2018版高考数学大一轮复习第四章三角函数解三角形4_3三角函数的图像与性质教师用书文北师大版
高考数学大一轮复习第四章三角函数、解三角形4.3三角函数的图象与性质教师用书
(浙江专用)2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.3三角函数的图象与性质教师用书1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1). 2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].2.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z. 3.(2016·绍兴期末)函数f (x )=2cos(4x +π3)-1的最小正周期为________,f (π3)=________. 答案π20 解析 T =2π4=π2,f (π3)=2cos(43π+π3)-1=2×cos 53π-1=0.4.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________. 答案 2或-2解析 ∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·台州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π] 解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg sin x +cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z . (2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. (2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z , 则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2,因此选A. (2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·宁波模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6 (2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z , 又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z ,∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( )A .2B .4C .πD .2π(2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.4.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 都有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( ) A .-1 B .3 C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于________.解析 (1)由图象知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C.4.(2016·余姚模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ) (ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( ) A.12 B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.(2016·金丽衢十二校联考)函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________. 答案 π5解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5.8.函数y =cos 2x +sin x (|x |≤π4)的最小值为_______________________________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.(2016·金华模拟)若f (x )=2sin ωx +1 (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增函数,所以[-π2,2π3]⊆[-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增函数,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.10.(2017·杭州质检)设函数f (x )=2sin(ωx +π6)(ω>0,x ∈R ),最小正周期T =π,则实数ω=________,函数f (x )的图象的对称中心为______________,单调递增区间是___________. 答案 2 (k π2-π12,0),k ∈Z (k π-π3,k π+π6),k ∈Z 解析 由题意知2πω=π,得ω=2,令2x +π6=k π,k ∈Z ,得x =k π2-π12,k ∈Z , 所以其对称中心为(k π2-π12,0),k ∈Z , 令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以其单调递增区间为[k π-π3,k π+π6],k ∈Z .11.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.12.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 ∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对任意x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为 [k π-5π12,k π+π12],k ∈Z .*13.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
2018届通用课标高考数学第1轮复习第四章三角函数、解三角形第4节三角函数的图象和性质课件
故当 t=- 22,即 x=-π4时,ymax=-- 22+12+2
=2
2+1 2.
[答案] (1)D
(2)x2kπ+π4≤x≤54π+2kπ,k∈Z
(3)-12,12
2 2+1 (4) 2
(1)求三角函数的定义域实际上是解简单的三角不等式, 常借助三角函数线或三角函数图象来求解.
(2)函数 y= sinx-cosx的定义域为________.
(3)函数 y=cosx+π3,x∈0,π3的值域是______. (4) 函 数 y = cos2x - 2sinx 在 -π4,π4 上 的 最 大 值 为 ________. [解析] (1)由 2x+π6≠π2+kπ(k∈Z), 得 x≠π6+k2π(k∈Z), 故函数 f(x)的定义域为x|x≠π6+k2π,k∈Z.
(1)y=sinx 在第一、四象限是增函数.(
)
(2)所有的周期函数都有最小正周期.(
)
(3)y=ksinx+1(x∈R)的最大值为 k+1.(
)
(4)y=sin|x|为偶函数.(
)
(5)y=tanx 在整个定义域上是增函数.(
)
[答案] (1)× (2)× (3)× (4)√ (5)×
2.函数 y=
(2)求解三角函数的值域(最值)常见到以下几种类型: ①形如 y=asinx+bcosx+c 的三角函数化为 y=Asin(ωx +φ)+c 的形式,再求值域(最值); ②形如 y=asin2x+bsinx+c 的三角函数,可先设 sinx=t, 化为关于 t 的二次函数求值域(最值); ③形如 y=asinxcosx+b(sinx±cosx)+c 的三角函数,可先 设 t=sinx±cosx,化为关于 t 的二次函数求值域(最值).
2018版高考数学一轮复习 第四章 三角函数、解三角形 第3讲 三角函数的图象与性质 理
第3讲 三角函数的图象与性质一、选择题1.函数f (x )=2sin x cos x 是( ). A .最小正周期为2 π的奇函数 B .最小正周期为2 π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数解析 f (x )=2sin x cos x =sin 2x .∴f (x )是最小正周期为π的奇函数. 答案 C2.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为 ( ).A .0B.π6C.π4D.π3解析 据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B3.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ).A .2- 3B .0C .-1D .-1- 3解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2.∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2-3. 答案 A4.函数f (x )=(1+3tan x )cos x 的最小正周期为( ). A .2π B.3π2 C .π D.π2解析 依题意,得f (x )=cos x +3sin x =2sin ⎝⎛⎭⎪⎫x +π6.故最小正周期为2π.答案 A5.函数y =sin 2x +sin x -1的值域为( ).A .[-1,1]B.⎣⎢⎡⎦⎥⎤-54,-1 C.⎣⎢⎡⎦⎥⎤-54,1D.⎣⎢⎡⎦⎥⎤-1,54解析 (数形结合法)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图像如图所示,从图像可以看出,当t =-12及t =1时,函数取最值,代入y=t 2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1.答案 C6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( ).A.π4B.π3 C.π2D.3π4解析 由题意可知函数f (x )的周期T =2×⎝⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4.答案 A 二、填空题7.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________.解析 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案328.函数f (x )=2sin ⎝⎛⎭⎪⎫x +π4+2x 2+x2x 2+cos x的最大值为M ,最小值为m ,则M +m =________.解析 (构造法)根据分子和分母同次的特点,把分子展开,得到部分分式,f (x )=1+x +sin x2x 2+cos x,f (x )-1为奇函数,则m -1=-(M -1),所以M +m =2. 答案 29.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析 f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos xx ≥cos x ,sin x x <cos x画出函数f (x )的图象,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎡⎦⎥⎤-1,22. 答案 ⎣⎢⎡⎦⎥⎤-1,22 10.下列命题中:①α=2k π+π3(k ∈Z )是tan α=3的充分不必要条件;②函数f (x )=|2cos x -1|的最小正周期是π;③在△ABC 中,若cos A cos B >sin A sin B ,则△ABC 为钝角三角形; ④若a +b =0,则函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4.其中是真命题的序号为________.解析 ①∵α=2k π+π3(k ∈Z )⇒tan α=3,而tan α=3⇒/ α=2k π+π3(k ∈Z ),∴①正确. ②∵f (x +π)=|2cos(x +π)-1|=|-2cos x -1|=|2cos x +1|≠f (x ),∴②错误.③∵cos A cos B >sin A sin B ,∴cos A cos B -sin A sin B >0, 即cos(A +B )>0,∵0<A +B <π,∴0<A +B <π2,∴C 为钝角,∴③正确.④∵a +b =0,∴b =-a ,y =a sin x -b cos x =a sin x +a cos x =2a sin ⎝⎛⎭⎪⎫x +π4,∴x =π4是它的一条对称轴,∴④正确.答案 ①③④ 三、解答题11. 已知函数f (x )=2sin x cos x -2sin 2x +1. (1)求函数f (x )的最小正周期及值域; (2)求f (x )的单调递增区间.解 (1)f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, 则函数f (x )的最小正周期是π, 函数f (x )的值域是[]-2,2.(2)依题意得2k π-π2≤2x +π4≤2k π+π2(k ∈Z),则k π-3π8≤x ≤k π+π8(k ∈Z),即f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z).12.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称轴;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域. 解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4 =12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ),得x =k π2+π3(k ∈Z ).∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1. 13.已知函数f (x )=cos ⎝⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合.解 (1)∵f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8 =12cos 2x -14, ∴f (x )的最小正周期为2π2=π.(2)由(1)知h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos ⎝⎛⎭⎪⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )取得最大值22.故h (x )取得最大值时,对应的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π8,k ∈Z. 14.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,又∵a >0, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 综上,g (x )的递增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z );递减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。
教育最新K122018版高考数学大一轮复习第四章三角函数解三角形4.3三角函数的图象与性质教师用书理新人教版
第四章 三角函数、解三角形 4.3 三角函数的图象与性质教师用书理 新人教版1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2 B .π C .2π D .4π答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z. 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( ) A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是[-π12+k π,512π+k π](k ∈Z ).因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________. 答案 2或-2解析 ∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2017·郑州月考)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π]解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )(2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π, k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z , 则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π, k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________.(2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3,∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2,因此选A. (2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3.命题点2 对称性例4 (2016·西安模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6 (2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z , 又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z ,∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·朝阳模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .2 B .4 C .πD .2π(2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( ) A .-1 B .3 C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于________.解析 (1)由图象知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C.4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( ) A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1 (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增函数,所以[-π2,2π3]⊆[-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增函数,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 (1)∵f (x )的最小正周期为π, 则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为[k π-5π12,k π+π12],k ∈Z .12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x -3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.*13.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
2018版高考数学大一轮复习第四章三角函数解三角形4.3三角函数的图象与性质课件文新人教版
思维升华
(1)三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函 数线或三角函数图象来求解. (2)三角函数值域的不同求法 ①利用sin x和cos x的值域直接求; ②把所给的三角函数式变换成y=Asin(ωx+φ)的形式求值域; ③通过换元,转换成二次函数求值域.
6
答案 解析
由 2x+π6≠π2+kπ,k∈Z,得 x≠k2π+π6,k∈Z,
所以 f(x)的定义域为{x|x≠k2π+π6,k∈Z}.
(2)(2017·郑州月考)已知函数 f(x)=sin(x+π6),其中 x∈[-π3,a],若 f(x)的 值域是[-12,1],则实数 a 的取值范围是__[π3_,__π_]__. 答案 解析 ∵x∈[-π3,a],∴x+π6∈[-π6,a+π6],
跟踪训练1 (1)函数y=lg(sin x)+ cos x-21 的定义域为 答案 解析 __x_|2_k_π_<__x_≤__π3_+__2_k_π_,__k∈__Z___.
sin(2x-π6)∈[-12,1],
故 3sin(2x-π6)∈[-32,3],
即 f(x)的值域为[-32,3].
3.函数y=tan 2x的定义域是 答案 解析
A.xx≠kπ+π4,k∈Z
B.xx≠k2π+π8,k∈Z
C.xx≠kπ+π8,k∈Z
D.xx≠k2π+π4,k∈Z
由 2x≠kπ+π2,k∈Z,得 x≠k2π+π4,k∈Z,
心
__
____
____
对称轴 _x_=_π2_+__kπ_(k_∈__Z)_ __x_=_k_π_(k_∈_Z_)__
2018届高考数学 第四章 三角函数、解三角形 4.3 三角函数的图象与性质教案 文 新人教A版
函数
y=sin x
y=cos x
y=tan x
单调递 增区间
2������π-
π 2
,
2������π
+
π 2
(k
∈Z)
[2kπ-π,2kπ](k∈Z)
������π-
π 2
,
������π
+
π 2
(k∈Z)
单调递 减区间
2������π
+
π 2
,
2������π
+
3π 2
(k∈Z)
[2kπ,2kπ+π](k∈Z) 无
4.3 三角函数的图象与性 质
-2-
考纲要求
五年考题统计 命题规律及趋势
1.能画出 y=sin x,y=cos
x,y=tan x 的图象,了解三
角函数的周期性.
2013 全国Ⅰ,文 9
2.理解正弦函数、余弦 函数在[0,2π]上的性质
2014 全国Ⅰ,文 7 2015 全国Ⅰ,文 8
(如单调性、最大值和最 2016 全国Ⅱ,文 11
f(x)=令 (22s)i由n2kπ2π2<-���π2���x≤+<π2π6,x得+. π6π2≤ω+2π4k<π+ωπ2x(+k∈π4<Zπ)ω,得+π4k, π-π3≤x≤kπ+π6(k∈Z).
由题意,知
π 2
������
+
π 4
,����
+
π 4
⊆
2������π
+
π 2
,2������π
故函数 f(x)=sin
高考数学一轮复习 第四章 三角函数、解三角形 4.3 三角函数的图象与性质 理(2021年最新整理)
2018版高考数学一轮复习第四章三角函数、解三角形4.3 三角函数的图象与性质理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第四章三角函数、解三角形4.3 三角函数的图象与性质理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第四章三角函数、解三角形4.3 三角函数的图象与性质理的全部内容。
第四章三角函数、解三角形 4.3 三角函数的图象与性质理1.用五点法作正弦函数和余弦函数的简图正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),(错误!,1),(π,0),(错误!,-1),(2π,0).余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),(错误!,0),(π,-1),(错误!,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质函数y=sin x y=cos x y=tan x图象定义域R R{x|x∈R且x≠错误!+kπ,k∈Z}值域[-1,1][-1,1]R单调性在[-错误!+2kπ,错误!+2kπ](k∈Z)上递增;在[错误!+2kπ,错误!+2kπ](k∈Z)上递减在[-π+2kπ,2kπ](k∈Z)上递增;在[2kπ,π+2kπ](k∈Z)上递减在(-错误!+kπ,错误!+kπ)(k∈Z)上递增最值当x=错误!+2kπ(k∈Z)时,y max=1;当x=-错误!+当x=2kπ(k∈Z)时,y max=1;当x=π+2kπ(k∈Z)时,2kπ(k∈Z)时,y min =-1ymin=-1奇偶性奇函数偶函数奇函数对称中心(kπ,0)(k∈Z)(错误!+kπ,0)(k∈Z)(错误!,0)(k∈Z)对称轴方程x=错误!+kπ(k∈Z)x=kπ(k∈Z)周期2π2ππ【知识拓展】1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是错误!个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.奇偶性若f(x)=A sin(ωx+φ)(A,ω≠0),则(1)f(x)为偶函数的充要条件是φ=错误!+kπ(k∈Z);(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y=sin x在第一、第四象限是增函数.(×)(2)常数函数f(x)=a是周期函数,它没有最小正周期.( √)(3)正切函数y=tan x在定义域内是增函数.(×)(4)已知y=k sin x+1,x∈R,则y的最大值为k+1.( ×)(5)y=sin |x|是偶函数.( √)(6)若sin x〉错误!,则x〉错误!.(×)1.函数f(x)=cos(2x-错误!)的最小正周期是( )A.错误!B.πC.2π D.4π答案B解析最小正周期为T=错误!=错误!=π.故选B。
2018版高考数学大一轮复习第四章三角函数解三角形第4讲函数y=Asin(ωx+φ)的图象及应用课件理
当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振
动时,几个相关的概念如下表:
简谐振动 振幅 周期 频率 相位 初相
y=Asin(ωx+φ)(A>0, ω>0), A x∈[0,+∞)
2π f=1 φ ωx + φ T T= ω —— —— —
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
解析
从图中可以看出,
从 6~14 时是函数 y=Asin(ωx+φ)+b 的半个周期, 1 2π π 又 × ω =14-6,所以 ω= . 2 8 1 1 由图可得 A=2(30-10)=10,b=2(30+10)=20. π 3π 又8×10+φ=2π,解得 φ= 4 ,
π 3π ∴y=10sin8x+ 4 +20,x∈[6,14].
答案 (1)× (2)×
(3)√ (4)√
π 2.y=2sin2x-4的振幅、频率和初相分别为(
)
1 π A.2, ,- π 4 1 π C.2,π,-8
1 π B.2, ,- 2π 4 1 π D.2,2π,-8
答案 A
3.(2016· 全国Ⅰ卷)若将函数
π 1 y= 2sin2x+6的图象向右平移 个 4
5π 6 2π 0 0
π (2)法一 把 y=sin x 的图象上所有的点向左平移 个单位,得 3 π π 到 y=sinx+3的图象; 再把 y=sinx+3的图象上的点的横坐 π 1 标缩短到原来的2倍(纵坐标不变),得到 y=sin2x+3的图象; π 最后把 y=sin2x+3上所有点的纵坐标伸长到原来的 2 倍(横 π 坐标不变),即可得到 y=2sin2x+3的图象.
2018版高考数学(理)(人教)大一轮复习讲义第四章三角函数解三角形4.4
考点自测
1 π 1.(教材改编)y=2sin( x- )的振幅,频率和初相分别为 2 3 π 1 π A.2,4π, B.2, , 3 4π 3
1 π C.2, ,- 4π 3 π D.2,4π,- 3
答案
解析
1 ω 1 π 由题意知 A=2,f= = = ,初相为- . 3 T 2π 4π
0
π 2 π 3
π
3π 2 5π 6 -5
2π
0
5
0
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式; 解答
π 根据表中已知数据,解得A=5,ω=2,φ= - . 6 数据补全如下表: π 3π ωx+φ 0 π 2 2
x Asin(ωx+φ) π 12 0 π 3 5 7π 12 0 5π 6 -5
π B.y=sin(2x- ) 5 1 π D.y=sin( x- ) 2 20
π π 右移 个单位 10 y=sin x ——————→ y=sin(x- )
10
1 π 横坐标伸长到 — — — — — — — — — — →y=sin(2x-10). 原来的2倍
π 2 4.(2016· 临沂模拟)已知函数 f(x)=Acos(ωx+θ)的图象如图所示, f( )=- , 2 3 2 π - 答案 解析 3 则 f(- )=______. 6
(2)试写出f(x)的对称轴方程. 解答
π π 设 2x+ =B,则函数 y=2sin B 的对称轴方程为 B= +kπ,k∈Z, 6 2 π π kπ π 即 2x+ = +kπ(k∈Z),解得 x= + (k∈Z), 6 2 2 6 π kπ π ∴f(x)=2sin(2x+ )的对称轴方程为 x= + (k∈Z). 6 2 6
2018届高考数学(理)大一轮复习教师用书第四章第三节三角函数的图象与性质Word版含解析
第三节三角函数的图象与性质突破点(一) 三角函数的定义域和值域[例1] 函数y = [解析] 要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z.即函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z. 本节主要包括2个知识点: 1.三角函数的定义域和值域; 2.三角函数的性质.[答案] ⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z [方法技巧]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.[提醒] 解三角不等式时要注意周期,且k ∈Z 不可以忽略.三角函数的值域(最值)求解三角函数的值域(最值)常见的题目类型:(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[例2] (1)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3 (2)函数y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,76π的值域为________. [解析] (1)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. (2)∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min=78; 当sin x =-12或sin x =1时,y max =2.故该函数的值域为⎣⎡⎦⎤78,2.[答案] (1)A (2)⎣⎡⎦⎤78,2 [方法技巧]三角函数值域或最值的三种求法(1)直接法:直接利用sin x ,cos x 的值域求出.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域(最值).(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求在给定区间上的值域(最值)问题.能力练通 抓应用体验的“得”与“失”1.[考点一]函数y = cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6(k ∈Z) C.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z) D .R解析:选C 要使函数有意义,则cos x -32≥0,即cos x ≥32,解得2k π-π6≤x ≤2k π+π6,k ∈Z. 2.[考点二]函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1B .-22 C .0 D.22解析:选B 因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,-22≤sin ⎝⎛⎭⎫2x -π4≤1,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22. 3.[考点一]函数y =1tan x -1的定义域为________.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为xx ≠π4+k π且x ≠π2+k π,k ∈Z.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z 4.[考点一]函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0, 得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3. ∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2. 答案:⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 5.[考点二]求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解:令t =sin x ,则y =-t 2+t +1=-⎝⎛⎭⎫t -122+54. ∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 突破点(二) 三角函数的性质考法(一) [例1] 求下列函数的单调区间: (1)f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π]; (2)f (x )=|tan x |;(3)f (x )=cos ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤-π2,π2. [解] (1)当-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z 时,函数f (x )是增函数.当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4, 单调递减区间为⎣⎡⎦⎤π4,π.(2)观察图象可知,y =|tan x |的单调递增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,单调递减区间是k π-π2,k π,k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z 时,函数f (x )是增函数;当2k π≤2x -π6≤2k π+π(k ∈Z),即k π+π12≤x ≤k π+7π12,k ∈Z 时,函数f (x )是减函数.因此函数f (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是-5π12,π12,单调递减区间为⎣⎡⎦⎤-π2,-5π12,⎣⎡⎦⎤π12,π2.[方法技巧]求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负,应先化为正,同时切莫忽视函数自身的定义域.考法(二) 已知单调区间求参数范围[例2] 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上是减函数,则ω的取值范围是________.[解析] 由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆π2+2k π,3π2+2k π(k ∈Z)且2πω≥2×⎝⎛⎭⎫π-π2,则⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,且0<ω≤2,故12≤ω≤54.[答案] ⎣⎡⎦⎤12,54[方法技巧] 已知单调区间求参数范围的三种方法 子集法 求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子 集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期 性法 由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解三角函数的周期性[例3] (1)函数y =1-2sin 2⎝⎛⎭⎫x -3π4是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.[解析] (1)y =1-2sin 2⎝⎛⎭⎫x -3π4=cos 2x -3π4=-sin 2x , 所以f (x )是最小正周期为π的奇函数. (2)由题意知,1<π|k |<2,即|k |<π<2|k |.又k ∈N , 所以k =2或k =3. [答案] (1)A (2)2或3 [方法技巧]三角函数周期的求解方法(1)定义法:直接利用周期函数的定义求周期.(2)公式法:①三角函数y =sin x ,y =cos x ,y =tan x 的最小正周期分别为2π,2π,π;②y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(3)图象法:利用三角函数图象的特征求周期.如:相邻两最高点(最低点)之间为一个周期,最高点与相邻的最低点之间为半个周期.三角函数的奇偶性[例4] (1)函数f (x )=12(1+cos 2x )sin 2x (x ∈R)是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数(2)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3[解析] (1)由题意知,f (x )=12(1+cos 2x )sin 2x =14(1+cos 2x )(1-cos 2x )=14(1-cos 22x )=18(1-cos 4x ),即f (x )=18(1-cos 4x ),则T =2π4=π2,f (-x )=18(1-cos 4x )=f (x ),因此函数f (x )是最小正周期为π2的偶函数.(2)由f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,k ∈Z ,即φ=3k π+3π2(k ∈Z),又φ∈[0,2π],所以φ=3π2.[答案] (1)D (2)C [方法技巧]与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π(k ∈Z).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2(k ∈Z).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z).三角函数的对称性[例5] (1)函数f (x )=sin ⎝⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[解析] (1)由x -π4=k π+π2(k ∈Z),得x =k π+3π4(k ∈Z),当k =-1时,x =-π4,∴x=-π4是f (x )=sin ⎝⎛⎭⎫x -π4图象的一条对称轴. (2)由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z).[答案] (1)C (2)k π+π2,k ∈Z[方法技巧]三角函数对称轴和对称中心的求解方法(1)定义法:正(余)弦函数的对称轴是过函数的最高点或最低点且垂直于x 轴的直线,对称中心是图象与x 轴的交点,即函数的零点.(2)公式法:函数y =A sin(ωx +φ)的对称轴为x =k πω-φω+π2ω,对称中心为⎝⎛⎭⎫k πω-φω,0;函数y =A cos(ωx +φ)的对称轴为x =k πω-φω,对称中心为⎝⎛⎭⎫k πω-φω+π2ω,0;函数y =A tan(ωx +φ)的对称中心为⎝⎛⎭⎫k π2ω-φω,0.上述k ∈Z.能力练通 抓应用体验的“得”与“失” 1.[考点二]函数y =3cos ⎝⎛⎭⎫25x -π6的最小正周期是( ) A.2π5 B.5π2 C .2πD .5π解析:选D 由T =2π25=5π,知该函数的最小正周期为5π. 2.[考点三]已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B f (x )是奇函数时,φ=π2+k π(k ∈Z),充分性不成立;φ=π2时,f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx ,为奇函数,必要性成立.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件.3.[考点四]若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8解析:选B 由题可知,πω6+π6=k π+π2(k ∈Z),所以ω=6k +2(k ∈Z).又ω∈N *,则ωmin =2.4.[考点一·考法(二)]已知函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2在区间⎝⎛⎦⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎡⎦⎤0,π3 B.⎣⎡⎦⎤-π3,π6 C.⎣⎡⎭⎫-π4,0 D.⎣⎡⎦⎤-π3,0 解析:选D 因为函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2在区间⎝⎛⎦⎤-π12,π6上单调且最大值不大于3,又φ-π6<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝⎛⎭⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.5.[考点一、二、三、四](2017·武汉调研)已知函数f (x )=sin ⎝⎛⎭⎫2x -π2(x ∈R),下列结论错误的是( )A .函数f (x )是偶函数B .函数f (x )的最小正周期为πC .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 D .函数f (x )的图象关于直线x =π4对称解析:选D f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,此函数为最小正周期为π的偶函数,所以A ,B 正确.由函数y =cos x 的单调性知C 正确.函数图象的对称轴方程为x =k π2(k ∈Z),显然,无论k 取任何整数,x ≠π4,所以D 错误.6.[考点四]已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________.解析:∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2. 答案:2或-27.[考点一·考法(一)]函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是________. 解析:∵y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6, ∴只需求y =2sin ⎝⎛⎭⎫2x -π6的减区间即可. ∵y =sin x 的减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , ∴令2x -π6∈⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 得x ∈⎣⎡⎦⎤k π+π3,k π+5π6,k ∈Z. ∵x ∈[0,π],∴x ∈⎣⎡⎦⎤π3,5π6.即函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是⎣⎡⎦⎤π3,5π6. 答案:⎣⎡⎦⎤π3,5π6[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7D .5解析:选B 由题意得⎩⎨⎧-π4ω+φ=k 1π,k 1∈Z ,π4ω+φ=k 2π+π2,k 2∈Z ,且|φ|≤π2,则ω=2k +1,k ∈Z ,φ=π4或φ=-π4.对比选项,将选项值分别代入验证:若ω=11,则φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4,f (x )在区间⎝⎛⎭⎫π18,3π44上单调递增,在区间⎝⎛⎭⎫3π44,5π36上单调递减,不满足f (x )在区间⎝⎛⎭⎫π18,5π36上单调;若ω=9,则φ=π4,此时f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在区间⎝⎛⎭⎫π18,5π36上单调递减,故选B.2.(2014·新课标全国卷Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③解析:选A ①y =cos|2x |,最小正周期为π;②y =|cos x |,最小正周期为π;③y =cos ⎝⎛⎭⎫2x +π6,最小正周期为π;④y =tan ⎝⎛⎭⎫2x -π4,最小正周期为π2.所以最小正周期为π的所有函数为①②③,故选A.3.(2012·新课标全国卷)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则 φ=( )A.π4 B.π3 C.π2D.3π4解析:选A 由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z),又0<φ<π,所以φ=π4.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析:选A y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,最小正周期T =2π2=π,且为奇函数,其图象关于原点对称,故A 正确;y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,其图象关于y 轴对称,故B 不正确;C ,D 均为非奇非偶函数,其图象不关于原点对称,故C ,D 不正确.2.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 3.已知函数y =sin ωx (ω>0)在区间⎣⎡⎦⎤0,π2上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为( )A.⎩⎨⎧⎭⎬⎫13,23,1 B.⎩⎨⎧⎭⎬⎫16,13 C.⎩⎨⎧⎭⎬⎫13,23D.⎩⎨⎧⎭⎬⎫16,23 解析:选A 由题意知⎩⎪⎨⎪⎧ π2ω≥π2,3ωπ=k π,即⎩⎪⎨⎪⎧0<ω≤1,ω=k 3,其中k ∈Z ,则ω=13,ω=23或ω=1,即ω的取值集合为⎩⎨⎧⎭⎬⎫13,23,1.4.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:∵对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,∴f (x 1),f (x 2)分别为函数f (x )的最小值和最大值,∴|x 1-x 2|的最小值为12T =12×2ππ2=2.答案:25.已知x ∈(0,π],关于x 的方程2sin ⎝⎛⎭⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为________.解析:令y 1=2sin ⎝⎛⎭⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.答案:(3,2)[练常考题点——检验高考能力]一、选择题1.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x .则f (x )的解析式可以是( )A .f (x )=cos xB .f (x )=cos ⎝⎛⎭⎫2x +π2 C .f (x )=sin ⎝⎛⎭⎫4x +π2 D .f (x )=cos 6x解析:选C 由题意可得,函数f (x )是偶函数,且它的图象关于直线x =π4对称.因为f (x )=cos x 是偶函数,f ⎝⎛⎭⎫π4=22,不是最值,故不满足图象关于直线x =π4对称,故排除A.因为函数f (x )=cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,不满足条件①,故排除B.因为函数f (x )=sin ⎝⎛⎭⎫4x +π2=cos 4x 是偶函数,且f ⎝⎛⎭⎫π4=-1,是最小值,故满足图象关于直线x =π4对称,故C 满足条件.因为函数f (x )=cos 6x 是偶函数,f ⎝⎛⎭⎫π4=0,不是最值,故不满足图象关于直线x =π4对称,故排除D.2.已知函数f (x )=-2sin(2x +φ)(|φ|<π), 若f ⎝⎛⎭⎫π8=-2,则f (x )的一个单调递增区间可以是( )A.⎣⎡⎦⎤-π8,3π8B.⎣⎡⎦⎤5π8,9π8 C.⎣⎡⎦⎤-3π8,π8 D.⎣⎡⎦⎤π8,5π8解析:选D ∵f ⎝⎛⎭⎫π8=-2,∴-2sin ⎝⎛⎭⎫π4+φ=-2,即sin ⎝⎛⎭⎫π4+φ=1.∴π4+φ=π2+2k π,又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝⎛⎭⎫2x +π4.由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.即f (x )的一个单调递增区间可以是⎣⎡⎦⎤π8,5π8. 3.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎫π2,3π2内的图象是( )解析:选D y =tan x +sin x -|tan x -sin x |=⎩⎨⎧2tan x ,x ∈⎝⎛⎦⎤π2,π,2sin x ,x ∈⎝⎛⎭⎫π,3π2,对比选项,可知选D.4.若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎡⎦⎤0,π2,则x 0=( ) A.5π12 B.π4 C.π3 D.π6解析:选A 由题意得T 2=π2,T =π,则ω=2.由2x 0+π6=k π(k ∈Z),得x 0=k π2-π12(k∈Z),又x 0∈⎣⎡⎦⎤0,π2,所以x 0=5π12. 5.设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R),则f (x )( ) A .在区间⎣⎡⎦⎤-π,-π2上是减函数 B .在区间⎣⎡⎦⎤2π3,7π6上是增函数 C .在区间⎣⎡⎦⎤π8,π4上是增函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数解析:选B 由f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3可知,f (x )的最小正周期为π.由k π≤x +π3≤π2+k π(k ∈Z),得-π3+k π≤x ≤π6+k π(k ∈Z),即f (x )在⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z)上单调递增;由π2+k π≤x +π3≤π+k π(k ∈Z),得π6+k π≤x ≤2π3+k π(k ∈Z),即f (x )在⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z)上单调递减.将各选项逐项代入验证,可知B 正确.6.(2017·安徽江南十校联考)已知函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的最小正周期为4π,且对任意x ∈R ,都有f (x )≤f ⎝⎛⎭⎫π3成立,则f (x )图象的一个对称中心的坐标是( )A.⎝⎛⎭⎫-2π3,0 B.⎝⎛⎭⎫-π3,0 C.⎝⎛⎭⎫2π3,0D.⎝⎛⎭⎫5π3,0解析:选A 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝⎛⎭⎫π3恒成立,所以f (x )max =f ⎝⎛⎭⎫π3,即12×π3+φ=π2+2k π(k ∈Z),所以φ=π3+2k π(k ∈Z),由|φ|<π2,得φ=π3,故f (x )=sin ⎝⎛⎭⎫12x +π3.令12x +π3=k π(k ∈Z),得x =2k π-2π3(k ∈Z),故f (x )图象的对称中心为⎝⎛⎭⎫2k π-2π3,0(k ∈Z),当k =0时,f (x )图象的一个对称中心的坐标为⎝⎛⎭⎫-2π3,0,故选A. 二、填空题7.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是________. 解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0,k ∈Z. 答案:⎝⎛⎭⎫k π2-π8,0,k ∈Z 8.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. 答案:329.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 解析:由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝⎛⎭⎫2x -π6,当x ∈⎣⎡⎦⎤0,π2时,-π6≤2x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎫2x -π6≤1,故f (x )∈⎣⎡⎦⎤-32,3. 答案:⎣⎡⎦⎤-32,3 10.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m m ∈R 且m >π6,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的最大值是________.解析:由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3,∵f ⎝⎛⎭⎫π6=cos 5π6=-32,且f ⎝⎛⎭⎫2π9=cos π=-1,∴要使f (x )的值域是⎣⎡⎦⎤-1,-32,需要π≤3m +π3≤7π6,解得2π9≤m ≤5π18,即m的最大值是5π18.答案:5π18三、解答题11.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2, ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).即sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知,上式对任意x ∈R 都成立,∴cos φ=0.∵0<φ<2π3,∴φ=π2.(2)由f (x )的图象过点⎝⎛⎭⎫π6,32,得sin ⎝⎛⎭⎫2×π6+φ=32,即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,则φ=π3.∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z.∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z. 12.已知函数f (x )=a ⎝⎛⎭⎫2cos 2x2+sin x +b . (1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解:f (x )=a (1+cos x +sin x )+b =2a sin ⎝⎛⎭⎫x +π4+a +b . (1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),∴f (x )的单调增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4,k ∈Z. (2)∵0≤x ≤π,∴π4≤x +π4≤5π4,∴-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,⎩⎨⎧ 2a +a +b =8,b =5,∴a =32-3,b =5.②当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.。
2018版高考数学复习第四章三角函数解三角形4.3三角函数的图像与性质教师用书文北师大版
2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.3 三角函数的图像与性质教师用书 文 北师大版1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图像中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图像中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1). 2.正弦函数、余弦函数、正切函数的图像与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2 B .π C .2π D .4π 答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z. 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( ) A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是 [-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.y =sin(x -π4)的图像的对称中心是____________.答案 (k π+π4,0),k ∈Z解析 令x -π4=k π(k ∈Z ),∴x =k π+π4(k ∈Z ),∴y =sin(x -π4)的图像的对称中心是(k π+π4,0),k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·郑州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π] 解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图像知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________.答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z , 则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________.(2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增加的;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减少的.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上是增加的,在⎣⎢⎡⎦⎥⎤π3,π2上是减少的,知π2ω=π3,∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)(2016·北京东城区模拟)函数y =12sin 2x +3cos 2x -32的最小正周期等于( )A .πB .2π C.π4 D.π2(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)A (2)2或3解析 (1)y =12sin 2x +3×1+cos 2x 2-32=12sin 2x +32cos 2x =sin(2x +π3),所以函数的最小正周期T =2πω=2π2=π,故选A.(2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 对于函数f (x )=sin ⎝ ⎛⎭⎪⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上是增加的 B .f (x )的周期为2,且在[0,1]上是减少的 C .f (x )的周期为π,且在[-1,0]上是增加的 D .f (x )的周期为2,且在[-1,0]上是减少的 答案 B解析 因为f (x )=sin ⎝⎛⎭⎪⎫πx +π2=cos πx ,则周期T =2,在[0,1]上是减少的,故选B.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图像关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N +)图像的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 答案 (1)-π6 (2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z , 又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z ,∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N +,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( )A .2B .4C .πD .2π(2)如果函数y =3cos(2x +φ)的图像关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值为________.解析 (1)由图像知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图像的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上是增加的,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图像的一个对称中心,故选C.4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图像的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图像的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( ) A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32 D .1 答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3]上是增加的,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增加的,所以[-π2,2π3]⊆[-π2ω,π2ω],即-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增加的,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13.已知a >0,函数f (x )=-2a sin⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )是增加的,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )是减少的,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
浙江专用2018版高考数学大一轮复习第四章三角函数解三角形4.4函数y=Asin(ωx+φ)的图象及应用
(浙江专用)2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.4 函数y =Asin(ωx +φ)的图象及应用教师用书1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝ ⎛⎭⎪⎫x -π4的图象是由y =sin ⎝ ⎛⎭⎪⎫x +π4的图象向右平移π2个单位得到的.( √ )(2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2016·杭州模拟)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x =――――――――――→右移10π10个单位y =sin(x -π10)――――――→横坐标伸长到原来的2倍y =sin(12x -π10).3.(2016·宁波高三第二次适应性考试)函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的图象如图所示,则ω=________,φ=________.答案 2π6解析 根据图象知T =π,∴ω=2,又f (x )图象过点(0,1),且点(0,1)位于函数图象的递增部分, ∴由2sin φ=1得φ=π6+2k π(k ∈Z ),又∵|φ|<π2,∴φ=π6.4.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ). 当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,并直接写出函数f (x )的解析式;(2) 将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z .令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z . 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(2017·金华十校高三上学期调研)将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin(2x -π6),则φ=________(0<φ<π2),再将函数y =sin(2x -π6)图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________. 答案π12 y =sin(x -π6) 解析 将y =sin 2x 中的x 替换为x -π12后得到y =sin(2x -π6),故向右平移π12个单位长度;将y =sin(2x -π6)图象上各点横坐标伸长到原来的2倍,则将x 替换为x 2得到y =sin(x -π6).题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵11π12是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ), ∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x+φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例 3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎪⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为m =1-2sin 2x +3sin 2x=cos 2x +3sin 2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎝ ⎛⎭⎪⎫π2,π. 设2x +π6=t ,则t ∈⎝ ⎛⎭⎪⎫76π,136π,∴题目条件可转化为m 2=sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π有两个不同的实数根.∴y =m 2和y =sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m 2的范围是⎣⎢⎡⎭⎪⎫-1,12,∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ) (ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6), 当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (14分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期; (2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [4分]=2sin(x +π3),于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[12分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b2+cos x ·b a 2+b 2);第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.函数y =cos ⎝⎛⎭⎪⎫2x -π3的部分图象可能是( )答案 D解析 ∵y =cos ⎝⎛⎭⎪⎫2x -π3,∴当2x -π3=0, 即x =π6时,函数取得最大值1,结合图象看,可使函数在x =π6时取得最大值的只有D.2.(2016·杭州市学军中学高三5月模拟考试)已知函数f (x )=cos(ωx +π4)(ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π8个单位长度D .向右平移π8个单位长度答案 D解析 由f (x )的周期为π得ω=2,f (x )=cos(2x +π4)向右平移π8个单位长度后得到g (x )=cos 2x 的图象.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,6∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32B .-12C.12D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当x =0时,f (x )取得最小值为-32. 6.(2016·绍兴模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称 D .关于点⎝⎛⎭⎪⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝ ⎛⎭⎪⎫x -π3+φ]=sin ⎝ ⎛⎭⎪⎫2x +φ-2π3,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,2∴φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2016·杭州模拟)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.(2016·邢台模拟)先把函数f (x )=sin(x -π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈(π4,3π4)时,函数g (x )的值域为________. 答案 (-32,1] 解析 依题意得g (x )=sin[2(x -π3)-π6]=sin(2x -5π6),当x ∈(π4,3π4)时,2x -5π6∈(-π3,2π3),此时sin(2x -5π6)∈(-32,1],故g (x )的值域是(-32,1]. 11.(2016·余姚模拟)已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式; (2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为 [k π-π6,k π+π3] (k ∈Z ).12.(2016·浙江联考)已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13. (2016·余姚模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos 3x +π42=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。
2018届高考数学理大一轮复习教师用书:第四章第三节三
第三节三角函数的图象与性质突破点(一) 三角函数的定义域和值域[例1] 函数y = [解析] 要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z.即函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z. 本节主要包括2个知识点: 1.三角函数的定义域和值域; 2.三角函数的性质.[答案] ⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z [方法技巧]三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.[提醒] 解三角不等式时要注意周期,且k ∈Z 不可以忽略.三角函数的值域(最值)求解三角函数的值域(最值)常见的题目类型:(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[例2] (1)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1- 3 (2)函数y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,76π的值域为________. [解析] (1)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. (2)∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min=78; 当sin x =-12或sin x =1时,y max =2.故该函数的值域为⎣⎡⎦⎤78,2.[答案] (1)A (2)⎣⎡⎦⎤78,2 [方法技巧]三角函数值域或最值的三种求法(1)直接法:直接利用sin x ,cos x 的值域求出.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域(最值).(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求在给定区间上的值域(最值)问题.能力练通 抓应用体验的“得”与“失”1.[考点一]函数y = cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6(k ∈Z) C.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z) D .R解析:选C 要使函数有意义,则cos x -32≥0,即cos x ≥32,解得2k π-π6≤x ≤2k π+π6,k ∈Z. 2.[考点二]函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1B .-22 C .0 D.22解析:选B 因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,-22≤sin ⎝⎛⎭⎫2x -π4≤1,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22. 3.[考点一]函数y =1tan x -1的定义域为________.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为xx ≠π4+k π且x ≠π2+k π,k ∈Z.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z 4.[考点一]函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0, 得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3. ∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎫0,π2. 答案:⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 5.[考点二]求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解:令t =sin x ,则y =-t 2+t +1=-⎝⎛⎭⎫t -122+54. ∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 突破点(二) 三角函数的性质考法(一) [例1] 求下列函数的单调区间: (1)f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π]; (2)f (x )=|tan x |;(3)f (x )=cos ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤-π2,π2. [解] (1)当-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z 时,函数f (x )是增函数.当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4, 单调递减区间为⎣⎡⎦⎤π4,π.(2)观察图象可知,y =|tan x |的单调递增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,单调递减区间是k π-π2,k π,k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z 时,函数f (x )是增函数;当2k π≤2x -π6≤2k π+π(k ∈Z),即k π+π12≤x ≤k π+7π12,k ∈Z 时,函数f (x )是减函数.因此函数f (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是-5π12,π12,单调递减区间为⎣⎡⎦⎤-π2,-5π12,⎣⎡⎦⎤π12,π2.[方法技巧]求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负,应先化为正,同时切莫忽视函数自身的定义域.考法(二) 已知单调区间求参数范围[例2] 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上是减函数,则ω的取值范围是________.[解析] 由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆π2+2k π,3π2+2k π(k ∈Z)且2πω≥2×⎝⎛⎭⎫π-π2,则⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,且0<ω≤2,故12≤ω≤54.[答案] ⎣⎡⎦⎤12,54[方法技巧] 已知单调区间求参数范围的三种方法 子集法 求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子 集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期 性法 由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解三角函数的周期性[例3] (1)函数y =1-2sin 2⎝⎛⎭⎫x -3π4是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.[解析] (1)y =1-2sin 2⎝⎛⎭⎫x -3π4=cos 2x -3π4=-sin 2x , 所以f (x )是最小正周期为π的奇函数. (2)由题意知,1<π|k |<2,即|k |<π<2|k |.又k ∈N , 所以k =2或k =3. [答案] (1)A (2)2或3 [方法技巧]三角函数周期的求解方法(1)定义法:直接利用周期函数的定义求周期.(2)公式法:①三角函数y =sin x ,y =cos x ,y =tan x 的最小正周期分别为2π,2π,π;②y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(3)图象法:利用三角函数图象的特征求周期.如:相邻两最高点(最低点)之间为一个周期,最高点与相邻的最低点之间为半个周期.三角函数的奇偶性[例4] (1)函数f (x )=12(1+cos 2x )sin 2x (x ∈R)是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数(2)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3[解析] (1)由题意知,f (x )=12(1+cos 2x )sin 2x =14(1+cos 2x )(1-cos 2x )=14(1-cos 22x )=18(1-cos 4x ),即f (x )=18(1-cos 4x ),则T =2π4=π2,f (-x )=18(1-cos 4x )=f (x ),因此函数f (x )是最小正周期为π2的偶函数.(2)由f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,k ∈Z ,即φ=3k π+3π2(k ∈Z),又φ∈[0,2π],所以φ=3π2.[答案] (1)D (2)C [方法技巧]与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π(k ∈Z).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2(k ∈Z).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z).三角函数的对称性[例5] (1)函数f (x )=sin ⎝⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[解析] (1)由x -π4=k π+π2(k ∈Z),得x =k π+3π4(k ∈Z),当k =-1时,x =-π4,∴x=-π4是f (x )=sin ⎝⎛⎭⎫x -π4图象的一条对称轴. (2)由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z).[答案] (1)C (2)k π+π2,k ∈Z[方法技巧]三角函数对称轴和对称中心的求解方法(1)定义法:正(余)弦函数的对称轴是过函数的最高点或最低点且垂直于x 轴的直线,对称中心是图象与x 轴的交点,即函数的零点.(2)公式法:函数y =A sin(ωx +φ)的对称轴为x =k πω-φω+π2ω,对称中心为⎝⎛⎭⎫k πω-φω,0;函数y =A cos(ωx +φ)的对称轴为x =k πω-φω,对称中心为⎝⎛⎭⎫k πω-φω+π2ω,0;函数y =A tan(ωx +φ)的对称中心为⎝⎛⎭⎫k π2ω-φω,0.上述k ∈Z.能力练通 抓应用体验的“得”与“失” 1.[考点二]函数y =3cos ⎝⎛⎭⎫25x -π6的最小正周期是( ) A.2π5 B.5π2 C .2πD .5π解析:选D 由T =2π25=5π,知该函数的最小正周期为5π. 2.[考点三]已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B f (x )是奇函数时,φ=π2+k π(k ∈Z),充分性不成立;φ=π2时,f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx ,为奇函数,必要性成立.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件.3.[考点四]若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8解析:选B 由题可知,πω6+π6=k π+π2(k ∈Z),所以ω=6k +2(k ∈Z).又ω∈N *,则ωmin =2.4.[考点一·考法(二)]已知函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2在区间⎝⎛⎦⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎡⎦⎤0,π3 B.⎣⎡⎦⎤-π3,π6 C.⎣⎡⎭⎫-π4,0 D.⎣⎡⎦⎤-π3,0 解析:选D 因为函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2在区间⎝⎛⎦⎤-π12,π6上单调且最大值不大于3,又φ-π6<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝⎛⎭⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.5.[考点一、二、三、四](2017·武汉调研)已知函数f (x )=sin ⎝⎛⎭⎫2x -π2(x ∈R),下列结论错误的是( )A .函数f (x )是偶函数B .函数f (x )的最小正周期为πC .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 D .函数f (x )的图象关于直线x =π4对称解析:选D f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,此函数为最小正周期为π的偶函数,所以A ,B 正确.由函数y =cos x 的单调性知C 正确.函数图象的对称轴方程为x =k π2(k ∈Z),显然,无论k 取任何整数,x ≠π4,所以D 错误.6.[考点四]已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________.解析:∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2. 答案:2或-27.[考点一·考法(一)]函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是________. 解析:∵y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6, ∴只需求y =2sin ⎝⎛⎭⎫2x -π6的减区间即可. ∵y =sin x 的减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , ∴令2x -π6∈⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 得x ∈⎣⎡⎦⎤k π+π3,k π+5π6,k ∈Z. ∵x ∈[0,π],∴x ∈⎣⎡⎦⎤π3,5π6.即函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是⎣⎡⎦⎤π3,5π6. 答案:⎣⎡⎦⎤π3,5π6[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7D .5解析:选B 由题意得⎩⎨⎧-π4ω+φ=k 1π,k 1∈Z ,π4ω+φ=k 2π+π2,k 2∈Z ,且|φ|≤π2,则ω=2k +1,k ∈Z ,φ=π4或φ=-π4.对比选项,将选项值分别代入验证:若ω=11,则φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4,f (x )在区间⎝⎛⎭⎫π18,3π44上单调递增,在区间⎝⎛⎭⎫3π44,5π36上单调递减,不满足f (x )在区间⎝⎛⎭⎫π18,5π36上单调;若ω=9,则φ=π4,此时f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在区间⎝⎛⎭⎫π18,5π36上单调递减,故选B.2.(2014·新课标全国卷Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③解析:选A ①y =cos|2x |,最小正周期为π;②y =|cos x |,最小正周期为π;③y =cos ⎝⎛⎭⎫2x +π6,最小正周期为π;④y =tan ⎝⎛⎭⎫2x -π4,最小正周期为π2.所以最小正周期为π的所有函数为①②③,故选A.3.(2012·新课标全国卷)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则 φ=( )A.π4 B.π3 C.π2D.3π4解析:选A 由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z),又0<φ<π,所以φ=π4.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析:选A y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,最小正周期T =2π2=π,且为奇函数,其图象关于原点对称,故A 正确;y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,其图象关于y 轴对称,故B 不正确;C ,D 均为非奇非偶函数,其图象不关于原点对称,故C ,D 不正确.2.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 3.已知函数y =sin ωx (ω>0)在区间⎣⎡⎦⎤0,π2上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为( )A.⎩⎨⎧⎭⎬⎫13,23,1 B.⎩⎨⎧⎭⎬⎫16,13 C.⎩⎨⎧⎭⎬⎫13,23D.⎩⎨⎧⎭⎬⎫16,23 解析:选A 由题意知⎩⎪⎨⎪⎧ π2ω≥π2,3ωπ=k π,即⎩⎪⎨⎪⎧0<ω≤1,ω=k 3,其中k ∈Z ,则ω=13,ω=23或ω=1,即ω的取值集合为⎩⎨⎧⎭⎬⎫13,23,1.4.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:∵对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,∴f (x 1),f (x 2)分别为函数f (x )的最小值和最大值,∴|x 1-x 2|的最小值为12T =12×2ππ2=2.答案:25.已知x ∈(0,π],关于x 的方程2sin ⎝⎛⎭⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为________.解析:令y 1=2sin ⎝⎛⎭⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.答案:(3,2)[练常考题点——检验高考能力]一、选择题1.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x .则f (x )的解析式可以是( )A .f (x )=cos xB .f (x )=cos ⎝⎛⎭⎫2x +π2 C .f (x )=sin ⎝⎛⎭⎫4x +π2 D .f (x )=cos 6x解析:选C 由题意可得,函数f (x )是偶函数,且它的图象关于直线x =π4对称.因为f (x )=cos x 是偶函数,f ⎝⎛⎭⎫π4=22,不是最值,故不满足图象关于直线x =π4对称,故排除A.因为函数f (x )=cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,不满足条件①,故排除B.因为函数f (x )=sin ⎝⎛⎭⎫4x +π2=cos 4x 是偶函数,且f ⎝⎛⎭⎫π4=-1,是最小值,故满足图象关于直线x =π4对称,故C 满足条件.因为函数f (x )=cos 6x 是偶函数,f ⎝⎛⎭⎫π4=0,不是最值,故不满足图象关于直线x =π4对称,故排除D.2.已知函数f (x )=-2sin(2x +φ)(|φ|<π), 若f ⎝⎛⎭⎫π8=-2,则f (x )的一个单调递增区间可以是( )A.⎣⎡⎦⎤-π8,3π8B.⎣⎡⎦⎤5π8,9π8 C.⎣⎡⎦⎤-3π8,π8 D.⎣⎡⎦⎤π8,5π8解析:选D ∵f ⎝⎛⎭⎫π8=-2,∴-2sin ⎝⎛⎭⎫π4+φ=-2,即sin ⎝⎛⎭⎫π4+φ=1.∴π4+φ=π2+2k π,又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝⎛⎭⎫2x +π4.由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.即f (x )的一个单调递增区间可以是⎣⎡⎦⎤π8,5π8. 3.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎫π2,3π2内的图象是( )解析:选D y =tan x +sin x -|tan x -sin x |=⎩⎨⎧2tan x ,x ∈⎝⎛⎦⎤π2,π,2sin x ,x ∈⎝⎛⎭⎫π,3π2,对比选项,可知选D.4.若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎡⎦⎤0,π2,则x 0=( ) A.5π12 B.π4 C.π3 D.π6解析:选A 由题意得T 2=π2,T =π,则ω=2.由2x 0+π6=k π(k ∈Z),得x 0=k π2-π12(k∈Z),又x 0∈⎣⎡⎦⎤0,π2,所以x 0=5π12. 5.设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R),则f (x )( ) A .在区间⎣⎡⎦⎤-π,-π2上是减函数 B .在区间⎣⎡⎦⎤2π3,7π6上是增函数 C .在区间⎣⎡⎦⎤π8,π4上是增函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数解析:选B 由f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3可知,f (x )的最小正周期为π.由k π≤x +π3≤π2+k π(k ∈Z),得-π3+k π≤x ≤π6+k π(k ∈Z),即f (x )在⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z)上单调递增;由π2+k π≤x +π3≤π+k π(k ∈Z),得π6+k π≤x ≤2π3+k π(k ∈Z),即f (x )在⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z)上单调递减.将各选项逐项代入验证,可知B 正确.6.(2017·安徽江南十校联考)已知函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的最小正周期为4π,且对任意x ∈R ,都有f (x )≤f ⎝⎛⎭⎫π3成立,则f (x )图象的一个对称中心的坐标是( )A.⎝⎛⎭⎫-2π3,0 B.⎝⎛⎭⎫-π3,0 C.⎝⎛⎭⎫2π3,0D.⎝⎛⎭⎫5π3,0解析:选A 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝⎛⎭⎫π3恒成立,所以f (x )max =f ⎝⎛⎭⎫π3,即12×π3+φ=π2+2k π(k ∈Z),所以φ=π3+2k π(k ∈Z),由|φ|<π2,得φ=π3,故f (x )=sin ⎝⎛⎭⎫12x +π3.令12x +π3=k π(k ∈Z),得x =2k π-2π3(k ∈Z),故f (x )图象的对称中心为⎝⎛⎭⎫2k π-2π3,0(k ∈Z),当k =0时,f (x )图象的一个对称中心的坐标为⎝⎛⎭⎫-2π3,0,故选A. 二、填空题7.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是________. 解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0,k ∈Z. 答案:⎝⎛⎭⎫k π2-π8,0,k ∈Z 8.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. 答案:329.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 解析:由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝⎛⎭⎫2x -π6,当x ∈⎣⎡⎦⎤0,π2时,-π6≤2x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎫2x -π6≤1,故f (x )∈⎣⎡⎦⎤-32,3. 答案:⎣⎡⎦⎤-32,3 10.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m m ∈R 且m >π6,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的最大值是________.解析:由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3,∵f ⎝⎛⎭⎫π6=cos 5π6=-32,且f ⎝⎛⎭⎫2π9=cos π=-1,∴要使f (x )的值域是⎣⎡⎦⎤-1,-32,需要π≤3m +π3≤7π6,解得2π9≤m ≤5π18,即m的最大值是5π18.答案:5π18三、解答题11.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2, ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).即sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知,上式对任意x ∈R 都成立,∴cos φ=0.∵0<φ<2π3,∴φ=π2.(2)由f (x )的图象过点⎝⎛⎭⎫π6,32,得sin ⎝⎛⎭⎫2×π6+φ=32,即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,则φ=π3.∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z.∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z. 12.已知函数f (x )=a ⎝⎛⎭⎫2cos 2x2+sin x +b . (1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解:f (x )=a (1+cos x +sin x )+b =2a sin ⎝⎛⎭⎫x +π4+a +b . (1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),∴f (x )的单调增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4,k ∈Z. (2)∵0≤x ≤π,∴π4≤x +π4≤5π4,∴-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,⎩⎨⎧ 2a +a +b =8,b =5,∴a =32-3,b =5.②当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.3 三角函数的图像与性质教师用书 文 北师大版1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图像中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图像中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1). 2.正弦函数、余弦函数、正切函数的图像与性质函数y =sin x y =cos x y =tan x图像定义域 R R{x |x ∈R 且x ≠π2+k π,k ∈Z }值域[-1,1][-1,1]R单调性在[-π2+2k π,π2+2k π](k ∈Z )上是增加的; 在[π2+2k π,3π2+2k π](k ∈Z )上是减少的在[-π+2k π,2k π](k ∈Z )上是增加的; 在[2k π,π+2k π](k ∈Z )上是减少的在(-π2+k π,π2+k π)(k ∈Z )上是增加的最值 当x =π2+2k π(k ∈Z )时,y max =1;当x =2k π(k ∈Z )时,y max =1; 当x =π+2k π(k ∈Z )【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2 B .π C.2π D.4π 答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z. 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( ) A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是 [-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.y =sin(x -π4)的图像的对称中心是____________.答案 (k π+π4,0),k ∈Z解析 令x -π4=k π(k ∈Z ),∴x =k π+π4(k ∈Z ),∴y =sin(x -π4)的图像的对称中心是(k π+π4,0),k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·郑州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π] 解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图像知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________.答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________.(2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增加的;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减少的.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上是增加的,在⎣⎢⎡⎦⎥⎤π3,π2上是减少的,知π2ω=π3,∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)(2016·北京东城区模拟)函数y =12sin 2x +3cos 2x -32的最小正周期等于( )A .π B.2π C.π4 D.π2(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)A (2)2或3解析 (1)y =12sin 2x +3×1+cos 2x 2-32=12sin 2x +32cos 2x =sin(2x +π3),所以函数的最小正周期T =2πω=2π2=π,故选A.(2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 对于函数f (x )=sin ⎝ ⎛⎭⎪⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上是增加的 B .f (x )的周期为2,且在[0,1]上是减少的 C .f (x )的周期为π,且在[-1,0]上是增加的 D .f (x )的周期为2,且在[-1,0]上是减少的 答案 B解析 因为f (x )=sin ⎝⎛⎭⎪⎫πx +π2=cos πx ,则周期T =2,在[0,1]上是减少的,故选B.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图像关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N +)图像的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 答案 (1)-π6 (2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z , ∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2(k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N +,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( )A .2B .4C .πD .2π(2)如果函数y =3cos(2x +φ)的图像关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值为________.解析 (1)由图像知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2, ∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图像的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上是增加的,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图像的一个对称中心,故选C.4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图像的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图像的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( ) A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32 D .1 答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3]上是增加的,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增加的,所以[-π2,2π3]⊆[-π2ω,π2ω],即-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增加的,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )是增加的,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )是减少的,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。