∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC ,∴CA =CN.(2)连结OC.∵cos ∠DFA =,∠DFA =∠ACH ,45∴=.CH AC 45设CH =4a ,则AC =5a ,AH =3a.∵CA =CN ,∴NH =a.∴AN ==a =2,AH 2+NH 21010∴a =2,AH =3a =6,CH =4a =8.设圆的半径为r ,则OH =r -6.在Rt △OCH 中,∵OC 2=CH 2+OH 2,OC =r ,CH =8,OH =r -6,∴r 2=82+(r -6)2,解得r =.253∴⊙O 的直径的长度为2r =.503。
中考数学总复习《圆与三角形综合压轴解答题》专项提升练习题-带答案

中考数学总复习《圆与三角形综合压轴解答题》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在△ABC中AB=AC,⊙O是△ABC的外接圆,过点O作AC的垂线,垂足为D,分别交CB的延长线,AG于点E,F;AF,BC的延长线交于点G.(1)求证AC=CG.(2)若EB=CG,求∠BAC的度数.2.如图,在△ABC中AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求CG的长.3.如图,在Rt△ABC中∠ACB=90°,以BC为直径作⊙O,交AB边于点D,点E是边AC 的中点,直线ED、BC交于点F.(1)求证:直线DE是⊙O的切线;求线段BF的长度.(2)若BC=6,sin∠A=354.如图,锐角△ABC内接于⊙O,射线BE经过圆心O并交⊙O于点D,连结AD,CD,BC 与AD的延长线交于点F,DF平分∠CDE.(1)求证:AB=AC.(2)若BC=CF,求∠F的余弦值.,⊙O的半径为√5,求DF的长.(3)若tan∠ABD=125.如图,BD是圆O的直径AB=AC,AD交BC于点E,延长DB到F,使BF=BO,连接FA.(1)求证:AB2=AD⋅AE;(2)若AE=4,ED=8求AB的长;(3)在(2)的条件下,直线FA为⊙O相切吗?为什么?6.如图,AB是⊙O的直径,AB⊥CD于点E,G是弧AC上一点,AG,DC的延长线交于点F,连接AD、GD、GC,已知AE=CD,BE=2.(1)求证:∠ADG=∠F;(2)求⊙O的半径;(3)若点G是AF的中点,求AF的长.7.如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.(1)求证:AB=AC.(2)当AE=4,CE=6时,求:的值;①OEDE②CD的长.8.如图,AB为⊙O的直径,点C是弧AD的中点,过点C作射线BD的垂线,垂足为点E.(1)求证:CE是⊙O的切线;(2)若BE=3,弧CD=弧BD,求BC的长;(3)在(2)的条件下,若AB=4,求阴影部分的面积(用含有π的式子表示).9.已知,⊙O内弦AB、CD交于点E,AE=CE连接OE.(1)如图1,求证:OE平分∠BED;(2)如图2,连接AO交CD于点G,延长AO交⊙O于点F,连接DF,若∠GFD+2∠EAG=90°,求证:AE=OE;OH,EG=5√5求OA的(3)如图3,在(2)的条件下,延长EO交DF于点H,若AE=56长.10.如图1,把△ACD绕点C逆时针旋转90°得△BCE,点A,D分别对应点B,E,且满足A,D,E三点在同一条直线上.连接DE交BC于点F,△CDE的外接圆⊙O与AB交于G,H两点.(1)求证:BE是⊙O切线;(2)如图2 连接OB OC若sin∠CAE=√5判断四边形BECO的形状并说明理5由;(3)在(2)的条件下若CF=√5求GH的长.11.如图AB为⊙O直径P为AB延长线上一点过点P作⊙O切线切点为C CD⊥AB垂足为D连接AC和BC.(1)如图1 求证:CB平分∠PCD;(2)如图2 E为AB下方⊙O上一点且∠ACE=2∠PCB连接EB求证:AD= BD+EB;(3)如图3 在(2)问的条件下在CP上取一点F连接BF使AB=2CF过点B 作BF的垂线交AC于点G若AG=28BF=13求CE的长度.12.已知△ABC内接于⊙O D是弧AC上一点连接BD、AD,BD交AC于点M∠BMC=∠BAD.(2)如图2 过点D作⊙O的切线交BA的延长线于点F求证:DF∥AC;(3)如图3 在(2)的条件下BC是⊙O的直径连接DC,AM=1,DC=√6求四边形BFDC的面积.13.在△ABC中∠ACB的平分线CD交AB于点D.(1)如图1 点E在线段CD上AD=AE求证:△ACE∽△BCD;BC (2)如图2 AB是⊙O的直径点C在⊙O上射线CD交⊙O于点F.若AC=13的值;求CDAD(3)如图3 若点A,C,D在⊙O上CB交⊙O于点G.若AB=kAC,∠ACB=60°求ACAD 的值.(结果用含k的式子表示)14.如图1 AB为⊙O直径点E是弦AC中点连接OE并延长交⊙O于点D(1)求证:弧AD=弧CD;(2)如图2 连接BD交AC于点F求证:DE2=EF⋅EC;(3)如图3 在(2)条件下延长BA至点G连接GF若∠DFG=45°AG=√2CF=4求⊙O的周长.15.如图Rt△ABC中∠ABC=90°AB=8,BC=6以AB为直径的⊙O交斜边AC于点D.(2)如图2 设E是BC延长线上一动点AE交⊙O于点F BF交AC于点G连接DF.(ⅰ)若GB=GC求CE和DF的长;的最大值为______________.(直接写出结果)(ⅰ)求BFAE16.已知钝角三角形ABC内接于⊙O,E、D分别为AC、BC的中点连接DE.AC.(1)如图1 当点A、D、O在同一条直线上时求证:DE=12(2)如图2 当A、D、O不在同一条直线上时取AO的中点F连接FD交AC于点G 当AB+AC=2AG时.①求证:△DEG是等腰三角形;②如图3 连OD并延长交⊙O于点H连接AH.求证:AH∥FG.17.△ABC内接于⊙O AB=10半径为5√2.(1)如图1 求∠C的度数;(2)如图2 点D在劣弧AC上连接BD交AC于点E tan∠ABD=0.75求弦BD的长度;(3)如图3 在(2)的条件下点F在劣弧弧AD上连接BF交AC于点G延长AF BD交于点H AH=BG∠AEB=67.5°求线段FG的长度.18.如图1 已知∠ABC=60°点O在射线BC上且OB=4.以点O为圆心r(r>0)为半径作⊙O交直线BC于点D E.(1)当⊙O与∠ABC只有两个交点时r的取值范围是________.(2)当r=2√2时将射线BA绕点B按顺时针方向旋转α(0°<α<180°).①若BA与⊙O相切求α的度数为多少;②如图2 射线BA与⊙O交于M N两点若MN=OB求阴影部分的面积.19.如图1 BC为⊙O的直径点A为弧BC的中点连接AB AC(1)求∠ABC的度数;(2)如图2 点D在弧AB上连接AD BD连接CD交AB于点E求证:CD−BD=√2AD;(3)如图3 在(2)的条件下在CA上截取CF=AE过点F作FG⊥CD于点G FG 的延长线交⊙C于点H连接OG CH若OG=√2CH=√10求AD的长.20.如图:已知等腰Rt△BCD∠BCD=90°B、D在⊙O上延长BC交⊙O于点F 过B点作BE⊥BC交⊙O于点E连接DE连接EF I是△FBE的内心.(1)如图1 求证:∠DEF=∠DFE;(2)如图2 连接BI延长交⊙O于点A求证:AI=AF;(3)如图3 过I点作EF的垂线垂足为M当时CD=2时求FM−EM的长度.参考答案1.(1)解:连接CFⅰOF⊥ACⅰ弧AF=弧CFⅰ∠FCA=∠FACⅰAB=ACⅰ∠ABC=∠ACBⅰ∠ABC+∠AFC=180°∠GFC+∠AFC=180°ⅰ∠GFC=∠ABCⅰ∠GFC=∠ACBⅰ∠GFC=∠FAC+∠FCA,∠ACB=∠GAC+∠Gⅰ∠G=∠FCAⅰ∠G=∠FACⅰAC=CG;(2)解:连接AEⅰEB=CG AC=CG AB=ACⅰEB=AB∠ABC=∠ACBⅰ∠AEB=∠EAB设∠AEB=∠EAB=x则∠ABC=∠ACB=2xⅰOD⊥ACⅰAD=CDⅰED⊥ACⅰAE=CEⅰ∠ACB=∠EAC=2xⅰ∠BAC=∠EAC−∠EAB=x在△ABC中∠BAC+∠ACB+∠ABC=x+2x+2x=180°解得:x=36°ⅰ∠BAC=36°.2.解:(1)ⅰ在△ABC中AB=ACⅰ∠ACB=∠ABCⅰOB=ODⅰ∠ABC=∠ODBⅰ∠ACB=∠ABC=∠ODBⅰEF⊥ACⅰ∠CED=90°ⅰ∠ACB+∠EDC=90°ⅰ∠EDC=∠BDFⅰ∠ACB+∠EDC=∠ODB+∠BDF=90°ⅰOD⊥EF即EF是⊙O的切线.(2)连接ADⅰAB是⊙O的直径ⅰ∠ADB=90°ⅰ△ABC中AB=ACⅰCD=DB=12BC=3ⅰAC=AB=5ⅰAD=√AB2−DB2=4ⅰS△ACD=12×AC×ED=12×CD×ADⅰ1 2×5×ED=12×3×4ⅰED=125过点O作OM⊥AC ⅰOM⊥ACⅰED =OM =125ⅰAM =√OA 2−OM 2=√(25)2−(125)2=710连接OGⅰOG =OA OM ⊥ACⅰAM =GMⅰCG =AC −AG =AC −2AM =5−2×710=185.3.解:(1)连接OD 、CD 则OD =OBⅰ∠ODB =∠OBDⅰBC 为⊙O 的直径ⅰ∠BDC=90°ⅰ∠ADC =180°−∠BDC =90°ⅰ点E 是边AC 的中点ⅰDE =AE =CE =12ACⅰ∠FDB=∠EDA=∠Aⅰ∠ACB=90°ⅰ∠ODF=∠ODB+∠FDB=∠OBD+∠A=90°ⅰOD是⊙O的半径且DE⊥ODⅰ直线DE是⊙O的切线.(2)ⅰ∠BCD=∠A=90°−∠ABC,BC=6ⅰBD BC =sin∠BCD=sinA=35ⅰBD=35BC=35×6=185ⅰDC=√BC2−BD2=√62−(185)2=245ⅰBD DC =185245=34ⅰ∠FDB=∠EDA=∠A ⅰ∠FDB=∠FCDⅰ∠F=∠Fⅰ△FDB∽△FCDⅰBF DF =DFCF=BDDC=34ⅰDF=43BF DF2=BF⋅CF=BF(BF+6)ⅰ(43BF)2=BF(BF+6)解得BF=547或BF=0(不符合题意舍去)ⅰ线段BF的长度是547.4.(1)证明:∵四边形ABCD为⊙O的内接四边形∴∠CDF=∠ABC ∵∠EDF=∠ADB∠ADB=∠ACB∴∠EDF=∠ACB ∵DF平分∠CDE∴∠CDF=∠EDF∴∠ABC=∠ACB ∴AB=AC;(2)由题意可得BD是⊙O的直径∴∠DCB=90°∴DC⊥BF又∵BC=CF∴DC垂直平分线段BF∴DB=DF∴∠DBC=∠DFC∠BDC=∠FDC又∵DF平分∠CDE∴∠FDC=∠FDE∴∠BDC=∠FDC=∠FDE=60°∴∠F=30°∴cos∠F=cos30°=√3 2即∠F的余弦值为√32;(3)由题意可得BD是⊙O的直径∴∠BAD=90°∴tan∠ABD=12=ADAB又∵⊙O的半径为√5∴BD=2√5∴AD=2AB=4由(1)可知∠ADB=∠ACB=∠ABC∠BAD=∠FAB∴△BAD∽△FAB∴ABAF =ADAB∴4AF =24∴AF=8∴DF=AF−AD=8−2=6∴DF的长为6.5.(1)证明:ⅰAB=AC ⅰ弧AB=弧ACⅰ∠ABE=∠ADB ⅰ∠BAE=∠DAB ⅰ△BAE∼△DABⅰAB AD =AEABⅰAB2=AD⋅AE.(2)ⅰAE=4,ED=8ⅰAD=12ⅰAB2=AD⋅AE=48ⅰAB=4√3.(3)连接OAⅰBD=√AB2+AD2=√(4√3)2+122=8√3ⅰOB=AB=OA=4√3ⅰ∠OBA=∠OAB=60°ⅰBO=BFⅰBF=ABⅰ∠BAF=30°ⅰ∠FAO=∠BAF+∠OAB=90°ⅰ直线FA为⊙O相切.6.(1)证明:连接BG如图∵AB是⊙O的直径∴∠AGB=90°∵AB⊥DC∴∠AEF=90°∵∠ABG+∠BAG=90°∠F+∠EAF=90°∴∠ABG=∠F∵∠ADG=∠ABG ∴∠ADG=∠F;(2)解:连接OC如图设⊙O的半径为r∵BE=2∴AE=2r−2∴CD=2r−2OE=2r−2−r=r−2∵AB⊥CD∴DE=CE=12CD=r−1在Rt△OCE中(r−2)2+(r−1)2=r2解得r1=1(舍去)r2=5即⊙O的半径为5;(3)解:在Rt△ADE中∵DE=5−1=4AE=10−2=8∴AD=√42+82=4√5∴∠ADG=∠F∠DAG=∠FAD∴△ADG∽△AFD∴AD:AF=AG:AD 即AD2=AG⋅AF∵G点为AF的中点∴AG=12 AF∴12AF⋅AF=AD2即12AF2=(4√5)2解得AF=4√10或AF=−4√10(舍去)即AF的长为4√10.7.(1)证明:连接OC如图ⅰOA=OB OA=OCⅰ∠BAO=∠ABE∠OAC=∠OCAⅰ∠BAC=2∠ABEⅰ∠BAC=2∠BAOⅰ∠BAO=∠CAOⅰ∠OBA=∠OCAⅰ∠AOB=∠AOCⅰAB=ACⅰAB=AC;(2)解:①ⅰ∠ACD=∠ABD,∠ABD=∠CAO ⅰ∠CAO=∠ACDⅰOA∥CDⅰOE DE =AECE=46=23②过O点作OH⊥AC于H点如图设⊙O的半径为5x则OA=OD=5xⅰOE DE =23ⅰOE=2xⅰAH=CH=12AC=5ⅰEH=AH−AE=5−4=1在Rt△OEH中OH2=OE2−EH2=(2x)2−12=4x2−1在Rt△OAH中OH2=OA2−AH2=(5x)2−52=25x2−25ⅰ4x2−1=25x2−25解得x1=2√147,x2=−2√147(舍去)ⅰOA=5x=10√147ⅰOA∥CDⅰOA CD =AECE即10√147CD=23ⅰCD=15√147.8.解:(1)如图连接OCⅰ点C是弧AD的中点ⅰ弧AC=弧DCⅰ∠ABC=∠EBCⅰOB=OCⅰ∠ABC=∠OCBⅰ∠EBC=∠OCBⅰOC∥BEⅰBE⊥CEⅰ半径OC⊥CEⅰCE是⊙O的切线.(2)连接AC OC ODⅰ弧CD=弧BD弧AC=弧DC ⅰ弧AC=弧ADC=弧BCⅰ∠AOC=∠COD=∠BOD=60°ⅰ∠ABC=∠CBE=12∠AOC=30°ⅰcos∠CBE=BEBCBE=3ⅰBC=3cos30°=2√3;(3)连接CDⅰ∠COD=60°OC=OD ⅰ△OCD是等边三角形ⅰ∠OCD=60°ⅰ∠AOC=60°ⅰCD∥ABⅰS△COD=S△BCDⅰS阴影=S扇形COD.ⅰAB=4ⅰOC=2ⅰS阴影=S扇形COD=60π×22360=2π3.9.(1)证明:如图连接AC∵AE=CE∴∠EAC=∠ECA∴弧BC=弧AD∴弧BC+弧AC=弧AD+弧AC 即弧AB=弧CD∴AB=CD∴AB−AE=CD−CE 即BE=DE连接OD OB在△EOD和△EOB中{OD=OB DE=BE OE=OE∴△EOD≌△EOB(SSS)∴∠DEO=∠BEO∴OE平分∠BED;(2)证明:如图连接AC设∠EAG=α则∠GFD=90°−2α∴∠ACD=∠GFD=90°−2α∵AE=CE∴∠CAE=∠ACD=90°−2α∵∠OAC+∠ACO+∠AOC=180°即∠OAE+∠EAC+∠ACE+∠CO+∠EOC+∠AOE=180°∴∠OAE+(90°−2α)+(90°−2α)+∠ECO+∠EOC+∠AOE=180°∴∠OAE+∠ECO+∠EOC+∠AOE=4α连接OC在△AOE和△COE中{OA=OC AE=CE OE=OE∴△AOE≌△COE(SSS)∴∠ECO=∠EAG=α∠AOE=∠COE∴α+α+2∠AOE=4α∴∠AOE=α∴∠AOE=∠EAG∴AE=OE;(3)解:如图设AE=5x则OH=6x∴EO=AE=5x∴EH=11x由(2)可知∠HOF=∠AOE=α∴∠DHE=∠HOF+∠GFD=α+90°−2α=90°−α连接AC OD∠FAC=∠GAE+∠EAC=α+90°−2α=90°−α∴∠FDC=∠FAC=90°−α∴∠FDC=∠DHE∴DE=EH=11x∵DO=OH∴∠ODF=∠OFD=90°−2α∴∠EDO=∠EDH−∠ODF=90°−α−(90°−2α)=α∴∠EDO=∠EOG∵∠GEO=∠DEO∴△DOE∽△OGE∴DOOG=OEGE=DEOE∴DOOG=5x5√5=11x5x∴x=11√55OG=511DO∴ED=11x=121√5 5∴DG=96√5 5设⊙O半径为r∴OG=5 11r∴AG=6 11r∵∠GAE=∠GDO=α∠DGO=∠AGE∴△DOG∽△AEG∴OGEG=DGAG∴511r5√5=96√55611r ∴r=44∴OA=44.10.(1)解:证明:∵把△ACD绕点C逆时针旋转90°得△BCE∴∠CAD=∠CBE∠ACB=∠ECD=90°∵∠AFC=∠BFE∴∠BEF=∠ACF=90°∴AE⊥BE又∵∠ECD=90°∴ED为⊙O的直径∴BE为⊙O的切线;(2)四边形BECO为平行四边形.理由如下:∵把△ACD绕点C逆时针旋转90°得ΔBCE点A D分别对应点B E ∴DC=EC∠DCE=90°BE=AD∵OE=OD∴CO⊥ED∴∠COE=90°∵∠BEO=90°∴∠COE=∠BEO∴BE∥OC在Rt△AOC中sin∠CAE=OCAC =√55设OC=x则AC=√5x∴AO=√AC2−OC2=2x∵OA=OD+AD OD=OC∴AD=OC=x∴BE=OC∴四边形BECO是平行四边形;(3)过点O作OM⊥GH于点M连接OG则GH=2MG∵∠FCO+∠OCA=∠OCA+∠CAE=90°∴∠FCO=∠CAE∴sin∠FCO=sin∠CAE=√5 5∴sin∠FCO=FOCF=FO√5=√55∴FO=1∴CO=√CF2−FO2=2∵四边形BECO为平行四边形∴OF=BE=1OB=CE∴OE=2OF=2∴CE=√OE2+OC2=√22+22=2√2∴OB=2√2由(1)(2)知△ACB和≌BEO都为等腰直角三角形∴∠EBO=∠CBA=45°∴∠EBF=∠OBA∵BE∥CO∴∠EBF=∠FCO∴∠OBA=∠FCO∴sin∠OBM=OMOB=√55∴OM2√2=√55∴OM=2√105∵OG=OC=2∴MG=√OG2−OM2=√22−(2√105)2=2√155∴GH=2MG=4√155.11.(1)证明:如图连接OC∵PC是⊙O的切线∴∠PCO=90°即∠PCB+∠BCO=90°∵OC=OB∴∠BCO=∠CBO∴∠PCB+∠CBO=90°∵CD⊥AB∴∠BCD+∠CBO=90°∴∠PCB=∠BCD∴CB平分∠PCD;(2)证明:如图在线段DA上取点K使得DK=DB连接CK∵DK=DB CD⊥AB∴BC=KC∠BCD=∠KCD由(1)知∠BCD=∠PCB∴∠PCB=∠BCD=∠KCD∴∠BCK=2∠PCB∵∠ACE=2∠PCB∴∠BCK=∠ACE∴∠ACK=∠BCE∵弧BC=弧BC∴∠CAK=∠CEB在△ACK和△ECB中{∠CAK=∠CEB ∠ACK=∠BCE KC=BC∴△ACK≌△ECB(AAS)∴AK=BE∵AD=AK+DK ∴AD=BE+BD;(3)解:如图连接OC过F作FR⊥BC于R∵AB为⊙O直径∴∠ACB=90°=∠CRF∠BAC+∠ABC=90°∵CD⊥AB∴∠BCD+∠ABC=90°∴∠BAC=∠BCD由(1)知∠BCD=∠PCB∴∠BAC=∠FCR∴△ABC∽△CFR∴ACCR =BCFR=ABCF∵AB=2CF∴AC=2CR BC=2FR∵BF⊥BG∴∠BRF=90°=∠GCB ∴∠FBR=90°−∠CBG∠BGC=90°−∠CBG∴∠FBR=∠BGC∴△BRF∽△GCB∴GCBR =CBRF=GBBF∵BC=2FR BF=13∴GC=2BR BG=2BF=26设BR=t则GC=2t∵AG=28∴AC=AG+GC=28+2t∴CR=12AC=14+t∴BC=CR+BR=14+2t 在Rt△BCG中BC2+GC2=BG2∴(14+2t)2+(2t)2=262解得:t=5或t=−12(不合题意舍去)∴GC=2t=10∴AC=AG+GC=28+10=38由(2)知△ACK≌△ECB∴CE=AC=38.12.解:(1)ⅰ∠BMC=∠BAD又ⅰ∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAMⅰ∠ABD=∠DACⅰ弧AD=弧DCⅰ∠ABD=∠CBDⅰBD平分∠ABC.(2)连接OD,OD交AC于点NⅰFD是⊙O的切线D为切点OD是⊙O的半径ⅰOD⊥FDⅰ∠FDO=90°ⅰ弧AD=弧DCⅰOD垂直平分AC即ON⊥ACⅰ∠ANO=90°ⅰ∠ANO=∠FDOⅰAC∥FD.(3)ⅰBC是⊙O的直径ⅰ∠BAC=∠BDC=90°ⅰ∠FAC=180°−∠BAC=90°又ⅰ∠ANO=∠FDN=90°ⅰ矩形ANDFⅰAF=DN,∠F=90°又ⅰON⊥ACⅰAN=CNⅰ设MN=a则AN=CN=MN+AM=a+1ⅰCM=MN+CN=2a+1ⅰ在Rt△MDC中,cos∠ACD=CDMC =√62a+1在Rt△NCD中cosⅰACD=CNCD =a+1√6ⅰ√6 2a+1=a+1√6ⅰ a1=−52(舍去)ⅰMN=1,CN=a+1=2ⅰDN=AF=√CD2−CN2=√2又ⅰMN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°ⅰ△BAM≌△DNMⅰBA=ND=√2ⅰBF=AB+AF=2√2ⅰAN=FD=a+1=2ⅰ在Rt△BFD中DF×BF=2√2ⅰS△BFD=12=S△BFD+S△BDC=5√2.ⅰS四边形BFDC13.(1)证明:∵CD平分∠ACB∴∠ACD=∠BCD∵AD=AE∴∠AED=∠ADE∵∠AED+∠AEC=180°∠ADE+∠CDB=180°∴∠AEC=∠CDB∴△ACE∽△BCD.(2)解:如图过点A作CD的平行线交BC的延长线于点G∴AG∥CD∴∠G=∠DCB∠ACD=∠CAG∵CD平分∠ACB∴∠G=∠CAG∴CG=AC设AC=CG=m则BC=3m∵AB是⊙O的直径∴∠ACB=90°由勾股定理得:AB=√AC2+BC2=√m2+(3m)2=√10mAG=√AC2+CG2=√m2+m2=√2m ∴∠BCD=∠G∠B=∠B∴△BCD∼△BGA∴CDAG=BDAB=BCBG∴CD√2m=AB−ADAB=3m4m∴CD=3√24m AD=√104m∴CDAD =3√24m√104m=3√55.(3)解:如图作AH⊥BC于点H设AC=2n∵∠ACB=60°∴CH=n AH=√3n AB=kAC=2kn由勾股定理得:BH=√AB2−AH2=√(2kn)2−(√3n)2=√4k2n2−3n2=n√4k2−3∴BC=BH+HC=n√4k2−3+n=n(√4k2−3+1)过点A作CD的平行线交BC的延长线于点G∴AG∥CD∴∠G=∠DCB∠ACD=∠CAG∵CD平分∠ACB∴∠DCB=∠ACD∴CG=AC ∵AG∥CD∴BDDA=BCCG∴BDDA=BCAC∴AB−ADAD=BCAC∴2nk−ADAD=n(√4k2−3+1)2n∴AD=4nk√4k2−3+3∴ACAD =2n4nk√4k2−3+3=√4k2−3+32k.14.(1)证明:连接CO如图所示:ⅰAO=COⅰE是弦AC中点ⅰ∠AOD=∠CODⅰ弧AD=弧CD.(2)证明:连接DC如图所示:ⅰ弧AD=弧CDⅰ∠ABD=∠ACDⅰOD=OBⅰ∠ODB=∠OBDⅰ∠ACD=∠ODBⅰ△EDF∽△CDEⅰDE:CE=EF:DEⅰDE2=EF⋅EC.(3)解:连接AD交FG于点H如图所示:ⅰAB为⊙O的直径ⅰ∠ADB=90°ⅰ∠DFG=45°ⅰ∠DHF=90°−45°=45°ⅰ弧AD=弧CDⅰ∠B=∠DACⅰ∠B+∠G=∠EFG=45°∠DAC+∠AFG=∠DHF=45°ⅰ∠G=∠AFGⅰAF=AG=4ⅰ√2CF=4ⅰCF=2√2ⅰAC=AF+CF=4+2√2ⅰE为AC的中点AC=2+√2ⅰAE=CE=12ⅰEF=CE−CF=2−√2由(2)得:DE2=EF⋅EC=(2−√2)(2+√2)=2ⅰDE=√2设⊙O的半径为r在Rt△AOE中OA=r OE=OD−DE=r−√2AE=2+√2ⅰr2−(r−√2)2=(2+√2)2解得:r=2√2+2ⅰ2πr=(4√2+4)π即⊙O的周长为(4√2+4)π.15.解:(1)连接OD BD∵AB是直径∴∠ADB=90°∴∠BDC=90°若M是BC的中点∴DM=12BC=BM∴∠BDM=∠DBM∵OD=OB∴∠OBD=∠ODB∵∠ABC=90°∴∠OBD+∠DBM=90°∴∠ODB+∠BDM=90°∴OD⊥DM∴DM是⊙O的切线;(2)(ⅰ)∵GB=GC∴∠GBC=∠GCB∴∠BAF=∠GCB∵∠ABC=∠EBA=90°∵∠ABF+∠BAF=∠ABF+∠GBC=90°∴∠BAF=∠GBC∵∠ABC=∠EBA∴△ABC∼△EBA∴ABEB=BCAB∴AB2=BC⋅EB∴BE=32 3∴CE=323−6=143∵∠ADF与∠ABF所对的都是AF∵∠ADF=∠ABF,∠ABF+∠FBE=90°,∠FBE+∠E=90°∴∠ABF=∠E∴∠E=∠ADF∵∠DAF=∠CAE∴△ADF∼△AEC∴AFAC=DFECRt△ABC中Rt△ABE中∴S△ABE=12×AB×BE=12×AE×BF∴12×8×323=12×403×BF∴BF=325Rt△ABF中AF=√82−(325)2=245∴24510=DF143∴DF=168 75∴CE=143DF=16875;(ⅰ)设BE=xRt△ABE中AE=√x2+64S△ABE=12AB⋅BE=12AE⋅BF∴BF=8x√x2+64∴BFAE=8xx2+64=8(√x−8√x)2+16当√x=8√x时(√x−8√x)2+16的值最小为16∴BFAE 的最大值为12故答案为:12.16.(1)证明:ⅰD是BC的中点点A、D、O在同一条直线上ⅰOD⊥BCⅰ弧AB=弧ACⅰAB=ACⅰE、D分别为AC、BC的中点ⅰDE是△ABC的中位线ⅰDE=12ABⅰDE=12AC.(2)①ⅰE、D分别为AC、BC的中点ⅰAB=2DE,AC=2AEⅰAB+AC=2AGⅰ2DE+2AE=2AGⅰDE+AE=AGⅰAE+EG=AGⅰDE=EGⅰ△DEG是等腰三角形.②延长HO交⊙O于点N连接OB,OC,BN,CNⅰDE=EGⅰ∠EDG=∠EGDⅰ∠AED=∠EDG+∠EGD=2∠EGDⅰ∠EGD=12∠AEDⅰDE∥ABⅰ∠BAC+∠AED=180°ⅰ∠BAC+∠BNC=180°ⅰ∠AED=∠BNCⅰHO⊥BCⅰ∠BOC=2∠COHⅰ∠BOC=2∠BNCⅰ∠COH=∠BNCⅰ∠CAH=12∠COH=12∠BNCⅰ∠CAH=∠EGDⅰAH∥FG.17.解:(1)如图过点O作OM⊥AB于点M连接OA,OB ⅰAB=10半径为5√2ⅰAM=MB=12AB=5,OA=OB=5√2ⅰOM=√(5√2)2−52=5ⅰOM=AM=MBⅰ∠MOB=∠MOA=∠MBO=45°ⅰ∠AOB=90°ⅰ∠C=12∠AOB=45°.(2)过点O作OM⊥AB于点M交BD于点N连接OBⅰAB=10半径为5√2ⅰAM=MB=12AB=5,OA=OB=5√2ⅰOM=√(5√2)2−52=5ⅰAM=BM=OM=5ⅰtan∠ABD=0.75ⅰMN BM =MN5=34解得MN=154ⅰON=OM−MN=54过点O作OX⊥BD于点X 则BD=2BXⅰ∠BNM=∠ONXⅰ∠MBN=∠XONⅰtan∠MBN=tan∠XON=tan∠ABD=NXOX =34设NX=3k,OX=4k,则ON=√NX2+OX2=5kⅰ5k=54解得k=14ⅰOX=4k=1ⅰBX=√(5√2)2−12=7ⅰBD=2BX=14.(3)解:如图所示过点A作AS⊥BD于点S连接MS,OA,MO,BO在BC上截取BK= AE连接GKⅰ∠AOB=90°=∠ASBⅰA,S,O,B四点共圆ⅰ∠OBS=∠OAS设∠OBS=∠OAS=α则∠BAS=∠BAO+∠OAS=45°+α在△ABS中∠ABS=90°−∠BAS=45°−α又tan∠ABD=0.75ⅰtan(45°−α)=34ⅰAB=10设AS=3a则BS=4aⅰAB=√AS2+BS2=5aⅰa=2ⅰAS=6,BS=8ⅰ弧AB=弧ABⅰ∠ADS=∠C=45°ⅰ△ASD是等腰直角三角形则SA=SD=6ⅰ∠AEB=67.5°ⅰ∠SAE=90°−∠AEB=22.5°ⅰ∠EAD=∠SAD−∠SAE=22.5°ⅰAC是∠SAD的角平分线则E到AS,AD的距离相等设E到AS,AD的距离为d=SEⅰS△ASE S△AED =12AS×SE12ED×AS=12AS×d12AD×dⅰSE ED =ASAD=1√2ⅰSD=AS=6ⅰSE=6√2−6ED=12−6√2ⅰtan∠AES=tan67.5°=ASSE =66√2−6=√2+1ⅰ弧FC=弧FCⅰ∠HAE=∠GBK又ⅰAH=BGⅰ△AHE≌△BGK(SAS)ⅰ∠BGK=∠AHE;延长BO交⊙O于点J连接DJ ⅰ弧AD=弧ADⅰ∠AJD=∠ABD=45°−αⅰBD=14BJ=2BO=10√2ⅰDJ=√BJ2−BD2=2ⅰtanα=DJBD =214=17设∠FBD=∠FAD=β过点G作GY⊥BD于Yⅰ∠ADS=∠AHE+∠FAD=∠BGK+∠FBD=∠GPE=45°则∠ADH=135°ⅰ△PGE中∠PGE=180−∠GPE−∠GEP=67.5°ⅰ△PGE是等腰三角形ⅰPG=PE在△BPG,△ADH中AH=BG,∠HAD=∠GBD,∠ADH=∠BPG=135°ⅰ△BPG≌△ADHⅰBP=AD=6√2,PG=DHⅰSP=BP−BS=6√2−8PE=SE−SP=6√2−6−(6√2−8)=2ⅰPG=DH=2ⅰPE=PG=2ⅰGY=√22GP=√2ⅰAS∥GYⅰ△EGY∽△EASⅰEY ES =GYASⅰEY 6√2−6=√26解得:EY=2−√2ⅰBY=BE−EY=BS+SE−EY=8+(6√2−6)−(2−√2)=7√2ⅰtanβ=GYBY =√27√2=17ⅰα=βⅰ∠AHD=∠ADS−∠DAH=45°−α=∠ABS ⅰAH=ABⅰBS=SH则DH=SH−SD=8−6=2又AH=BGⅰAB=BG=10连接DF过点D作DR⊥AH于点R则∠DFH=∠ABH=∠H=45°−αⅰDH=DF=2ⅰtan(45°−α)=34则DR:RH:DH=3:4:5则DR=65,RH=85ⅰFH=2RH=165ⅰAF=AH−FH=10−165=345过点A作AW⊥BF于点W连接AGⅰAW=√22AF=17√25在Rt△ABW中BW=√AB2−AW2=31√25ⅰWG=BG−BW=10−31√25在Rt△AWG中AG=√AW2+WG2=√200−124√2ⅰ∠GPE=∠C=45°∠PGE=∠CGK=67.5°ⅰ△PGE∽△CGKⅰED=12−6√2ⅰEH=ED+DH=14−6√2ⅰPG CG =GEGK即2CG=√8−4√214−6√2解得:CG=28−12√2√8−4√2ⅰ∠AFG=∠C,∠FAG=∠GBC ⅰ△AGF∽△BGCⅰFG GC =AGBG即FG28−12√2√8−4√2=√200−124√210解得:FG=14−6√25√200−124√2√8−4√2=14−6√25(3√2−1)=48√25−10即FG=48√25−10.18.(1)解:(1)根据题意需要分两种情况:①在点D未到达点B前⊙O与射线BC有两个交点.如图1 当⊙O与AB相切于点G连接OG则OG⊥AB比相切之前ⅰ∠ABC=60°ⅰ∠BOG=30°ⅰBG=12OB=2OG=√3BG=2√3即此时r=2√3只要半径0<r<2√3则只有两个交点;②当半径大于OB时ⅰO分别与射线BA BC有一个交点如图2 当点D刚好与点B重合此时r=4结合图形可知r的取值范围为0<r<2√3或r>4;(2)解:①如图3 当射线BA在射线BC的上方与⊙O相切时设切点为P连接OP ⅰOB=4OP=2√2ⅰsin∠ABC=OPOB =√22ⅰ∠ABC=45°ⅰα=60°−45°=15°如图4 当射线BA在射线BC的下方与⊙O相切时设切点为P连接OP同理∠ABC=45°ⅰα=60°+45°=105°综上所述当α为15°或105°时射线BA与⊙O相切;②如图5 连接OM ON过点O作OQ⊥MN于点QⅰMQ=NQ=12MN=2ⅰOM=2√2ⅰsin∠MOQ MQOM =√22ⅰ∠MOQ=45°ⅰ∠MON=2∠MOQ=90°ⅰS阴影=90π(2√2)2360×(2√2)2=2π−4.19.(1)解:∵点A为弧BC的中点∴AB=AC∴AB=AC又∵BC为直径∴∠BAC=90°∴△ABC为等腰直角三角形∴∠ABC=45°.(2)证明:如图连接AO DO过点D作DN⊥AO于点N过点D作DM⊥BC于点M∵AB=AC OB=OC∴AO⊥BC∴∠DMO=∠MON=∠OND=∠NDM=90°∴四边形ONDM为矩形∴ON=DM OM=ND∵BC为直径∴∠BDC=90°∴BD2+CD2=BC2设DM=x则ON=x圆的半径为r则BC=2r∵S△BCD=12BD⋅CD=12BC⋅DM∴BD⋅CD=BC⋅DM=2rx∴(CD−BD)2=CD2−2CD⋅BD+BD2=BC2−2BD⋅CD=4r2−4rx∵AD2=AN2+DN2AN=OA−ON=r−x DN2=OD2−ON2=r2−x2∴AD2=(r−x)2+r2−x2=2r2−2rx∴(CD−BD)2=2AD2∵点D在弧AB上∴BD≤AB CD≥AC∴CD−BD>0∴CD−BD=√2AD.(3)解:如图过点A作AK⊥CD于点K连接OK作HF的延长线交⊙O于点I∵AB=AC∴∠ABC=∠ACB=45°∴∠ADC=∠ABC=45°∵∠AKE=90°∴∠DAK=90°−45°=45°=∠ADC∴AK=DK即△ADK为等腰直角三角形∵∠EAK=∠DAK−∠DAB=45°−∠DAB∠FCG=∠ACB−∠DCB=45°−∠DCB ∠DAB=∠DCB∴∠EAK=∠FCG又∵AE=CF∠AKE=∠CGF=90°∴△AEK≌△CFG(AAS)∴AK=CG∠EAK=∠FCG∵OB=OA=OC∴∠OAB=∠OBA=∠OAC=∠OCA=45°∵∠KAO=∠OAB−∠EAK∠GCO=∠OCA−∠FCG∴∠KAO=∠GCO即在△AKO和△CGO中{AK=CF∠KAO=∠GCOOA=OC∴△AKO≌CGO(SAS)∴OG=OK∠KOA=∠GOC∵∠GOC+∠AOG=∠AOC=90°∴∠KOG=∠KOA+∠AOG=90°∵OG=√2∴KG=√2OG=2过点O作OP⊥CD于点P则OP所在的直线垂直平分CD∴⊙O关于OP所在的直线对称CP=DP∵CG=DK∴CP−CG=DP−DK∴KP=GP∵AK⊥CD交⊙O于点A IG⊥CD交⊙O于点I∴点A点I关于OP所在直线对称∴弧AD与弧CI关于OP所在直线对称∴弧AD=弧CI∴∠ACD=∠CHI在△AKC和△CGH中{AK=CG∠AKC=∠CGH=90°∠ACD=∠CHG∴△AKC≌△CGH(AAS)∴CK=HG设AK=a则DK=CG=AK=a∴CK=KG+CG=2+a∴HG=CK=2+a ∵CG2+HG2=HC2HC=√10∴a2+(2+a)2=10解得a=1a=−3(舍去)∵△ADK为等腰直角三角形∴AD=√2AK=√2a=√2.20.(1)证明:如图1中∵BE⊥BF∴∠EBF=90°∴EF是直径∴∠EDF=90°∵△BCD是等腰直角三角形∴∠CBD=∠CDB=45°∴∠DEF=∠DBC=45°∴∠DEF=∠DFE=45°;(2)证明:如图2中连接IF.∵I是△BEF的内心∴∠IBF=∠IBE∠IFB=∠IFE∵∠AIF=∠IBF+∠IFB∠AFI=∠AFE+∠IFE∠AFE=∠IBE∴∠AIF=∠AFI∴AI=AF;(3)解:如图3中过点D作DJ⊥EB交EB的延长线于点J作△BEF的内切圆⊙I切点分别为P Q M.∵∠CBJ=∠J=∠DCB=90°∴四边形BJDC是矩形∵CB=CD∴四边形BJDC是正方形∴CD=DJ=BJ=BC∵∠DEF=∠DFE=45°∴DE=DF∴Rt△DCF≌Rt△DJE(HL)∴FC=EJ∵⊙I与△BEF内切于点P Q M∴EM=EP BP=BQ FQ=FM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与解直角三角形的综合
1.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于( )
A.
5
5
B.
25
5
C.2 D.
1
2
2.如图,⊙O的直径CD=10 cm,AB是⊙O的弦,且AB⊥CD,垂足为P,AB=8 cm,则sin∠OAP的值是( )
A.3
4
B.
4
5
C.
3
5
D.
4
3
3. 如图,⊙A经过点E、B、O、C,且C(0,8),E(-6,0),O(0,0),则cos∠OBC的值为( )
A.3
5
B.
4
5
C.
3
4
D.
3
16
4.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值是( )
A.1
2
B.
1
3
C.
5
5
D.
3
2
5.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于( )
A.4
3
B.
4
5
C.
3
5
D.
3
4
6.如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是( )
A.3
4
B.
6
3
C.
15
6
D.
215
9
7.如图,△ABC内接于⊙O,连结OA、OC,⊙O的半径为3,且sinB=5
6
,则弦AC的长为( )
A.11 B .5 C.56 D.5
3
8.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =1
2
,则AB 的长是 ____.
9.在半径为1的⊙O 中,弦AB 、AC 的长分别为1和 2 ,则∠BAC 的度数为 .
10.在△ABC 中,AB =AC =10,cos B =3
5 ,如果圆O 的半径为210,
且经过点B 、C ,那么线段AO 的长等于 __________.
11.如图所示,以锐角△ABC 的边AB 为直径作⊙O ,交AC 、BC 于E 、 D 两点,若AC =14,CD =4,7sin C =3tan B ,则BD = _____.
12. 如图所示,在⊙O中,直径AB=6,AB与弦CD相交于点E,连结AC、BD,若AC=2,则cos D的值为____.
13. 如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连结AF交CD于点N.
(1)求证:CA=CN;
(2)连结DF,若cos∠DFA=4
5
,AN=210 ,求⊙O的直径的长度.
参考答案:
1---7 DCAAD DB 8. 8
9. 15°或105° 10. 6或10 11. 6 12. 13
13. 解:(1)证明:连结OF ,则∠OAF =∠OFA. ∵ME 与⊙O 相切,∴OF ⊥ME.∵CD ⊥AB , ∴∠M +∠FOH =180°.
∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF.
∵ME ∥AC ,∴∠M =∠ACM =2∠OAF.∵CD ⊥AB , ∴∠ANC +∠OAF =∠BAC +∠ACM =90°,
∴∠ANC =90°-∠OAF ,∠BAC =90°-∠ACM =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC ,∴CA =CN. (2)连结OC.
∵cos ∠DFA =4
5,∠DFA =∠ACH ,
∴CH AC =45
. 设CH =4a ,则AC =5a ,AH =3a. ∵CA =CN ,∴NH =a.
∴AN =AH 2
+NH 2
=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设圆的半径为r ,则OH =r -6.
在Rt△OCH中,∵OC2=CH2+OH2,OC=r,CH=8,OH=r-6,
∴r2=82+(r-6)2,解得r=25 3
.
∴⊙O的直径的长度为2r=50 3
.。