高考物理专题 抛体运动与匀速圆周运动

合集下载

抛体、圆周运动总结讲解

抛体、圆周运动总结讲解

抛体复习总结:1、曲线运动的概念及性质:所有物体的运动从轨迹的不同可以分为两大类,即直线运动和曲线运动。

运动轨迹是直线的运动称为直线运动;运动轨迹是曲线的运动称为曲线运动。

2、曲线运动的速度:曲线运动中质点在某一时刻的(或在某一点的瞬时速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向。

3、曲线运动的性质速度是矢量,速度的变化,不仅指速度大小的变化,也包括速度方向的变化。

物体曲线运动的速度(即轨迹上各点的切线方向)时刻在发生变化,所以曲线运动是一种变速运动,一定具有加速度。

4、物体做曲线运动的条件曲线运动既然是一种变速运动,就一定有加速度,由牛顿第二定律可知,也一定受到合外力的作用。

当运动物体所受合外力的方向跟物体的速度方向在一条直线上(同向或反向)时,物体做直线运动。

这时合外力只改变速度大小,不改变速度的方向,当合外力的方向跟速度方向不在同一直线上时,可将合外力分解到沿着速度方向和垂直于速度方向上,沿着速度方向的分力改变速度大小,垂直于速度方向的分力改变速度的方向,这时物体做曲线运动。

若合外力与速度方向始终垂直,物体就做速度大小不变、方向不断改变的曲线运动。

若合外力为恒力,物体就做匀变速曲线运动。

总之,物体做曲线运动的条件是:物体所受的合外力方向跟它的速度方向不在同一直线上。

(二)运动的合成与分解:1、运动的合成与分解已知分运动的情况求合运动的情况叫运动的合成。

已知合运动的情况求分运动的情况叫运动的分解。

2、分运动与合运动一个物体同时参与两种运动时,这两种运动是分运动,而物体相对地面的实际运动都是合运动。

实际运动的方向就是合运动的方向。

3、合运动与分运动的特征(1)运动的独立性:一个物体同时参与两个(或多个)运动,其中的任何一个运动并不会受其他分运动的干扰,而保持其运动性质不变,这就是运动的独立性原理。

虽然各分运动互不干扰,但是它们共同决定合运动的性质和轨迹。

考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】

考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】

2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。

【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。

【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。

竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。

单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。

平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。

圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。

【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。

2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。

【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。

高二物理抛体运动的规律试题答案及解析

高二物理抛体运动的规律试题答案及解析

高二物理抛体运动的规律试题答案及解析1.自然界中某个量D的变化量,与发生这个变化所用时间的比值,叫做这个量D的变化率。

下列说法正确的是A.若D表示某质点做平抛运动的速度,则是恒定不变的B.若D表示某质点做匀速圆周运动的动量,则是恒定不变的C.若D表示某质点做竖直上抛运动离抛出点的高度,则一定变大。

D.若D表示某质点的动能,则越大,质点所受外力做的总功就越多【答案】A【解析】若D表示某质点做平抛运动的速度,则表示加速度,恒定不变.故A正确;若D表示某质点做匀速圆周运动的动量,则,表示向心力,大小不变,方向不停改变.故B错误;若D表示某质点做竖直上抛运动离抛出点的高度,则表示平均速度,平均速度在减小.故C错误;若D表示某质点的动能,则所受外力的功率,表示做功的快慢,不是做功的多少.故D错误.【考点】平抛运动;竖直上抛运动;圆周运动。

2.如图所示空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则粒子从D点离开场区;设粒子在上述三种情况下,从A到B点、A到C点和A到D点所用的时间分别是t1、t2和t3,比较t1、t2和t3的大小,则有(粒子重力忽略不计) [ ]A.B.C.D.【答案】C【解析】带电粒子由A点进入这个区域沿直线运动,从C点离开场区,这个过程粒子受到的电场力等于洛伦兹力,水平方向做匀速直线运动,运动时间,如果只有电场,带电粒子从A点射出,做类平抛运动,水平方向匀速直线运动,运动时间:,如果这个区域只有磁场,则这个粒子从D点离开场区,此过程粒子做匀速圆周运动,速度大小不变,方向改变,所以速度的水平分量越来越小,所以运动时间:,所以,故C正确.【考点】带电粒子在复合场、电场、磁场中的运动情况3.(易错卷)如图所示,足够长的斜面上A点,以水平速度v抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v水平速度抛出,落到斜面上所用时间为t2,则t1:t为:()2A.1 : 1B.1 : 2C.1 : 3D.1 : 4【答案】Bt,竖直方向有【解析】根据平抛运动分运动特点,水平方向x= v,θ为斜面的倾角,所以当初速度增大为原来的2倍时时间也增大为原来的2倍,B对;4.如右图是小球做平抛运动时的一闪光照片,该照片记下平抛小球在运动中的几个位置O、A、B、C,其中O为小球刚作平抛运动时初位置,O D为竖直线,照片的闪光间隔是1/30s,小球的初速度为 m/s(g = 10m/s2图中小方格均为正方形)。

2020-2022年(三年)全国高考物理真题精选:专题4抛体运动与圆周运动(学生版)公开课

2020-2022年(三年)全国高考物理真题精选:专题4抛体运动与圆周运动(学生版)公开课

2020-2022年(三年)全国高考物理真题精选——专题4抛体运动与圆周运动一.选择题(共15小题)1.(2022•广东)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L 。

当玩具子弹以水平速度v 从枪口向P 点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t 。

不计空气阻力。

下列关于子弹的说法正确的是( )A .将击中P 点,t 大于L vB .将击中P 点,t 等于L vC .将击中P 点上方,t 大于L vD .将击中P 点下方,t 等于Lv 2.(2021•全国)一迫击炮先后以大小相同的速度发射甲、乙两颗炮弹,炮筒与水平地面间的夹角分别为θ1、θ2(θ1<θ2<90°)。

两炮弹的射程分别为s 1、s 2,所到达的最大高度分别为h 1、h 2,假定空气阻力可以忽略,则( )A .s 1一定大于s 2B .s 1可能等于s 2C .h 1一定大于h 2D .h 1可能等于h 2 3.(2021•江苏)如图所示,A 、B 两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是( )A .A 比B 先落入篮筐B .A 、B 运动的最大高度相同C .A 在最高点的速度比B 在最高点的速度小D .A 、B 上升到某一相同高度时的速度方向相同4.(2021•辽宁)1935年5月,红军为突破“围剿”决定强渡大渡河。

首支共产党员突击队冒着枪林弹雨依托仅有的一条小木船坚决强突。

若河面宽300m ,水流速度3m/s ,木船相对静水速度1m/s ,则突击队渡河所需的最短时间为( )A .75sB .95sC .100sD .300s5.(2020•新课标Ⅱ)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。

若摩托车经过a 点时的动能为E 1,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。

高中物理第17讲抛体运动的规律(平抛、斜面上的平抛)

高中物理第17讲抛体运动的规律(平抛、斜面上的平抛)

学科教师辅导教案组长审核:一)例题解析1.(2017•武汉模拟)如图是中世纪的不学者依据观察画出的斜向上方抛出的物体的运动轨迹,该轨迹可分为3段,第1段是斜向上方的直线,第2段是圆运动的一部分,第3段是竖直向下的直线.如果空气阻力不可忽略,关于这3段轨迹( )A .第1段轨迹可能正确B .第2段轨迹可能正确C .第3段轨迹可能正确D .3段轨迹不正确二)相关知识点讲解、方法总结基本规律(以斜上抛为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0,在最高点,v x =v 0cos θ。

射程x =v 20sin2θg。

(2)竖直方向:v 0y =v 0sin θ,F 合y =mg ,在最高点,v y =0,射高y =v 20sin 2θ2g。

三)巩固练习1.(2017春•普宁市校级期中)地面上足够高处有四个小球,在同一位置同时以相同的速率v 向上、向下、向左、向右抛出四个小球,不计空气阻力,经过1s 时四个小球在空中的位置构成的图形正确的是( )A .B .C.D.2.(2017春•禅城区校级期中)如图是做斜抛运动物体的轨迹,C点是轨迹的最高点,AB是轨迹上等高的两个点.下列叙述中正确的是(不计空气阻力)()A.物体在C点速度为零B.物体在A点速度与物体在B点速度相同C.物体在A点、B点的水平速度均大于物体在C点的速度D.物体在A、B、C各点的加速度都相同考点二:平抛运动一)例题解析1.如图所示,在斜面底端的正上方h处水平抛出一个物体,飞行一段时间后,垂直地撞在倾角为53°的斜面上。

不计空气阻力,sin53°=08,重力加速度为g,可知物体完成这段飞行的时间为()A.B.C.D.条件不足,无法计算2.(2018•新课标Ⅱ卷一模)如图所示,在高尔夫球场上,某人从高出水平地面h的坡顶以速度v0水平击出一球,球落在水平地面上的C点。

已知斜坡AB与水平面的夹角为θ,不计空气阻力。

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

g lcos
θ=
gh,所以小球 A、B 的角速度相等,
线速度大小不相等,故 A 正确,B 错误;
对题图乙中 C、D 分析,设绳与竖直方向的夹角为 θ,小球的质量为 m,绳上拉力为 FT,则有 mgtan θ=man,FTcos θ=mg,得 an=gtan θ,FT =cmosgθ,所以小球 C、D 所需的向心加速度大小相等,小球 C、D 受 到绳的拉力大小也相等,故 C、D 正确.
当转速较大,FN指向转轴时, 则FTcos θ+FN′=mω′2r 即FN′=mω′2r-FTcos θ 因ω′>ω,根据牛顿第三定律可知,小球对杆的压力 不一定变大,C错误; 根据F合=mω2r可知,因角速度变大,则小球所受合外力变大,D正确.
例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图
例7 如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做 水平面内的匀速圆周运动,甲在乙的上方.则 A.球甲的角速度一定大于球乙的角速度
√B.球甲的线速度一定大于球乙的线速度
C.球甲的运动周期一定小于球乙的运动周期 D.甲对内壁的压力一定大于乙对内壁的压力
对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,
√B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
√D.小球所受合外力的大小一定变大
对小球受力分析,设弹簧弹力为FT,弹簧与水平方向 的夹角为θ, 则对小球竖直方向有 FTsin θ=mg,而 FT=kcMosPθ-l0 可知θ为定值,FT不变,则当转速增大后,小球的高度 不变,弹簧的弹力不变,A错误,B正确; 水平方向当转速较小,杆对小球的弹力FN背离转轴时,则FTcos θ- FN=mω2r 即FN=FTcos θ-mω2r

专题一第3讲抛体运动与圆周运动

专题一第3讲抛体运动与圆周运动

A.轰炸机的飞行高度
B.轰炸机的飞行速度 C.炸弹的飞行时间
D.炸弹投出时的动能
栏目 导引
专题一 力与运动
【解析】设轰炸机投弹位置高度为 H,炸弹水平位移为 x, H- h 1 vy vy 1 则 H- h= vy· t, x= v0t,二式相除 = · ,因为 = 2 2 v0 v0 x 1 h h , x= ,所以 H= h+ 2 , A 正确;根据 H- tan θ tan θ 2tan θ 1 2 h= gt 可求出飞行时间, 再由 x= v0t 可求出飞行速度, 故 2 B、 C 正确;不知道炸弹质量,不能求出炸弹的动能,D 错误.
2 合速度 v= v2 x+vy
斜面
分解 位移
水平 x=v0t 1 2 竖直 y= gt 2 合位移 x 合= x2+y2
栏目 导引
专题一 力与运动
拓展训练1
(2013· 高考上海卷)(多选)如图,轰炸机沿水平
方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂
直击中山坡上的目标A.已知A点高度为h,山坡倾角为θ,由 此可算出( ABC )
(2)小球运动到轨道最低点B时对轨道的压力大小;
(3)平台末端O点到A点的竖直高度H.
栏目 导引
专题一 力与运动
【解析】 (1)小球恰好运动到 C 点,由重力提供向心力, v2 C 即 mg= m 解得 vC= gR= 5 m/s. R (2)从 B 点到 C 点,由机械能守恒定律有 1 2 1 mvC+ 2mgR= mv2 2 2 B 在 B 点对小球进行受力分析,由牛顿第二定律有 v2 B FN- mg= m R 联立解得 FN= 6.0 N 根据牛顿第三定律,小球对轨道的压力大小为 6.0 N.

抛体运动和圆周运动

抛体运动和圆周运动

物理知识点复习提纲(二)(人教版必修2适用)专题四:抛体运动和圆周运动【知识要点】1、运动的合成与分解(A级)(1)运动的合成与分解指的是位移、速度、加速度的合成与分解。

由于它们都是矢量,所以遵循平行四边形定则。

(2)合运动与分运动具有等时性、独立性。

(3)合运动的性质讨论:两个匀速直线运动的合运动一定是匀速直线运动;匀速直线运动和匀变速直线运动的合运动可能是匀变速直线运动或匀变速曲线运动。

2、平抛运动的规律(B级)(1)定义:将物体以一定初速度水平抛出去,物体只在重力作用下的运动叫平抛运动,其轨迹是抛物线的一部分。

(2)平抛运动是匀变速曲线运动,在任何相等的时间内速度变化大小相等,方向相同。

(3 )对平抛运动的处理办法:先进行运动的分解再进行运动的合成。

Vx=V0Vy=gt V= V02+(gt)2,tanθ=Vy/Vx=gt/V0X=V0·t Y=1/2gt2 S= X2+Y2 ,tanα=Y/X= gt/2V0a x =0 a y=g a=0(4)物体做平抛运动的时间由决定;物体做平抛运动的水平射程由和决定。

【例题分析】例1、在高空匀加速水平飞行的飞机上自由释放一物,若空气阻力不计,飞机上人看物体的运动轨迹是( A )A.倾斜的直线B.竖直的直线C.不规则曲线D.抛物线例2、如图所示,在高度分别为h A、h B(h A>h B)两处以v A、v B相向水平抛出A、B两个小物体,不计空气阻力,已知它们的轨迹交于C点,若使A、B两物能在C处相遇,应该是( B) 必须大于v BA。

.vB。

A物必须先抛C。

v B必须大于v AD。

A、B必须同时抛3、匀速圆周运动(A 级)(1)定义:物体做圆周运动,在任意相等的时间内里通过的弧长均相等的运动。

(2)特点:速度大不变,方向时刻在变化,故不是匀变速曲线运动。

(3)描述匀速圆周运动的物理量:线速度:描述质点沿圆弧运动的快慢,V=S/t=2πR/T=R·w角速度:描述质点绕圆心转动的快慢,w=θ/t=2π/T周期:质点绕圆周运动一圈所用时间.国际单位s,T越小,运动越快.T=1/f向心加速度:只改变速度的大小,而不改变速度的方向。

2021物理统考版二轮复习学案:专题复习篇 专题1 第3讲 抛体运动与圆周运动含解析

2021物理统考版二轮复习学案:专题复习篇 专题1 第3讲 抛体运动与圆周运动含解析

2021高考物理统考版二轮复习学案:专题复习篇专题1 第3讲抛体运动与圆周运动含解析抛体运动与圆周运动[建体系·知关联][析考情·明策略]考情分析近几年高考对本讲的考查集中在平抛运动与圆周运动规律的应用,命题素材多与生产、生活、体育运动学结合,题型以选择题为主.素养呈现1.运动合成与分解思想2。

平抛运动规律3.圆周运动规律及两类模型素养落实1.掌握渡河问题、关联速度问题的处理方法2。

应用平抛运动特点及规律解决相关问题3.掌握圆周运动动力学特点,灵活处理相关问题考点1|曲线运动和运动的合成与分解1.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质。

(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则。

2.渡河问题中分清三种速度(1)合速度:物体的实际运动速度。

(2)船速:船在静水中的速度。

(3)水速:水流动的速度,可能大于船速。

3.端速问题解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解,常见的模型如图所示。

甲乙丙丁[典例1]如图所示的机械装置可以将圆周运动转化为直线上的往复运动.连杆AB、OB可绕图中A、B、O三处的转轴转动,连杆OB在竖直面内的圆周运动可通过连杆AB使滑块在水平横杆上左右滑动。

已知OB杆长为L,绕O点做逆时针方向匀速转动的角速度为ω,当连杆AB与水平方向夹角为α,AB杆与OB杆的夹角为β时,滑块的水平速度大小为()A.错误!B.错误!C.错误!D.错误![题眼点拨]①“连杆OB在竖直平面的圆周运动"表明B点沿切向的线速度是合速度,可沿杆和垂直杆分解.②“滑块在水平横杆上左右滑动”表明合速度沿水平横杆。

D[设滑块的水平速度大小为v,A点的速度的方向沿水平方向,如图将A点的速度分解:滑块沿杆方向的分速度为v A分=v cos α,B点做圆周运动,实际速度是圆周运动的线速度,可以分解为沿杆方向的分速度和垂直于杆方向的分速度,设B的线速度为v′,则v′=Lω,v B=v′·cos θ=v′cos(β-90°)=Lωsin β,又二者沿分杆方向的分速度是相等的,即v A分=v B分,联立解得v=错误!,故本题正确选项为D。

高中物理课件运动的合成与分解讲义

高中物理课件运动的合成与分解讲义
说明:斜抛运动只作定性要 求.
热点视角
1.平抛运动的规律及其研究方法, 圆周运动的角速度、线速度和向 心加速度是近几年高考的热点, 且多数是与电场力、洛伦兹力联 系起来综合考查. 2.竖直平面内圆周运动也是高考的 热点,该类题型主要综合考查牛 顿第二定律和机械能守恒定律或 能量守恒定律. 3.天体运动、人造卫星的考查频率 很高,主要综合考查万有引力定 律和圆周运动.经常结合航天技 术、人造地球卫星等现代科技的 重要领域进行命题.
第五章 抛体运动与圆周运动 万有引力定律及其应用
3.速率变化情况判断 (1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变.
栏目 导引
第五章 抛体运动与圆周运动 万有引力定律及其应用
如图所示,一物体在水平恒力的作用下沿光滑水平面
第五章 抛体运动与圆周运动 万有引力定律及其应用
2015高考导航
第五章 抛体运动与圆周运动 万有引力定律及其应用
考纲展示
1.运动的合成与分解 Ⅱ 2.抛体运动 Ⅱ 3.匀速圆周运动、角速度、 线速度、向心加速度 Ⅰ
4.匀速圆周运动的向心力 Ⅱ 5.离心现象 Ⅰ 6.万有引力定律及其应用 Ⅱ 7.环绕速度 Ⅱ 8.第二宇宙速度和第三宇宙 速度 Ⅰ 9.经典时空观和相对论时空 观Ⅰ
栏目 导引
第五章 抛体运动与圆周运动 万有引力定律及其应用
1.一个物体在F1、F2、F3、…、Fn共同作用下做匀速直线运 动,若突然撤去外力F2,而其他力不变,则该物体( A ) A.可能做曲线运动 B.不可能继续做直线运动 C.一定沿F2的方向做直线运动 D.一定沿F2的反方向做匀减速直线运动 解析:根据题意,物体开始做匀速直线运动,物体所受的合外 力一定为零,突然撤去F2后,物体所受其余力的合力与F2大小 相等,方向相反,而物体速度的方向未知,故有很多种情况: 若速度和F2在同一直线上,物体做匀变速直线运动,若速度和 F2不在同一直线上,物体做曲线运动,A正确.

高考物理考前三个月:专题3-抛体运动与圆周运动(含答案)

高考物理考前三个月:专题3-抛体运动与圆周运动(含答案)

1.(·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g 6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.2.(·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图2A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 答案 ACD解析 赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R ,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.3.(·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c ⑥联立①②④⑤⑥可得v 水平=2103m/s.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O 点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向答案 B解析人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob方向即可对甲实施救助.2.如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D .tan α与时间t 成正比 答案 BD解析 由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.3.如图6所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d答案 CD解析 环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则 对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰. (2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等. (4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.( √ ) (2)变速运动一定是曲线运动.( × )(3)做曲线运动的物体所受的合外力一定是变力.( × )考题二 平抛(类平抛)运动的规律4.如图7所示,A 、B 两点在同一条竖直线上,A 点离地面的高度为2.5h .B 点离地面的高度为2h .将两个小球分别从A 、B 两点水平抛出,它们在P 点相遇,P 点离地面的高度为h .已知重力加速度为g ,则( )图7A .两个小球一定同时抛出B .两个小球抛出的时间间隔为(3-2)h gC .小球A 、B 抛出的初速度之比v A v B =32 D .小球A 、B 抛出的初速度之比v Av B =23 答案 BD解析 平抛运动在竖直方向上做自由落体运动,由h =12gt 2,得t =2hg,由于A 到P 的竖直高度较大,所以从A 点抛出的小球运动时间较长,应先抛出.故A 错误;由t =2h g,得两个小球抛出的时间间隔为Δt =t A -t B =2×1.5hg-2hg=(3-2)hg .故B 正确;由x =v 0t 得v 0=xg 2h ,x 相等,则小球A 、B 抛出的初速度之比v A v B= h B h A= h 1.5h=23,故C 错误,D 正确.5.在水平地面上的O 点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A 点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是( )图8A .甲先到达最大高度处B .乙先到达最大高度处C .乙先到达A 点D .甲先到达水平地面 答案 C解析 斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图像可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.6.如图9,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为10 m 处的O 点,以5 m/s 的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g =10 m/s 2)( )图9A .2B .0.5C .1 D. 2答案 A解析 如图所示,由三角形的边角关系可知, AQ =PQ所以在竖直方向上有, OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s. v y =gt =10 m/s 所以tan θ=v yv 0=21.平抛运动规律以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向,竖直向下的方向为y 轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.图10(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.8.如图12所示,质量为m 的竖直光滑圆环A 的半径为r ,竖直固定在质量为m 的木板B 上,木板B 的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m 的小球C .现给小球一水平向右的瞬时速度v 0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v 0必须满足( )图12A.3gr ≤v 0≤5grB.gr ≤v 0≤3grC.7gr ≤v 0≤3grD.5gr ≤v 0≤7gr答案 D解析 在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有: 2mgr +12mv 21=12mv 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg 从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12mv 22=12mv 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .9.如图13所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω; (3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W . 答案 见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有 mg sin θ=ma 解得a =g sin θ 小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为N ,水平方向上有N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有N cos θ-k Δl 2sin θ-mg =0 解得ω=mg sin θ+k Δl 2ml 0+Δl 2cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0, 此时有mg tan θ=mω20L 0cos θ 解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2]根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12mv 201.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型). 3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四 抛体运动与圆周运动的综合10.如图14所示,小球沿水平面以初速度v 0通过O 点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则( )图14A .球进入竖直半圆弧轨道后做匀速圆周运动B .若小球能通过半圆弧最高点P ,则球在P 点受力平衡C .若小球的初速度v 0=3gR ,则小球一定能通过P 点D .若小球恰能通过半圆弧最高点P ,则小球落地点到O 点的水平距离为2R 答案 CD解析 不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =mv 2PR得v P =gR , mg ·2R +12mv 2P =12mv 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确. 11.如图15所示,参加某电视台娱乐节目的选手从较高的平台以v 0=8 m/s 的速度从A 点水平跃出后,沿B 点切线方向进入光滑圆弧轨道,沿轨道滑到C 点后离开轨道.已知A 、B 之间的竖直高度H =1.8 m ,圆弧轨道半径R =10 m ,选手质量m =50 kg ,不计空气阻力,g =10 m/s 2,求:图15(1)选手从A 点运动到B 点的时间及到达B 点的速度; (2)选手到达C 点时对轨道的压力.答案 (1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s 选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12mv 2C -12mv 2B 在C 点:N C -mg =m v 2C RN C =1 200 N由牛顿第三定律得,选手对轨道的压力 N C ′=N C =1 200 N ,方向竖直向下曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破: 1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口. 2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化答案AD解析物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D正确.2.如图16所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图16A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC .小船沿轨迹AB 运动位移最大、时间最长.速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动位移最大、速度最小.则小船的最小速度v min =a va 2+b 2答案 D解析 小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a va 2+b 2,所以C 错误,而D 正确.3.如图17所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,定滑轮到杆的距离OC =h .开始时A 位于P 点,PO 与水平方向的夹角为30°.现将A 、B 同时由静止释放,则下列分析正确的是( )图17A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小 C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B ghm A答案 AD解析 物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.4.如图18所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )图18A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍 答案 B解析 根据tan θ=12gt 2v 0t =gt 2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.5.如图19所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中( )图19A .A 做匀变速直线运动,B 做变加速曲线运动 B .相同时间内B 的速度变化一定比A 的速度变化大C .两球的动能都随离地竖直高度均匀变化D .A 、B 两球一定会相碰 答案 C解析 A 球做的是自由落体运动,是匀变速直线运动,B球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.6.如图20所示,一个质量为0.4 kg 的小物块从高h =0.05 m 的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O 点水平飞出,击中平台右下侧挡板上的P 点.现以O 为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y =x 2-6(单位:m),不计一切摩擦和空气阻力,g =10 m/s 2,则下列说法正确的是( )图20A .小物块从水平台上O 点飞出的速度大小为1 m/sB .小物块从O 点运动到P 点的时间为1 sC .小物块刚到P 点时速度方向与水平方向夹角的正切值等于5D .小物块刚到P 点时速度的大小为10 m/s 答案 AB解析 从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m/s ,D 错误.7.如图21所示,一根质量不计的轻杆绕水平固定转轴O 顺时针匀速转动,另一端固定有一个质量为m 的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能( )图21A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向答案 C解析因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F3的方向,故选C.8.如图22所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图22A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB答案BC解析因为A、B两物体的角速度大小相等,根据F n=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对A、B整体分析,f B=2mrω2,对A 分析,有:f A=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,,有沿半径向外滑动的趋势,故C正确;对A、B整体分析,μB×2mg=2mrω2B,解得ωB=μB gr,因为B先滑动,可知B先达到临界角速度,可对A分析,μA mg=mrω2A,解得ωA=μA gr知B的临界角速度较小,即μB<μA,故D错误.9.如图23所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图23(1)若小球通过圆形轨道最高点A 时给轨道的压力大小恰为小球的重力大小,求小球在B 点的初速度多大?(2)若小球从B 点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B 点的初速度大小的范围.答案 (1)2 3 m/s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s 解析 (1)小球在最高点A 处,根据牛顿第三定律可知轨道对小球的压力 N =N ′=mg ①根据牛顿第二定律N +mg =mv 2A R②从B 到A 过程,由动能定理可得-mg ·(2R )=12mv 2A -12mv 20③ 代入数据可解得v 0=2 3 m/s ④(2)情况一:若小球恰好停在C 处,对全程进行研究,则有: -μmgL =0-12mv 21⑤得v 1=4 m/s ⑥ 若小球恰好过最高点A mg =mv A ′2R⑦从B 到A 过程-mg ·(2R )=12mv A ′2-12mv 22⑧得v 2=10 m/s ⑨所以当10 m/s≤v B ≤4 m/s 时,小球停在BC 间.⑩情况二:若小球恰能越过壕沟,则有-μmgL =12mv 2C -12mv 23⑪ h =12gt 2⑪ s =v C t ⑬得v 3=6 m/s ⑭所以当v B ≥6 m/s 时,小球越过壕沟.⑮情况三:若小球刚好能运动到与圆心等高位置,则有 -mgR =0-12mv 24⑯得v 4=2 m/s ⑰所以当v B ≤2 m/s 时,小球又沿圆轨道返回.⑱综上,小球在B 点的初速度大小的范围是v B ≤2 m/s 或10 m/s≤v B ≤4 m/s 或v B ≥6 m/s 10.如图24所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图24(1)小球从P 点抛出时的速度大小v 0;(2)小球从C 点运动到D 点过程中摩擦力做的功W ; (3)小球从D 点返回经过轨道最低点B 的压力大小. 答案 (1)4 m/s (2)-8 J (3)56 N 解析 (1)在A 点有: v 2y =2gh ① v yv 0=tan θ② 由①②式解得:v 0=4 m/s ③(2)整个运动过程中,重力做功为零,根据动能定理得知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能: W =-12mv 20=-8 J。

高三物理抛体运动的规律试题答案及解析

高三物理抛体运动的规律试题答案及解析

高三物理抛体运动的规律试题答案及解析1.如图所示,在水平地面上有一高H=0.8m、半径r=0.6m的光滑水平圆台,在圆台正中央的O 点用长为0.6m的轻绳系着一个质量m1=0.03kg的小球,在O点正上方高h=0.06m的O’点用轻绳系着一个质量为m2=0.02kg的物块,绳子伸直时,物块正好静止在圆台边缘。

现沿圆周切线方向给小球v0=8m/s的初速度,小球与物块碰撞后以v1=2m/s的速度继续前进,忽略空气阻力以及小球和物块的大小,g=10m/s2(1)试求小球与物块碰撞时对物块做的功W;(2)若碰撞后瞬间系小球的轻绳断裂,求小球落地点P到圆台下边缘的距离S;(3)若系物块的轻绳强度足够大,而系小球的轻绳能承受的最大接力T=5N,不计碰撞时对绳子拉力的冲击,试通过计算说明,小球与物块是否会在圆台上发生第二次碰撞。

【答案】(1)0.81J (2)0.4m (3)不会与小球发生第二次碰撞【解析】(1)小球与物块碰撞时,满足动量守恒定律,则有:解得:对物块由动能定理可得:解得:(2)碰撞后瞬间系小球的轻绳断裂,小球将做平抛运动,则有:水平位移为:由几何关系可得,小球落地点P到圆台下边缘的距离S为:解得:(3)物块达到脱离圆台的临界时,受力如下图由几何关系可得:解得:即,则物块会飞离台面,物块不会与小球发生第二次碰撞【考点】本题考查了圆周运动和平抛运动的应用。

2.同重力场作用下的物体具有重力势能一样,万有引力场作用下的物体同样具有引力势能。

若取无穷远处引力势能为零,物体距星球球心距离为r时的引力势能为星球上以初速度v竖直向上抛出一个质量为m的物体,不计空气阻力,经t秒后物体落回手中,则【答案】 ABD【解析】A对;,B正确;从星球表面竖直抛物体至无穷远速度为0的过3.如图所示,平行板电容器与恒压电源连接,电子以速度垂直于电场线方向射入并穿过平行板间的电场,若仅使电容器上极板上移,设电容器极板上所带电荷量Q,电子穿出平行板时的在垂直于板面方向偏移的距离,以下说法正确的是A.Q减小,不变B.Q减小,减小C.Q增大,减小D.Q增大,增大【答案】B【解析】若仅使电容器上极板上移,则两极板间距d变大,由知,电容器的电容减小。

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

高考物理一轮复习 专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)(含解析)-人教版高

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题1.如下列图,AB是倾角为30θ=︒的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体〔可以看做质点〕从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动。

P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ。

求:〔1〕物体做往返运动的整个过程中在AB轨道上通过的总路程;〔2〕最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;〔3〕为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′至少多大。

【答案】〔1〕Rμ;〔2〕(33)mg-;〔3〕(33)13Rμ+-【解析】【名师点睛】此题综合应用了动能定理求摩擦力做的功、圆周运动与圆周运动中能过最高点的条件,对动能定理、圆周运动局部的内容考查的较全,是圆周运动局部的一个好题.①利用动能定理求摩擦力做的功;②对圆周运动条件的分析和应用;③圆周运动中能过最高点的条件.2.如下列图,足够长的光滑斜面与水平面的夹角为037θ=,斜面下端与半径0.50R m =的半圆形轨道平滑相连,连接点为C ,半圆形轨道最低点为B ,半圆形轨道最高点为A ,sin 0.637=,0cos 0.837=,当地的重力加速度为210/g m s =。

〔1〕假设将质量为0.10m kg =的小球从斜面上距离C 点为 2.0L m =的斜面上D 点由静止释放,如此小球到达半圆形轨道最低点B 时,对轨道的压力多大?〔2〕要使小球经过最高点A 时不能脱离轨道,如此小球经过A 点时速度大小应满足什么条件? 〔3〕当小球经过A 点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回A 点?【答案】〔1〕 6.2N N = 〔2〕 2/C v m s ≥ 〔3〕12/C v m s =如此x 轴方向的分加速度为37x a gsin =-°,y 轴方向的分加速度为37y a gcos =︒且有0x A v a t +=,2122y R a t =联立解得 12/C v m s =【名师点睛】解决此题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达A 点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化。

2020年高考物理十年真题精解(全国Ⅰ卷)专题03 抛体运动与圆周运动(解析版)

2020年高考物理十年真题精解(全国Ⅰ卷)专题03 抛体运动与圆周运动(解析版)

三观一统十年高考真题精解03 抛体运动与圆周运动十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一:物体作曲线运动的条件(2016年新课标Ⅰ卷T20)如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P的竖直线对称。

忽略空气阻力。

由此可知()A.Q点的电势比P点高B.油滴在Q点的动能比它在P点的大C.油滴在Q点的电势能比它在P点的大D.油滴在Q点的加速度大小比它在P点的小【答案】AB【解析】试题分析:带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P的竖直线对称,可以判断合力的方向竖直向上,而重力方向竖直向下,可知电场力的方向竖直向上,运动电荷是负电荷,所以匀强电场的方向竖直向下,所以Q点的电势比P点高,带负电的油滴在Q点的电势能比它在P点的小,在Q点的动能比它在P点的大,故AB正确,C错误。

在匀强电场中电场力是恒力,重力也是恒力,所以合力是恒力,所以油滴的加速度恒定,故D错误。

(2016年新课标Ⅰ卷T18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【答案】BC【解析】试题分析:因为原来质点做匀速直线运动,合外力为0,现在施加一恒力,质点所受的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变,速度的变化率不变。

(福建专用)2014届高考物理三轮 典型专题检测卷 抛体运动与圆周运动

(福建专用)2014届高考物理三轮 典型专题检测卷 抛体运动与圆周运动

抛体运动与圆周运动一、选择题(本题共8小题,每小题8分,共64分。

每小题只有一个选项正确)1.(2013·泉州一模)一快艇从离岸边100m远的河流中央向岸边行驶。

已知快艇在静水中的速度图像如图甲所示;河中各处水流速度相同,且速度图像如图乙所示。

则()A.快艇的运动轨迹一定为直线B.快艇的运动轨迹可能为直线,也可能为曲线C.快艇最快到达岸边,所用的时间为20 sD.快艇最快到达岸边,经过的位移为100 m2.(2013·扬州二模)如图所示,光滑水平桌面上,一小球以速度v向右匀速运动,当它经过靠近桌边的竖直木板的ad边正前方时,木板开始做自由落体运动。

若木板开始运动时,cd边与桌面相齐,则小球在木板上的正投影轨迹是()3.(2013·宁德二模)如图所示,水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径R∶r =2∶1。

当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为ω1,小木块的向心加速度为a1;若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为ω2,小木块的向心加速度为a2,则()A.=B.=C.=D.=4.(2013·成都二模)如图,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点。

O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()A. B.C. D.5.(2013·永州二模)如图所示,两个半径不同而内壁光滑的半圆轨道固定于地面,两个质量不同的小球先后从与球心在同一水平高度的A、B两点由静止开始自由下滑,通过轨道最低点时,下列说法错误的是()A.小球对两轨道的压力相同B.小球对两轨道的压力不同C.此时小球所需的向心力不相等D.此时小球的向心加速度相等6.(2013·济南一模)如图所示,一网球运动员将球在边界处正上方水平向右击出,球刚好过网落在图中位置(不计空气阻力),数据如图所示,则下列说法中正确的是()A.击球点高度h1与球网高度h2之间的关系为h1=2h2B.若保持击球高度不变,球的初速度v0只要不大于,就一定落在对方界内C.任意降低击球高度(仍大于h2),只要击球初速度合适,球一定能落在对方界内D.任意增加击球高度,只要击球初速度合适,球一定能落在对方界内7.(2013·南昌二模)如图所示,用长为L的轻绳把一个小铁球悬挂在高2L的O点处,小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,则有()A.小铁球在运动过程中轻绳的拉力最大为5mgB.小铁球在运动过程中轻绳的拉力最小为mgC.若运动中轻绳断开,则小铁球落到地面时的速度大小为D.若小铁球运动到最低点时轻绳断开,则小铁球落到地面时的水平位移为2L8.如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m的带负电的小球以水平方向的初速度v0由O点射入该区域,刚好通过竖直平面中的P点,已知连线OP与初速度方向的夹角为45°,则此带电小球通过P点时的速度为()A.v0B.v0C.2v0D.v0二、计算题(本题共2小题,共36分。

2024年高考物理热点:抛体运动和圆周运动模型(解析版)

2024年高考物理热点:抛体运动和圆周运动模型(解析版)

热点 抛体运动和圆周运动模型1.命题情境源自生产生活中的与力的作用下沿抛体运动和圆周运动相关的情境,对生活生产中力和直线有关的问题平衡问题,要能从情境中抽象出物理模型,正确画受力分析图,运动过程示意图,正确利用牛顿第二定律、运动学公式、动能定理、动量定理、动量守恒定律等解决问题。

2.命题中既有单个物体多过程问题又有多个物体多过程问题,考查重点在受力分析和运动过程分析,能选择合适的物理规律解决实际问题。

3.命题较高的考查了运算能力和综合分析问题的能力。

一、平抛运动的二级结论(1)做平抛运动的物体在任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,则tanα=yx2。

(2)做平抛运动的物体在任一时刻任一位置处,其速度与水平方向的夹角α的正切值,是位移与水平方向的夹角θ的正切值的2倍,即tanα=2tanθ。

(3)若物体在斜面上平抛又落到斜面上,则其竖直位移与水平位移之比等于斜面倾角的正切值。

(4)若平抛物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值。

(5)平抛运动问题要构建好两类模型,一类是常规平抛运动模型,注意分解方法,应用匀变速运动的规律;另一类是平抛斜面结合模型,要灵活应用斜面倾角,分解速度或位移,构建几何关系。

平抛运动中的临界问题1.平抛运动的临界问题有两种常见情形(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好达到某一方向。

2.解题技巧:在题中找出有关临界问题的关键字,如“恰好不出界”“刚好飞过壕沟”“速度方向恰好与斜面平行”“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题。

二、斜上抛运动1.斜上抛运动的飞行时间、射高、射程:(1)在最高点时:v y=0,由④式得到t=v0sinθg⑤物体落回与抛出点同一高度时,有y =0,由③式得飞行时间t 总=2v 0sin θg⑥(2)将⑤式代入③式得物体的射高:H m =v 20sin 2θ2g ⑦(3)将⑥式代入①式得物体的射程:x m =v 20sin2θg注意:当θ=45°时,射程x m 最大。

专题2 第4讲抛体运动与圆周运动

专题2  第4讲抛体运动与圆周运动

(1)滑块经过B点时对圆弧轨道的压力;
(2)滑块与木板之间的动摩擦因数;
(3)滑块在木板上滑过的距离。
【解题探究】
(1)滑块经过B点时对圆弧轨道的压力的求解思路。 ①先求滑块滑到轨道底端的速度v。 动能定理 。 a.物理规律:_________ b.方程式: mgR 1 mv 2 。
2
②求滑块滑到轨道B点时轨道的支持力FN。
【解题探究】 (1)请写出小船渡河同时参与的两个分运动: 水流的运动 。 ①沿河岸方向:___________ 小船的运动 。 ②沿船头方向:___________ (2)请画出选项中小船同时参与的两个分运动的矢量图。
提示:
【解析】选A、B。小船渡河的运动可看作水流的运动和小船运
动的合运动。虚线为小船从河岸M驶向对岸N的实际航线,即合 速度的方向,小船合运动的速度的方向就是其真实运动的方向, 根据题意画出选项中小船同时参与的两个分运动的矢量图如图 所示,由图可知,实际航线可能正确的是A、B。
(2)特殊求解方法:对于有些问题,可以过抛出点建立适当的
直角坐标系,将加速度、初速度沿坐标轴分解,然后分别在 x、
y轴方向上列方程求解。
(3)斜面上平抛运动的求解方法:建立平抛运动的两个分速度 和分位移以及斜面倾角之间的关系,这往往是解决问题的突破 口。
【变式训练】如图所示,边长为L的正方形ABCD中有竖直向上 的匀强电场,一个不计重力的带电粒子,质量为 m,电荷量为q, 以初速度v0从A点沿AD方向射入,正好从CD的中点射出,而且
t
②求木板与地面间的动摩擦因数μ 1。 牛顿第二定律 。 a.物理规律:_____________ μ 1(M+m)g=(M+m)a2 。 b.方程式:_________________
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2015·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6hC.L 12g 6h <v <12 (4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h2.(多选)(2015·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max.选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()图2A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等3.(2015·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点.已知h=2 m,s= 2 m.取重力加速度大小g=10 m/s2.图3(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.(2015·南通二模)如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向2.(多选)(2015·盐城二模)如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D.tan α与时间t成正比3.(多选)(2015·南昌二模)如图6所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d,杆上的A点与定滑轮等高,杆上的B点在A点下方距离为d处.现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是()图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰.(2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等.(4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.(√)(2)变速运动一定是曲线运动.(×)(3)做曲线运动的物体所受的合外力一定是变力.(×)考题二平抛(类平抛)运动的规律4.(2015·镇江模拟)高楼上某层窗口违章抛出一石块,恰好被曝光时间(光线进入相机镜头的时间)为0.2 s的相机拍摄到,图7是石块落地前0.2 s时间内所成的像(照片已经放大且方格化),每个小方格代表的实际长度为1.5 m,忽略空气阻力,g取10 m/s2,则()图7A.石块水平抛出的初速度大小约为225 m/sB.石块将要落地时的速度大小约为7.5 m/sC.图乙中像的反向延长线与楼的交点就是石块抛出的位置D.石块抛出位置离地高度约为28 m5.(2015·武汉四月调研)在水平地面上的O点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是()图8A.甲先到达最大高度处B.乙先到达最大高度处C.乙先到达A点D.甲先到达水平地面6.(2015·赣州模拟)如图9,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O点,以5 m/s的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g=10 m/s2)()图9A.2 B.0.5C.1 D. 21.平抛运动规律图10以抛出点为坐标原点,水平初速度v0方向为x轴正方向,竖直向下的方向为y轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.(2015·绵阳三诊)如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零B.球A的速度大小为2gLC.水平转轴对杆的作用力为1.5mgD.水平转轴对杆的作用力为2.5mg8.(2015·哈尔滨第六中学二模)如图12所示,质量为m的竖直光滑圆环A的半径为r,竖直固定在质量为m的木板B上,木板B的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m的小球C.现给小球一水平向右的瞬时速度v0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v0必须满足()图12A.3gr≤v0≤5grB.gr≤v0≤3grC.7gr≤v0≤3grD.5gr≤v0≤7gr9.(2015·淮安三调)如图13所示,光滑杆AB长为L,B端固定一根劲度系数为k、原长为l0的轻弹簧,质量为m的小球套在光滑杆上并与弹簧的上端连接.OO′为过B点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a及小球速度最大时弹簧的压缩量Δl1;(2)当球随杆一起绕OO′轴匀速转动时,弹簧伸长量为Δl2,求匀速转动的角速度ω;(3)若θ=30°,移去弹簧,当杆绕OO′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A时球沿杆方向的速度大小为v0,求小球从开始滑动到离开杆过程中,杆对球所做的功W.1.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型).2.找向心力的来源是解决圆周运动的出发点,学会牛顿第二定律在曲线运动中的应用.3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四抛体运动与圆周运动的综合10.(多选)(2015·揭阳二模)如图14所示,小球沿水平面以初速度v0通过O点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则()图14A.球进入竖直半圆弧轨道后做匀速圆周运动B.若小球能通过半圆弧最高点P,则球在P点受力平衡C.若小球的初速度v0=3gR,则小球一定能通过P点D.若小球恰能通过半圆弧最高点P,则小球落地点到O点的水平距离为2R11.(2015·南京三模)如图15所示,半径可变的四分之一光滑圆弧轨道置于竖直平面内,轻道的末端B处切线水平,现将一小物体从轨道顶端A处由静止释放,若保持圆心的位置不变,改变圆弧轨道的半径(不超过圆心离地的高度).半径越大,小物体()图15A.落地时的速度越大B.平抛的水平位置越大C.到圆弧轨道最低点时加速度越大D.落地时的速度与竖直方向的夹角越大12.(2015·雅安三诊)如图16所示,参加某电视台娱乐节目的选手从较高的平台以v0=8 m/s 的速度从A点水平跃出后,沿B点切线方向进入光滑圆弧轨道,沿轨道滑到C点后离开轨道.已知A、B之间的竖直高度H=1.8 m,圆弧轨道半径R=10 m,选手质量m=50 kg,不计空气阻力,g=10 m/s2,求:图16(1)选手从A点运动到B点的时间及到达B点的速度;(2)选手到达C点时对轨道的压力.曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破:1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口.2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.(多选)(2015·广东六校联考)关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化2.(2015·湖南省十三校第二次联考)如图17所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图17A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC.小船沿轨迹AB运动位移最大、时间最长.速度最小,最小速度v min=a v bD.小船沿轨迹AB运动位移最大、速度最小.则小船的最小速度v min=a va2+b23.(多选)(2015·宜宾二诊)如图18所示,水平光滑长杆上套有一个质量为m A的小物块A,细线跨过O点的轻小光滑定滑轮一端连接A,另一端悬挂质量为m B的小物块B,C为O点正下方杆上一点,定滑轮到杆的距离OC=h.开始时A位于P点,PO与水平方向的夹角为30°.现将A、B同时由静止释放,则下列分析正确的是()图18A.物块B从释放到最低点的过程中,物块A的动能不断增大B.物块A由P点出发第一次到达C点的过程中,物块B的机械能先增大后减小C.PO与水平方向的夹角为45°时,物块A、B速度大小关系是v A=2 2v BD.物块A在运动过程中最大速度为2m B gh m A4.(2015·临汾四校二模)如图19所示,从倾角为θ的足够长的斜面顶端P以速度v0抛出一个小球,落在斜面上某处Q点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v0,小球仍落在斜面上,则以下说法正确的是()图19A.夹角α将变大B.夹角α与初速度大小无关C.小球在空中的运动时间不变D.PQ间距是原来间距的3倍5.(2015·莆田三校模拟)如图20所示,水平地面附近,小球B以初速度v斜向上瞄准另一小球A射出,恰巧在B球射出的同时,A球由静止开始下落,不计空气阻力.则两球在空中运动的过程中()图20A.A做匀变速直线运动,B做变加速曲线运动B.相同时间内B的速度变化一定比A的速度变化大C.两球的动能都随离地竖直高度均匀变化D.A、B两球一定会相碰6.(多选)(2015·洛阳第二次统考)如图21所示,一个质量为0.4 kg的小物块从高h=0.05 m的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O点水平飞出,击中平台右下侧挡板上的P点.现以O为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y=x2-6(单位:m),不计一切摩擦和空气阻力,g=10 m/s2,则下列说法正确的是()图21A.小物块从水平台上O点飞出的速度大小为1 m/sB.小物块从O点运动到P点的时间为1 sC.小物块刚到P点时速度方向与水平方向夹角的正切值等于5D.小物块刚到P点时速度的大小为10 m/s7.(2015·黄山二质检)如图22所示,一根质量不计的轻杆绕水平固定转轴O顺时针匀速转动,另一端固定有一个质量为m的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能()图22A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向8.(多选)(2015·安阳二模)如图23所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图23A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB 9.(2015·辽宁重点中学协作体4月模拟)如图24所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图24(1)若小球通过圆形轨道最高点A时给轨道的压力大小恰为小球的重力大小,求小球在B点的初速度多大?(2)若小球从B点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B点的初速度大小的范围.10.(2015·金丽衢十二校二次联考)如图25所示,半径R=2.5 m的光滑半圆轨道ABC与倾角θ=37°的粗糙斜面轨道DC相切于C点,半圆轨道的直径AC与斜面垂直.质量m=1 kg的小球从A点左上方距A点高h=0.45 m的P点以某一速度v0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D点.已知当地的重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图25(1)小球从P点抛出时的速度大小v0;(2)小球从C点运动到D点过程中摩擦力做的功W;(3)小球从D点返回经过轨道最低点B的压力大小.答案精析专题3 抛体运动与圆周运动真题示例1.D [发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有:3h -h =gt 212① L 12=v 1t 1② 联立①②得v 1=L 14g h 当速度最大时,球斜向右侧台面两个角发射,有(L 22)2+L 21=v 2t 2③ 3h =12gt 22④ 联立③④得v 2=12(4L 21+L 22)g 6h 所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12 (4L 21+L 22)g 6h,选项D 正确.] 2.ACD [赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr 2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.] 3.(1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v b v 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c⑥联立①②④⑤⑥可得v 水平=2103m/s.考题一 运动的合成与分解1.B [人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob 方向即可对甲实施救助.] 2.BD [由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.]3.CD [环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.]考题二 平抛(类平抛)运动的规律4.D [石块水平抛出的初速度大小v 0=x t =1.50.2 m /s =7.5 m/s ,故A 错误;石块将要落地时,由于时间短,可近似看成匀速运动,位移为x =1.5×12+32 m ≈4.74 m ,v =x t =4.740.2m /s=23.7 m/s ,即石块将要落地时的速度大小约为23.7 m/s ,故B 错误;石块在空中为平抛运动,轨迹为一条曲线,不是直线,不能反向延长求石块抛出位置,故C 错误;石块落地前0.2 s 时间内在竖直方向的平均速度v y =Δh t =3×1.50.2m /s =22.5 m/s ,即形成的像中间时刻的瞬时速度,形成的像总时间为0.2 s ,即从开始起经0.1 s 的瞬时速度为22.5 m/s ,可得:石块从抛出点至该点的时间t =v yg=2.25 s ,所以石块从抛出点至形成的像上端所需时间:t 上=(2.25-0.1)s =2.15 s ,对应形成的像上端离抛出点的竖直高度h =12gt 2上=12×10×2.152m ≈23.11 m ,加上形成的像在图片中的竖直高度为4.5 m ,h 总=27.61 m ≈28 m ,故D 正确.]5.C [斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图象可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.]6.A [如图所示,由三角形的边角关系可知,AQ =PQ所以在竖直方向上有,OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s.v y =gt =10 m/s 所以tan θ=v yv 0=2]考题三 圆周运动问题的分析7.C [球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.]8.D [在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有:2mgr +12m v 21=12m v 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12m v 22=12m v 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .] 9.见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有mg sin θ=ma 解得a =g sin θ小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为F N ,水平方向上有F N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有F N cos θ-k Δl 2sin θ-mg =0解得ω=mg sin θ+k Δl 2m (l 0+Δl 2)cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0,此时有mg tan θ=mω20L 0cos θ解得L 0=2L3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2] 根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12m v 20考题四 抛体运动与圆周运动的综合10.CD [不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =m v 2PR得v P =gR , mg ·2R +12m v 2P =12m v 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确.] 11.D [根据动能定理知mgH =12m v 2知总高度不变,末速度大小不变,故A 错误;根据平抛运动规律知H -R =12gt 2,x =v 0t ,mgR =12m v 20,得x =2gR ·2(H -R )g=2R (H -R ),平抛运动的水平位移随R 的增大先增大后减小,故B 错误;到圆弧轨道最低点时加速度a =v 20R =2g ,故加速度大小与R 无关,故C 错误;小物体落地时竖直分速度v y =gt ,设落地速度与水平方向的夹角为θ,有tan θ=gtv 0=g ·2(H -R )g2gR=H -RR,R 越大,落地时的速度与竖直方向的夹角越大,故D 正确.]12.(1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12m v 2C -12m v 2B在C 点:F N C -mg =m v 2CRF N C =1 200 N由牛顿第三定律得,选手对轨道的压力F N C ′=F N C =1 200 N ,方向竖直向下专题综合练1.AD [物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A 正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B 错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C 错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D 正确.]2.D [小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a v a 2+b2,所以C 错误,而D 正确.]3.AD [物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.]4.B [根据tan θ=12gt 2v 0t =gt2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.]5.C [A 球做的是自由落体运动,是匀变速直线运动,B 球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.]6.AB [从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m /s ,D 错误.]7.C [因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F 3的方向,故选C.]8.BC [因为A 、B 两物体的角速度大小相等,根据F n =mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A 错误;对A 、B 整体分析,F f B =2mrω2,对A 分析,有:F f A =mrω2,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,故B 正确;A 所受的静摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C 正确;对A 、B 整体分析,μB ×2mg =2mrω2B ,解得ωB =μB g r,对A 分析,μA mg =mrω2A ,解得ωA = μA gr,因为B 先滑动,可知B 先达到临界角速度,可知B 的临界角速度较小,即μB <μA ,故D 错误.] 9.(1)2 3 m /s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s。

相关文档
最新文档