高中各种函数图像画法与函数性质

合集下载

函数图像画法知识点总结

函数图像画法知识点总结

函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。

在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。

在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。

一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。

直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。

当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。

绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。

首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。

2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。

平方函数的一般形式为y=x^2。

平方函数的图像对称于y轴,开口向上。

绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。

3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。

开方函数的一般形式为y=sqrt(x)。

开方函数的图像对称于x轴,开口向右。

绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。

4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。

绝对值函数的一般形式为y=|x|。

绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。

以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域

数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

一篇文章掌握高中函数图像,不看别后悔!

一篇文章掌握高中函数图像,不看别后悔!

函数图像是必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了。

今天给大家整理了高中函数相关资料,希望能帮助高中生数学得高分!下面是基本初等函数的图像以及函数变换的规律,希望大家能学明白!一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减。

2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图:不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数当底数不同时,对数函数的图像是这样变换的:6.幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。

7.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx 通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x 轴上的变换,那就一定要看x这个符号有啥变化。

(完整版)高中各种函数图像及其性质(精编版)

(完整版)高中各种函数图像及其性质(精编版)

高中各种函数图像及其性质一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

(二)一次函数1、一次函数的定义一般地,形如y kx b(k,b是常数,且k 0 )的函数,叫做一次函数,其中x 是自变量。

当b 0时,一次函数y kx,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当 b 0,k 0时,y kx仍是一次函数.⑶当 b 0,k 0时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k 不为零)① k 不为零② x 指数为 1 ③ b 取零当k>0 时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0 时,?直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx (k 是常数,k≠ 0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k| 越大,越接近y 轴;|k| 越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为 1 ③ b 取任意实 数一次函数 y=kx+b 的图象是经过( 0,b )和(- b , 0)两点的一条直线,我们称它为直k线 y=kx+b, 它可以看作由直线 y=kx 平移 |b| 个单位长度得到 . (当 b>0 时,向上平移; 当 b<0 时,向下平移)1)解析式: y=kx+b (k 、 b 是常数, k 0)2) 必过点:(0,b )和( - b ,0) k3) 走向: k>0 ,图象经过第一、三象限; k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限k 0 直线经过第一、二、三象限k 0 直线经过第一、三、四象限b 0b 0k 0 直线经过第一、二、四象限k 0 直线经过第二、三、四象限b 0b 04)增减性: k>0 , y 随 x 的增大而增大; k<0,y 随 x 增大而减小 . 5)倾斜度: |k| 越大,图象越接近于 y 轴; |k| 越小,图象越接近于 x 轴 .6)图像的平移: 当 b>0 时,将直线 y=kx 的图象向上平移 b 个单位; 当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .4、一次函数 y=kx + b 的图象的画法根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可. 一般情况下:是先选取它与两坐标轴的交点:(0,b),或纵坐标为0 的点.. 即横坐标5、正比例函数与一次函数之间的关系一次函数y=kx +b的图象是一条直线,它可以看作是由直线y=kx平移|b| 个单位长度而得到(当b>0时,向上平移;当b<0 时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数. 当b=0 时,是y=kx ,所以说正比例函数是一种特殊的一次函自变量范围X 为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(- b,0)k走向k>0 时,直线经过一、三象限;k<0 时,直线经过二、四象限k>0,b>0, 直线经过第一、二、三象限k>0,b<0 直线经过第一、三、四象限k<0,b>0 直线经过第一、二、四象限k<0,b<0 直线经过第二、三、四象限增减性k>0 ,y 随x 的增大而增大;(从左向右上升)k<0 ,y 随x 的增大而减小。

(完整版)高中的常见函数图像及基本性质

(完整版)高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R )1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k |越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k 〉0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r y=f (x ); y=g (x )都有反函数,且f (x-1)和g —1(x )函数的图像关于y=x 对称,若f (4)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法:xy b Of (x )=bx yOf (x )=kx +b R 2)点关于直线(点)对称,求点的坐标2、与曲线函数的联合运用反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k 〉0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线;既是中心对成图形也是轴对称图形定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)—-入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图)1)、y=1/(x —2)和y=1/x —2的图像移动比较 2)、y=1/(—x)和y=—(1/x)图像移动比较3)、f (x )= dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当0<a 时。

高中数学函数图像的绘制方法和注意事项

高中数学函数图像的绘制方法和注意事项

高中数学函数图像的绘制方法和注意事项在高中数学中,函数图像的绘制是一个重要的内容,它不仅可以帮助我们更好地理解函数的性质,还可以提高我们解题的能力。

本文将介绍一些常见函数图像的绘制方法和注意事项,并通过具体的例题来说明。

一、一次函数图像的绘制方法和注意事项一次函数是指形如y=ax+b的函数,其中a和b为常数且a不等于零。

要绘制一次函数的图像,我们可以找出函数的截距和斜率,然后根据这些信息确定函数的特征点。

例如,考虑函数y=2x+1。

我们可以通过观察函数的截距和斜率来确定函数的特征点。

截距为1表示函数与y轴的交点为(0,1),而斜率为2表示函数的斜率为2/1。

根据这些信息,我们可以确定函数的特征点,并将它们连成一条直线,即可得到函数的图像。

在绘制一次函数图像时,还需要注意以下几点:1. 确定函数的定义域和值域,以便在绘制图像时不会出现错误。

2. 注意函数的增减性和奇偶性,这可以帮助我们更好地理解函数的性质。

3. 使用合适的比例和刻度,在绘制图像时要注意横纵坐标的比例关系,以便更准确地表示函数的特征。

二、二次函数图像的绘制方法和注意事项二次函数是指形如y=ax^2+bx+c的函数,其中a、b和c为常数且a不等于零。

要绘制二次函数的图像,我们可以找出函数的顶点和对称轴,然后根据这些信息确定函数的特征点。

例如,考虑函数y=x^2-2x+1。

我们可以通过求导数的方法找出函数的顶点和对称轴。

对函数求导得到y'=2x-2,令y'=0可得x=1,将x=1代入函数中可得y=0。

因此,函数的顶点为(1,0),对称轴为x=1。

根据这些信息,我们可以确定函数的特征点,并将它们连成一条曲线,即可得到函数的图像。

在绘制二次函数图像时,还需要注意以下几点:1. 确定函数的定义域和值域,以便在绘制图像时不会出现错误。

2. 注意函数的开口方向和对称性,这可以帮助我们更好地理解函数的性质。

3. 使用合适的比例和刻度,在绘制图像时要注意横纵坐标的比例关系,以便更准确地表示函数的特征。

高中函数图像及其平移与变换

高中函数图像及其平移与变换

基本初等函数的图像1.一次函数性质: 一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减 2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

7. 幂函数性质:先看第一象限,即 x>0 时,当 a>1 时,函数越增越快;当0<a<1 时,函数越增越慢;当 a<0 时,函数单调递减;然后当x<0 时,根据函数的定义域与奇偶性判断函数图像即可。

8. 正弦函数、余弦函数、正切函数函数图像的变换 1 平移变换(1)水平平移: 函数 y = f(x + a)的图像可以把函数 y =f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; (2)竖直平移: 函数 y = f(x) + a 的图像可以把函数 y =f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到。

2 对称变换(1)函数 y = f(-x) 的图像可以将函数 y = f(x)的图像关于y轴对称即可得到; (2)函数 y = - f(x) 的图像可以将函数 y =f(x)的图像关于x轴对称即可得到;(3)函数 y = - f(-x) 的图像可以将函数 y =f(x)的图像关于原点对称即可得到;3 翻折变换(1)函数 y =| f(x)| 的图像可以将函数 y =f(x)的图像的x轴下方部分沿x轴翻折到x轴上方,去掉x轴下方部分,并保留 y =f(x)的x轴上方部分即可得到;(2)函数 y = f(|x|) 的图像可以将函数 y =f(x)的图像的右边沿y轴翻折到y轴左边替代原y轴左边部分并保留 y =f(x)在y轴右边部分即可得到。

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质
一次函数
一次 函数 k ,b 符号
图象
k kx bk 0
k 0
b0
b0
b0
b0
y
y
y
y
O
xO
xO
xO
x
k 0
b0
b0
y
y
O
xO
x
性质
y 随 x 的增大而增大
y 随 x 的增大而减小
b>0
b<0
b=0
经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限
k>0
图象从左到右上升,y 随 x 的增大而增大 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限
y
O
x
非奇非偶函数
y
O
x
y
O数
k<0
图象从左到右下降,y 随 x 的增大而减小
二次函数
f x ax2 bx ca 0
a0
a0
图像
定义域 对称轴 顶点坐标 值域
单调区间
x b 2a
x b 2a
,
x b 2a
b 2a
,
4ac 4a
b2
4ac b2 4a
,
,
4ac 4a
b2
,
b 2a
递减
,
b 2a
递增
b 2a
,
递增
b 2a
,
递减
反比例函数
指数函数
对数函数
a>1 图

a<1
(1)x>0
性 (2)当 x=1 时,y=0
质 (3)当 x>1 时,y>0
(3)当 x>1 时,y<0

《高中数学课件:几种常见函数的图像和性质》

《高中数学课件:几种常见函数的图像和性质》
高中数学课件:几种常见 函数的图像和性质
探索几种常见函数的图像和性质,包括一次函数、二次函数、反比例函数、 幂函数、指数函数、对数函数、三角函数和常函数。
一次函数
一次函数是指具有形式y = kx + b的函数,图像为一条直线,斜率k决定了直 线的倾斜程度,纵截距b决定了直线与y轴的交点。
二次函数
Step 3
根据底数a的不同,求解指数函 数的通式。
推导对数函数的通式
1
Step 2
2
代入任意一点的坐标和底数a到对数函数
的通式y = log_a(x)中。
3
Step 1
通过两个点的坐标(x1, y1)和(x2, y2)计算 底数a:a = 10^((y1 - y2) / (x1 - x2))。
Step 3
推导反比例函数的通式
1 Step 1
2 Step 2
通过两个点的坐标(x1, y1)和(x2, y2)计算比例 系数k:k = y1 * x1 = y2 * x2。
代入一个点的坐标(x, y)和比例系数k到反比例 函数的通式y = k/x中,得到反比例函数的通 式。
推导幂函数的通式
Step 1
取幂函数的对数y = log_a(x), 其中a为底数。
二次函数是指具有形式y = ax^2 + bx + c的函数,图像为一条开口向上或向下 的曲线,顶点坐标为(-b/2a, c-b^2/4a)。
反比例函数
反比例函数是指具有形式y = k/x的函数,图像为一条曲线,呈现出一个反比 例的关系,x越大,y越小。
幂函数
幂函数是指具有形式y = kx^n的函数,图像的形态取决于指数n的值,n为正 偶数时,图像在原点右侧上升,n为正奇数时,则图像在全范围上升。

@高一学生,高一数学函数图像知识点,太实用了

@高一学生,高一数学函数图像知识点,太实用了

@高一学生,高一数学函数图像知识点,太实用了一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看:通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x轴上的变换,那就一定要看x这个符号有啥变化。

所以,我们可以得出:第一步,翻折变换;第二步,对称变换;第三步,平移变换。

有的同学说,第一步是对称变换,也就是先在x上加负号,但是接下来的话,再进行翻折变换,就相当于在-x上加绝对值了,而这个并不是我们学过的规律,所以后面就无法进行变换了,这样也就错了。

高三函数的图像知识点

高三函数的图像知识点

高三函数的图像知识点函数是数学中非常重要的概念,而在高三数学学习中,关于函数的图像尤为重要。

本文将介绍高三函数的图像知识点。

一、函数的图像及其性质函数的图像是函数在直角坐标系中的几何表示,它能够直观地反映函数的性质。

常见的函数图像有线性函数、二次函数、指数函数、对数函数等。

1. 线性函数图像线性函数的图像是一条直线,表现为函数图像上的所有点都在线性关系 y = kx + b 上。

其中 k 表示斜率,b 表示截距。

2. 二次函数图像二次函数的图像是抛物线,分为开口向上和开口向下两种情况。

开口向上的抛物线表现为函数图像上的点低于顶点,并随着 x 的增大而增大。

开口向下的抛物线则相反。

3. 指数函数图像指数函数的图像是以底数大于 1 的指数函数图像。

当底数大于1 时,指数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,指数函数图像表现为随着 x 的增大,函数图像逐渐下降。

4. 对数函数图像对数函数的图像是以底数大于 1 的对数函数图像。

对数函数图像与指数函数图像是互逆的关系。

当底数大于 1 时,对数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,对数函数图像表现为随着 x 的增大,函数图像逐渐下降。

二、函数图像的平移、伸缩和翻折除了基本的函数图像形状外,我们还可以通过平移、伸缩和翻折等变换来改变函数图像。

1. 平移函数图像的平移是指将函数图像沿着 x 轴或 y 轴的方向移动一定的距离。

沿着 x 轴方向平移表示为 y = f(x - a),其中 a 表示平移的距离;沿着 y 轴方向平移表示为 y = f(x) + b,其中 b 表示平移的距离。

2. 伸缩函数图像的伸缩是指将函数图像在 x 轴或 y 轴的方向上进行拉伸或压缩,改变函数图像的幅度。

沿着 x 轴方向伸缩表示为 y = f(kx),其中 k 表示水平方向上的伸缩比例;沿着 y 轴方向伸缩表示为 y = kf(x),其中 k 表示垂直方向上的伸缩比例。

高中7种常用函数图象及4种函数图象变换规则

高中7种常用函数图象及4种函数图象变换规则

高中7种常用函数图象及4种函数图象变换规则函数的图象是高考的必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了,再去画图象,不是这里错,就是那里有问题,图象也画的乱七八糟,更甭提利用图象去解题了!但掌握以下几步,画函数图象将轻而易举:1、首先,观察是否是基本初等函数(也就是我们在课本中学过的那几类函数),如果是,那就可以直接画;2、如果不是,继续第二步,看看是否是经过一系列函数变换的,比如:翻折变换,对称变换,伸缩变换,平移变换等,如果是,那就根据变换的规律画出图象;3、如果还不是,那基本这个函数图象也不需要你独自画出来了,那种题目基本会考查选择题,能从4个选项中选择出来就可以了!一、基本初等函数的图象一次函数性质:一次函数图象是直线,当k>0时,函数单调递增;当k<0时,函数单调递减。

二次函数性质:二次函数图象是抛物线,a决定函数图象的开口方向,判别式b^2-4ac决定了函数图象与x轴的交点,对称轴两边函数的单调性不同。

反比例函数性质:反比例函数图象是双曲线,当k>0时,图象经过一、三象限;当k<0时,图象经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

指数函数当0<a<b<1<c<d时,指数函数的图象如上右图不同底的指数函数图象在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

对数函数当底数不同时,对数函数的图象是这样变换的。

幂函数性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图象即可。

对勾函数对于函数y=ax+k/x ,当a>0,k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

高中数学函数图像的绘制与分析方法

高中数学函数图像的绘制与分析方法

高中数学函数图像的绘制与分析方法在高中数学的学习中,函数是一个非常重要的概念,而函数图像则是直观理解函数性质的有力工具。

掌握函数图像的绘制与分析方法,对于解决函数相关的问题具有重要意义。

一、函数图像的绘制1、列表取值首先,我们需要选取一些自变量的值,计算出相应的函数值,列出一个表格。

取值时要注意涵盖函数的关键部分,比如零点、极值点等,同时要保证取值有一定的代表性和规律性。

2、描点连线根据列表中的数值,在平面直角坐标系中描出对应的点。

然后,用平滑的曲线将这些点依次连接起来。

需要注意的是,如果函数在某个区间内是连续的,那么连接的曲线应该是连续的;如果函数在某个点处不连续,比如分段函数,那么在不连续点处要分开绘制。

3、考虑函数的性质在绘制函数图像时,要充分考虑函数的性质,比如奇偶性、单调性、周期性等。

如果函数是偶函数,其图像关于y 轴对称;如果是奇函数,图像关于原点对称。

如果函数是单调递增的,图像是上升的;单调递减的,图像是下降的。

周期性函数的图像会在一定的区间内重复出现。

以最简单的一次函数 y = 2x + 1 为例,我们可以先取 x =-2,-1,0,1,2 等值,计算出对应的 y 值,列出表格:| x |-2 |-1 | 0 | 1 | 2 ||||||||| y |-3 |-1 | 1 | 3 | 5 |然后在坐标系中描点(-2,-3),(-1,-1),(0,1),(1,3),(2,5),最后用直线连接这些点,就得到了一次函数 y= 2x + 1 的图像。

再比如二次函数 y = x² 2x 3,我们可以通过配方法将其化为顶点式 y =(x 1)² 4,由此可知其顶点坐标为(1,-4),对称轴为 x =1。

然后取一些点,如 x =-1,0,2,3 等,计算出对应的 y 值,列表并描点连线,就能得到二次函数的图像。

二、函数图像的分析方法1、观察定义域和值域定义域是函数自变量的取值范围,值域是函数值的取值范围。

高中数学之反比例函数类的图像画法与性质总结

高中数学之反比例函数类的图像画法与性质总结

反比例函数类的图像形如ax bycx d+=+的函数,实际上是由最基本的反比例函数1yx=或者1yx=-经过平移变换得来的。

也是比较常考常用的。

下面就将该图像的画图方法以及图像的核心性质总结下来。

1、画图方法步骤:(1)先分离常数(2)确定渐近线的交点(即点(0,0)平移到了哪个点)注意这里的平移口诀是“左加右减,上加下减”(3)画出渐近线,并画出函数图像(注意分子的正负)下面以两道题为例,详细说明画图步骤。

例1 作321xyx+=+的图像解:()2113212111xxyx x x+++===++++分离常数完成后,可以明显看到,原本的反比例函数的中心点(0,0),先向左平移1再向上平移2,变成了点(-1,2)。

因此渐近线的交点就是(-1,2)。

画出渐近线并画图函数图像如下注意到该函数恒过点(0,3),中点为(-1,2)例2 作341xyx-=-的图像解析:()3113413111xxyx x x---===----显然是将(0,0)平移到了(1,3)画出渐近线并作函数图像如下。

这里需要注意,分子为-1,实际上该函数图像是由1y x=-平移得来的。

2、核心性质 通过以上作图,很容易观察到ax b y cx d +=+具备如下性质 (1)d x c ≠-(2)a y c≠ (3)恒过点(0,)bd(4)中心对称点为,d a c c ⎛⎫⎪⎝⎭3、习题小练 求值域:(1)32(0)1x y x x+=>+ (2)4[3,6]2y x x =∈- (3)1(1,2]3x y x x -+=∈-+ (4)34[3,5]1x y x x -=∈- (5)42(1,0]1x y x x -+=∈-- 解:画图各个函数的图像,从图像上看即可。

画图略。

答案如下(1)(2,3)y ∈(2)[2,4]y ∈(3)1[,1)5y ∈-(4)511[,]24 y∈(5)(3,2]y∈--。

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质
05
a>1时,在定义域内单调递增;0<a<1时,在定义域内单 调递减。
06
值域为(0, +∞)。
对数函数图像及性质
对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数称 为对数函数。
对数函数性质
对数函数图像:当a>1时,图像在x轴上方,且随着x的 增大,y值无限增大;当0<a<1时,图像在x轴上方, 且随着x的增大,y值无限减小。
正弦函数、余弦函数图像及性质
图像特点
正弦函数$y = sin x$和余弦函数$y = cos x$的图像都是周期性的波浪形曲线,振幅为1,周期为$2pi$。正弦函 数图像关于原点对称,余弦函数图像关于$y$轴对称。
性质
正弦函数和余弦函数都是周期函数,具有周期性、奇偶性和有界性等性质。其中,正弦函数是奇函数,余弦函数 是偶函数。
变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
运算规则
复合函数的运算遵循“由内到外”的原则,即先求出内层函数的值,再代入外层函数中 计算。
复合函数图像变换规律
平移变换
若f(x)的图像向左(右)平移a个单位得到g(x)的图像,则g(x)=f(x+a)(a>0向左,a<0向 右)。
奇偶性
设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=f(x),则这个函数叫做奇函数;如果对D内的任意一个x,都有x∈D,且f(-x)=f(x) ,则这个函数叫做偶函数。
函数周期性
周期函数的定义
对于函数y = f(x),如果存在一个不为零的常数T,使得当 x取定义域内的每一个值时,f(x + T) = f(x)都成立,那 么就把函数y = f(x)叫做周期函数,不为零的常数T叫做这 个函数的周期。

高中13种函数图像汇总

高中13种函数图像汇总

高中13种函数图像汇总函数图像是数学教学中的重要知识点,在高中阶段,学生要掌握常见的13种函数图像的概念、性质、特征,本文将对13种函数图像进行汇总,为学生深入学习提供参考。

一、直线函数图像直线函数的图像是一条直线,它的函数表达式为y=kx+b,其中k是斜率,b是y轴截距,如果k=0,则表示水平线;如果b=0,则表示垂直线。

二、平方函数图像平方函数的图像是一个U型函数曲线,它的函数表达式为y=x^2。

正定平方函数的图像会向上钝化,而负定平方函数的图像会向下钝化,当x=0时,y取得最大值。

三、立方函数图像立方函数的图像是一条U型函数曲线,它的函数表达式为y=x^3,正定立方函数的图像会向上钝化,而负定立方函数的图像会向下钝化,当x=0时,y取得最大值。

四、正弦函数图像正弦函数的图像是一条具有一定周期的曲线,它的函数表达式为y=A*sin(Bx+C),其中A表示振幅,B表示周期,C表示初相。

五、余弦函数图像余弦函数的图像与正弦函数的图像大致相同,它的函数表达式为y=A*cos(Bx+C),其中A表示振幅,B表示周期,C表示初相。

六、指数函数图像指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^x,其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。

七、反指数函数图像反指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^(-x),其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。

八、对数函数图像对数函数的图像是一条上升曲线,它的函数表达式为y=A*ln (x),A表示振幅,此时x的取值范围是大于0的正数。

九、反对数函数图像反对数函数的图像也是一条上升曲线,它的函数表达式为y=A*ln(1/x),A表示振幅,此时x的取值范围是大于0的正数。

十、双曲线函数图像双曲线的图像是一条上升或下降的曲线,它的函数表达式为y=A*sinh(Bx+C),其中A表示振幅,B表示周期,C表示初相。

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质

一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

一次kkx b k函数k ,bkk符号b 0b 0b 0b 0b 0yyyyy图象OxOxOxOxOxb 0yOx性质 y 随 x 的增大而增大 y 随 x 的增大而减小二次函数f xax 2 bx c aa 0a 0图像xbb2ax2a定义域, 对称轴xb2a顶点坐标b , 4ac b 22a 4a值域4ac b 2,, 4ac b 24a4a, b递减,b递增2a 2a单调区间b递增b递减, ,2a 2a二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称y ax2 bx c关于 x 轴对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,得到的解析式是k2.关于 y 轴对称y ax2 bx c关于y轴对称后,得到的解析式是y ax2 bx c;y a x h 2y a x h2;k 关于y轴对称后,得到的解析式是k3.关于原点对称y ax2 bx c关于原点对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2k k 关于原点对称后,得到的解析式是4. 关于顶点对称(即:抛物线绕顶点旋转 180°)y ax2 bx c关于顶点对称后,得到的解析式是y ax2 bx c b2 ;2ay a x2k 关于顶点对称后,得到的解析式是y a x h2k .h5.关于点 m,n 对称2k 关于点m,n 对称后,得到的解析式是y a x hy a x h 2m 2k2n反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴 Y轴但不会与坐标轴相交( K≠0)。

高中数学的所有重要函数图像及其性质 图像特点 单调性 定义域 值域等

高中数学的所有重要函数图像及其性质 图像特点 单调性 定义域 值域等

高中数学的所有重要函数图像及其性质图像特点单调性定义域值域等对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

高中各种函数图像画法与函数性质之欧阳家百创编

高中各种函数图像画法与函数性质之欧阳家百创编

一次函数二次函数反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

2、性质:1.当k>0时,图象分别位于第一、三象限,同一个象限内,y 随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x(a>0,a≠1)注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数
一次 函数
()0k kx b k =+≠
k ,b 符号
0k >
0k <
0b >
0b <
0b =
0b >
0b <
0b = 图象
O
x y
y
x O
O
x y
y
x O
O
x y
y
x
O
性质 y 随x 的增大而增大
y 随x 的增大而减小
b>0 b<0 b=0
k>0
经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限
图象从左到右上升,y 随x 的增大而增大
k<0
经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限
图象从左到右下降,y 随x 的增大而减小
二次函数
()()20f x ax bx c a =++≠
0a >
0a <
图像
定义域 (),-∞+∞
对称轴 2b x a
=-
顶点坐标
24,24b ac b a
a ⎛⎫
-- ⎪⎝⎭
值域
24,4ac b a ⎛⎫
-+∞ ⎪⎝⎭
24,4ac b a ⎛⎫
--∞ ⎪⎝⎭
单调区间
,2b a ⎛⎫-∞- ⎪⎝
⎭递减
,2b a ⎛⎫
-+∞ ⎪⎝⎭
递增 ,2b a ⎛
⎫-∞- ⎪⎝
⎭递增
,2b a ⎛⎫
-+∞ ⎪⎝⎭
递减
反比例函数
2b x a
=-
2b x a =-
指数函数
对数函数


a>1 a<1
性质(1)x>0
(2)当x=1时,y=0
(3)当x>1时,y>0
0<x<1时,y<0
(3)当x>1时,y<0
0<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数
补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2
当0<x<1时“底大图高”即若a>b,则y1>y2
幂函数
n
y x
=奇函数偶函数非奇非偶函数
1
n>
01
n
<<
0 n<
O x
y
O x
y
O x
y
O x
y
O x
y
O x
y
O x
y
O x
y
O x
y
对号函数。

相关文档
最新文档