初一奥数绝对值

合集下载

【七年级奥数】第2讲 绝对值(例题练习)

【七年级奥数】第2讲  绝对值(例题练习)

第2讲绝对值——例题一、第2讲绝对值(例题部分)1.绝对值为10的整数有哪些?绝对值小于10的整数有哪些?绝对值小于10的整数共有多少个?它们的和为多少?【答案】解:绝对值为10的整数有+10和-10两个,绝对值小于10的整数有0,±1,±2,…,±9,共2×9+1=19(个),它们的和为:0+1+(-1)+2+(-2)+…+9+(-9)=0.【解析】【分析】整数是离散的,所以满足要求的只有有限多个,要是改求绝对值小于10的有理数,那就有无限多个.2.若-2≤a≤0,化简【答案】解:因为-2≤a≤0,所以a+2≥0,a-2≤0-2<0,因此=(a+2)-(a-2)=4.【解析】【分析】由已知条件-2≤a≤0可得,,然后根据绝对值的性质即可化简。

3.若,化简【答案】解:因为。

所以从而因此,原式=【解析】【分析】根据所给的条件,先确定绝对值符号内的代数式的正负,然后化去绝对信符号.若有多层绝对值符号,即在一个绝对值符号内又含有绝对值符号(如本例中的分子,通常从最内层开始,逐层向外化去绝对值符号.4.设,且,试化简【答案】解:因为,,所以,即所以x+1,因此=-x-1+x-2=-3【解析】【分析】绝对值符号内的数、式的正负,有时不能直接从所给条件得出,应先将已知条件化为我们所需要的条件。

由已知条件a<0可得,又因为x,而a与互为相反数,所有x-1,根据绝对值的性质即可化简。

5.数a、b在数轴上对应的点如图所示,试化简|a+b|+|b−a|+|b|−|a−|a| |【答案】解:由图可知a<0,b>0,而且由于a点离原点的距离比b点离原点的距离大,因此a+b<0.我们有|a+b|+|b−a|+|b|−|a−|a| | = −(a+b)+(b−a)+b−|a−|a| |=-a-b+b-a+b-(-2a)=b【解析】【分析】由图,即数轴上a、b两点的位置,“读”得a<0.b>0,a+b<0等条件,根据绝对值的性质去掉绝对值符号,即可化简.6.化简【答案】解:要去掉绝对值符号.必须讨论x的取值.显然,由于分母不能为0.因此x≠0.当x>0时.当时【解析】【分析】当题设没有给出绝对值符号中的代数式的正负时.应分类进行讨论.分类是数学的一种重要思想.绝对值问题是运用分类思想的良好素材.下面的例子中,含有两个绝对值符号,我们根据零点分段,把整个数轴分成几段进行讨论.7.化简【答案】解:当时原式=当原式=当时原式=即原式=【解析】【分析】确定了讨论的范围后,原式的化简就方便多了.令各个绝对值内的代数式为0,找出零点,即x+5=0,2x-3=0,可得x=-5,x=;于是可确定讨论范围为:x < − 5,− 5 ≤ x <,x ≥.根据这三个范围讨论即可化简.8.化简| |x−1|−2|+|x+1|【答案】解:先找零点由x-1=0得x=1由=0即=2,得x-1=±2.。

初一奥数 绝对值

初一奥数    绝对值

初一奥数竞赛第2讲绝对值例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.例3已知x<-3,化简:|3+|2-|1+x|||.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.例8 化简:|3x+1|+|2x-1|.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式: (2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,求T的最小值6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B 点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能答案解析:例1解 (1)不对.当a,b同号或其中一个为0时成立.( 2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.6)不对.当a+b>0时成立.例2解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x例4解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.例7解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得 2y=2002, y=1001,所以例8分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9分析首先用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时, y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时, y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时, y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时, y =(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.。

初一年级奥数知识点:绝对值

初一年级奥数知识点:绝对值

初一年级奥数知识点:绝对值
1.绝对值的几何意义
一个数的绝对值,•就是在数轴上该数所对应的点与原点的距离.
2.绝对值的代数意义
(1)正数的绝对值是它的本身.
(2)负数的绝对值是它的相反数.
(3)0的绝对值是0.
掌握有理数绝对值的概念,给一个数能求出它的绝对值.
掌握求绝对值的方法:根据绝对值的代数定义来解答.
理解绝对值的概念,利用绝对值比较两负数的大小.比较方法是先比较它们绝对值的大小,再根据“两个负数,绝对值大的反而小”来解答.掌握了绝对值的概念后,判断有理数的大小就不一定要依赖于比较数轴上的点的位置了.
注意
(1)任何一个数的绝对值均大于或等于0(即非负数).
(2)互为相反数的两数的绝对值相等;反之,当两数的绝对值相等时,•这两数可能相等,可能互为相反数.
练习题
1. -3的绝对值是( )
(A)3 (B)-3 (C)13 (D)-13
2. 绝对值等于其相反数的数一定是
A.负数
B.正数
C.负数或零
D.正数或零
3. 若│x│+x=0,则x一定是 ( )
A.负数
B.0
C.非正数
D.非负数
4.某粮店出售三种品牌的面粉,袋上分别标有质量为0.1kg、0.2kg、0.3kg的字样,从中任意拿出2袋,它们的质量最多相差( )
A.0.8kg
B.0.6kg
C.0.5kg
D.0.4kg
5.正式比赛时,乒乓球的尺寸要有严格的规定,已知四个乒乓球,超过规定的尺寸为正数,不足的尺寸记为负数,为选一个乒乓球用于比赛,裁判对这四个乒乓球实行了测量,得到结果:A球+0.2mm,B球-0.1mm,C球+0.3mm,D球-0.2mm,你认为应选哪一个乒乓球用于比赛?为什么?。

七年级上学期数学奥赛绝对值有关的问题

七年级上学期数学奥赛绝对值有关的问题

绝对值有关的问题一、知识要点绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。

二、知识运用典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于()A.-3a B. 2c-a C.2a-2b D. b例2、(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例3、(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例4、化简|x+1|+|x-3|三、知识运用课堂训练 1、已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号2、已知b b a b a 2=-++,在数轴上给出关于a 、b 的四种情况如图1-4所示,则成立的是 .(写出所有正确的序号)3、父亲是儿子现在年龄时,儿子已经10岁,当儿子是父亲现在年龄时,父亲将82岁,问父子相差几岁?课后训练 等级1、若x 是有理数,分式21--x 的值为正整数,则x 的个数为_________________个 2、如图,数轴上线段MO (O 为原点)的七等分点A ,B ,C ,D ,E ,F 中,只有两点对应的数是整数,点M 对应的数10->m ,那么m 可以取的不同值有 个,m 的最小值是 .3、若b c b a -<<<<0,则=++-b c b a ( ).A.b a +B.c a --C.c a +D.c a -4、已知23++-x x 的最小值为a ,23+--x x 的最大值为b ,则b a +=_____________。

绝对值奥数经典题

绝对值奥数经典题

绝对值奥数经典题
绝对值是初中代数中的一个大体概念,在求代数式的值、化简代数式、证明恒等式与不等式,和求解方程与不等式时,常常会碰到含有绝对值符号的问题,同窗们要学会依照绝对值的概念来解决这些问题.
一、典型例题分析
例1已知x<-3,化简:|3+|2-|1+x|||.
例2若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.
例3 化简:|3x+1|+|2x-1|.
二、专项练习
练习1.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
练习2.设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.
练习3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该知足的条件及此常数的值.
三、巩固练习
1.x是什么实数时,下列等式成立:
(1)|(x-2)+(x-4)|=|x-2|+|x-4|;
(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).
2.化简下列各式:
(2)|x+5|+|x-7|+|x+10|.
3.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.
4.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,关于知足p≤x≤15的x来讲,T的最小值是多少?
5.不相等的有理数a,b,c在数轴上的对应点别离为A,B,C,若是|a-b|+|b-c|=|a-c|,那么B点应为( ).
(1)在A,C点的右边;
(2)在A,C点的左侧;
(3)在A,C点之间;
(4)以上三种情形都有可能.。

绝对值的奥数题及答案3则

绝对值的奥数题及答案3则

绝对值的奥数题及答案3则以下是网友分享的关于绝对值的奥数题及答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

《绝对值奥数习题范文一》第二讲:绝对值例1 已知x 0, y >z >x ,那么x +z +y +z -x -y 的值()(A )是正数(B )是负数(C )是零(D )不能确定符号第9届(1998年)初一培训题例2 若x =220012002,则x +x -+x -2+x -+x -4+x -5=第13届(2002年)初一培训题例3 数-a14是()2003(A )正数(B )负数(C )非正数(D )零第14届(2003年)初一培训题例4 使代数式3x -x 4x的值为正整数的x 值是()(A )正数(B )负数(C )零(D )不存在第12届(2001年)初一培训题例5 已知a , b , c 都是负数,并且x -a +y -b +z -c =0,则xyz 是()(A )负数(B )非负数(C )正数(D )非正数第11届(2000年)初一第2试例6 已知a 第16届(2005年)初一培训题例7 已知x =1999,则4x 2-5x +9-4x 2+2x +2+3x +7=a a -1+-2等于()例8 如果2a +b =0,则b b(A )2 (B )3 (C )4 (D )5第13届(2002年)初一第1试200220022002⎛a ⎫例9 如果a +b -c >0, a -b +c >0, -a +b +c >0,则⎪a ⎪⎝⎭于()⎛b ⎫⎪- b ⎪⎝⎭⎛c ⎫⎪+ c ⎪⎝⎭等(A )1 (B )-1 (C )0 (D )3第13届(2002年)初一培训题例10 If a 、b 、c ,d are rational numbers,a -b ≤9,c -d ≤16and a -b -c +d =25, b -a -d -c =第14届(2003年)初一第2试例11 若m 是方程2000-x =2000+x 的解,则m -等于()(A )m -2001 (B )-m -2001 (C )m +2001 (D )-m +2001例12 如果m -+(n +2) 2=0,则方程3mx +1=x +n 的解是第12届(2001年)初一培训题例13 化简y =2x -+x -2+x +x +3例14 不等式(x +x )(1-x ) 第13届(2002年)初一培训题例15 x ++x -的最小值是()(A )2 (B )0 (C )1 (D )-1第12届(2001年)初一培训题例16 已知x ≤1, y ≤,且μ=x +y +y ++2y -x -4,则μ的最大值与最小值的和等于第12届(2001年)初一培训题例17 彼此不等的有理数a , b , c 在数轴上的对应点分别为A 、B 、C, 如果a -b +b -c =a -c ,那么A 、B 、C 的位置关系是第12届(2001年)初一培训题例18 某公共汽车运营线路AB 段上有A 、B 、C 、D 四个汽车站,如图2-4所示,现在要在AB 段上修建一个加油站M ,为了使加油站选址合理,要求A 、B 、C 、D 四个汽车站到加油站M 的路程总和最小,试分析加油站M 在何处选址最好?第12届(2001年)初一培训题习题1. 若x 是有理数且x 3=-x ,则一定有()(A )x >0 (B )x 第12届(2001年)初一培训题2. a 是非零有理数,则()(A )a ≥a (B )a 2≥a (C )1≥a (D )a 2≥-a a3第12届(2001年)初一培训题3. 数轴上的点A 、B 、C 分别对应数:0,-1, x ,C 与A 的距离大于C 与B 的距离,则( )1(A )x >0 (B )x >-1 (C )x 2第14届(2003年)初一培训题4. 是代数式x -x x的值为正整数的x 值是()(A )正数(B )负数(C )非零的数(D )不存在的第13届(2002年)初一培训题5. 如图2-5,直线上有三个不同的点 A 、B 、C 且AB ≠BC ,那么,到A 、B 、C 三点距离的和最小的点()(A )是B 点(B )是线段AC 的中点(C )是线段AC 外一点(D )有无穷多个点第13届(2001年)初一第2试6. If x ≤3,y ≤1,z ≤4,and x -2y +z =9,then x 2y 4z 6=第11届(2000年)初一第2试7. 若ab ≠0,则a b+不能等于-2,0,1,2这四个数中的()a b(A )-2 (B )0 (C )1 (D )2第13届(2002年)初一培训题8. 已知x ++(y +2x ) 2=0,则x y =第13届(2002年)初一培训题9. 已知a 是有理数,则a -+a -的最小值是10. 设x ,y ,a 都是整数,x =1-a ,y =2+2a -a 2,则a =第13届(2002年)初一培训题11. 如图2-6,若数a 的绝对值是数b 的绝对值的3倍,则数轴的原点在点或点(“A ”, “B ”, “C ”, 或“D ”).323212. 已知a =1999,则3a -3a +4a +1-3a -3a +3a -2001=第11届(2000年)初一培训题13. 有理数a ,b ,c 在数轴上的位置如图2-7,则m =a +b +b --a -c --c -2b -3=14. 有理数a ,b ,c 均不为0,且a +b +c =0,设x = x 19-99x +2000之值。

初一奥数 第七讲 绝对值的计算

初一奥数 第七讲 绝对值的计算

第八节 绝对值(绝对值的运算)【知识要点】1.常用公式:222a a a ==;b a ab ⋅=;)0(≠=b bab a b a b a +≤+; ba b a b a +≤-≤-2.设n a a a a ,,,321是数轴上依次排列的点表示的有理数.当n 为偶数时,若2na ≤≤x 12+na ,则na x a x a x a x -+-+-+- 321的值最小当n 为奇数时,若x=21+n a ,则na x a x a x a x -+-+-+- 321的值最小【典型例题】一:求最值问题例1、(1)工作流水线上顺次排列5个工作台A,B,C,D,E ,已知工具箱应放在何处,才能使工作台上操作机器的人取工具所走的路程最短?(2)如果工作台由5个改为6个,那么工具箱应如何安置能使6个操作机姓名: 日期:器的人取工具所走的路程之和最短?(3)如果工作台由5个改为n 个,那么工具箱应如何安置能使 n 个操作机器的人取工具所走的路程之和最短?例2、求20072006321-+-+-+-+-x x x x x 的最小值.例3、已知:1+=a a ,ax x 2=,求211++--x x 的最大值与最小值.二:化简代入求值例4、a 与b 互为相反数,且b a -=36,那么12+++-ab a bab a 的值为多少?例5、有理数p n m ,,满足023=+m m ,1+=n n ,p •1=p ,求代数式1312++++--m m p m n 的值?例6、已知:200720065=x , 求1110987654321-+-+-+-+-+-+-+-+-+-+-+x x x x x x x x x x x x 的值。

例7、若,,a b c 均为整数,且19191a b c a -+-=,试求c a a b b c -+-+-的值。

例8、已知a,b,c,d 是有理数,19≤-b a ,7≤-d c 且 d c b a +--=26,求c d a b ---的值。

七年级奥数竞赛——绝对值

七年级奥数竞赛——绝对值

七年级奥数竞赛——绝对值1、绝对值的定义:一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数。

符号表示:|a|={a,a>0 0,a=0−a,a<0或者|a|={a,a≥0−a,a<0或者|a|={a,a>0−a,a≤0辨析:如果一个数的绝对值是它本身,则这个数是;如果一个数的绝对值是它的相反数,则这个数是 .2、绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

显然,任何数的绝对值都是非负数,即|a|≥0.想一想:有理数a,b,c的大小关系如图所示,则下列式子中一定成立的是()A. a+b+c>0B. |a+b|<cC. |a−c|=|a|+cD. |b−c|>|c−a|3、化简含有绝对值是式子,关键是去绝对值符号。

而要去绝对值符号,关键是看绝对值符号内的数a的正负性,即a>0,a<0,还是a=0. 如果已知条件没有给出a的的正负性,那么就应该对a的正负进行分类讨论。

当a>0时,|a|a =;当a<0时,|a|a= .例1 计算:(1)|13−12|+|14−13|−|14−12|=;(2) 已知|a|=1,|b|=2,|c|=3,且a>b>c, 那么a+b−c= .练习1(1)|12004−12003|+|12003−12002|+|12002−12001|+|12001−12004||=;(2)已知|a|=3,|b|=5,那么|a+b|−|a−b|的绝对值等于 .(3)已知a的相反数是最大的负整数,b的绝对值是最小的正整数,则a+b= .(4)设a,b,c 分别是一个三位数的百位、十位和个位数字,并且a≤b≤c, 则|a−b|+|b−c|+|c−a|可能取得的最大值是 .例2 若x<−2, 则y=|1−|1+x||等于()A. 2+xB. −2−xC. xD. −x练习2:若0<a<1,−2<b<−1, 则|a−1|a−1−|b+2|b+2+|a+b|a+b的值是()A. 0B. -1C. -2D. -3练习3:已知x=|a|a +|b|b+|c|c+|abc|abc,且a,b,c都不等于0,则x的所有可能值有 .练习3‘:已知a,b,c都不等于0,a+b+c=0, x=|a|a +|b|b+|c|c+|abc|abc,那么x的所有可能值有 .练习4:已知三个数a,b,c的积为负数,和为正数,且x=|a|a +|b|b+|c|c+|ab|ab+|ac|ac+|bc|bc,则ax3+bx2+cx+1的值为 .例3 (1) 如果|m−3|+(n+2)2=0,那么方程3mx+1=x+n的解是 . (2) 已知a,b,c是整数,且|a−b|+|c−a|=1, 则|c−a|+|a−b|+|b−c|= . 练习5:(1)若|a+b+1|与(a−b+1)2互为相反数,则a与b的大小关系是 . (2)求满足|a−b|+ab=1的非负整数对(a, b)的值.(3)已知|ab−2|+|a−2|=0, 求1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2006)(b+2006)的值.例4 (1)已知y=|x+1|+|x−1|,则y的最小值是()A. 2B. 0C. 1D. -1变式:已知y=|2x+1|+|x−1|,则y的最小值是(2) y=|x+1|+|x−2|+|x−3|的最小值是, 此时x= .一般化:设a≤b≤c,则y=|x−a|+|x−b|+|x−c|在x= 时取到最小值 .练习6:已知y=|x−b|+|x−20|+|x−b−20|, 其中0<b<20, b≤x≤20, 那么y的最小值为 .练习7:已知(|x+1|+|x−2|)(|y−2|+|y+1|)(|z−3|+|z+1|)=36,求x+2y+ 3z的最大值和最小值.【参考答案】1、辨析:正数和0 负数和02、想一想:C3、1 ;-1例1(1)0(2)2或0练习1(1)32005002(2)6(3)2或0(4)16例2 B练习2:D练习3:±4、0练习4:1例3(1)−38(2) 2练习5(1)a<b(2)(1,0), (0,1), (1,1)(3)20072008例4(1)A变式:1.5(2) 4, 2一般化:b;c-a练习6:20练习7:最大值是15,最小值是-6。

奥数-绝对值-第4讲

奥数-绝对值-第4讲

第四讲 绝对值绝对值是初一代数中一个重点内容,它是一种新的运算符。

很多同学对于求解绝对值问题感到很繁琐,这主要是因为求解绝对值问题涉及到了一个重要的数学思想——分类讨论。

分类讨论在数学分析中是经常遇到的,今天我们通过对绝对值的化简、求方程根、解不等式、分析极值等来练习分类讨论,一定要熟练掌握!为今后利用分类讨论思想解题打下基础。

一、基础知识●绝对值的定义与性质(注意它的非负性)定义:绝对值的定义用文字叙述为:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

绝对值的定义用公式表示为:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩性质: ① 非负性:|a|≥0;②|ab|=|a||b|;③|b a |=||||b a (b ≠0); ④222||||a a a ==;⑤|a+b|≤|a|+|b|;⑥||a|-|b||≤|a-b|≤|a|+|b|.● 绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点到原点的距离。

①) a 表示a 点到0点的距离②) a b -表示a 点到b 点的距离③) a b +表示a 点到-b 点的距离● 分类讨论思想(零点分段法)利用绝对值的定义,讨论绝对值符号内代数式值与0的大小关系,将绝对值符号打开,再进行运算。

例 设a 是有理数,求a a +的值二、例题第一部分 定义和性质例1. 若a,b 为有理数,那么,下列判断中:(1)若|a|=b ,则一定有a=b ; (2)若|a|>|b|,则一定有a>b ; (3)若|a|>b,则一定有|a|>|b|; (4)若|a|=b ,则一定有22)(b a -=。

正确的是________。

(填序号)例2. (1)已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=_______.(北京市“迎春杯”竞赛题)(2)已知a 、b 、c 、d 是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,那么|b-a|-|d-c|=_______. (第14届“希望杯”邀请赛试题)例3. 如果a 、b 、c 是非零有理数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为( ).A .0B .1或一1C .2或一2D .0或一2(2003年山东省竞赛题)例4. 已知|ab-2|与|b-1|互为相反数,试求代数式)2002)(2002(1)2)(2(1)1)((11+++++++++b a b a b b a ab 的值.例5. 已知m 、n 为整数,且21m m n -+-=,那么m n +的值为多少?例6. 已知|11-x |+|22-x |+|33-x |+…+|20022002-x |+|20032003-x |=0,求代数式2003200232122222x x x x x +---- 的值。

【七年级奥数】第2讲 绝对值(例题练习)

【七年级奥数】第2讲  绝对值(例题练习)

第2讲绝对值——练习题一、第2讲绝对值(练习题部分)1.判断下列各题是否正确.(1)当b<0时,(2)若a是有理数,则一定是正数.(3)当时,(4)若a=-b,则(5)若,则(6)一定是正数2.若,试化简3.若,试化简4.绝对值小于100的整数有哪些?共多少个?它们的和是多少?5.化简6.已知,求a-b的值7.设a和b是有理数,若a>b,那么|al>lbl一定正确吗?如果正确,请你说明理由;如果不正确,请举出反例.8.已知有理数a、b、c的位置如图所示,化简|a+c|+|b+c|−|a+b|9.若,试求a、b应满足的关系。

10.已知,化简11.化简12.化简| |2x−4|−6|+|3x−6|13.设a是有理数,求的值答案解析部分一、第2讲绝对值(练习题部分)1.【答案】(1)解:∵b<0,∴ | b | =-b,故正确.(2)解:∵a是有理数,∴|a| 是非负数,故错误.(3)解:∵|m|=m,∴m≥0,故错误.(4)解:∵a=-b,∴ |a|=|b|.故正确.(5)解:∵当 a < b<0时,∴|a|>|b|,故错误.(6)解:∵当a <0时,∴a+|a|=a-a=0,故错误.【解析】【分析】(1)根据负数的绝对值是它的相反数,可知正确.(2)一个数的绝对值是正数或者0,故错误.(3)正数或0的绝对值是它本身,故错误.(4)互为相反数的两个数的绝对值相等,故正确.(5)当a和b都是负数时,|a|>|b|,故错误.(6)当a为负数或者0时,a+|a|值为0,故错误.2.【答案】解:∵−1<x<1 ,∴x+1>0,x-1<0,∴原式=x+1+x-1,=2x.【解析】【分析】根据−1<x<1 得x+1>0,x-1<0,再由绝对值性质化简合并即可得出答案.3.【答案】解:∵a < 0 ,∴3a< 0,-4a>0,∴原式=,=,=-.【解析】【分析】根据a < 0 得3a< 0,-4a>0,根据绝对值性质化简即可得出答案.4.【答案】解:绝对值小于100的整数有:-99,-98,……98,99,共199个.它们的和为:-99-98-97+……+98+99=0.【解析】【分析】根据绝对值的性质可知绝对值小于100的整数个数,列出式子求出和即可.5.【答案】解:①当x≤-时,∴原式=-(x-)-(x+),=-x+-x-,=-2x.②-<x<时,∴原式=-(x-)+(x+),=-x++x+,=.③x≥时,∴原式=x-+x+,=2x.综上所述:原式=.【解析】【分析】依题可分情况讨论:①当x≤-,②-<x<,③x≥,根据绝对值的性质去掉绝对值,合并同类项即可.6.【答案】解:∵|a|=5,|b|=1,∴a=±5,b=±1,①a=5,b=1时,∴a-b=5-1=4;②a=5,b=-1时,∴a-b=5+1=7;③a=-5,b=1时,∴a-b=-5-1=-7;④a=-5,b=-1时,∴a-b=-5+1=-4;综上所述:a-b=±7或±4.【解析】【分析】根据绝对值的定义可知a和b的值,再分情况讨论:①a=5,b=1,②a=5,b=-1,③a=-5,b=1,④a=-5,b=-1,分别计算a-b的值即可.7.【答案】解:不一定正确;理由如下:∵a>b∴当a=2,b=-5时,∴|al<lbl.【解析】【分析】根据a>b,当a=2,b=-5时,得出|al<lbl.8.【答案】解:由图可知:b<a<0<c,a=-c则a+c=0,b+c<0,a+b<0∴原式=0-(b+c)-[-(a+b)],=-b-c+a+b,=2a.【解析】【分析】由图可知:b<a<0<c,a=-c,根据绝对值的性质去掉绝对值,计算即可得出答案.9.【答案】解:∵|a-b|=|a|+|b|,∴a≤0且b≥0,或a≥0且b≤0,∴ab≤0.【解析】【分析】根据题意可知a≤0且b≥0,或a≥0且b≤0,从而得出ab≤0.10.【答案】解:依题可得:,∴a=b=0,∴原式=|02005+02005|+|02005-02005|,=0.【解析】【分析】根据绝对值的非负性可得a=b=0,代入即可得出答案.11.【答案】解:①当x≤-时,∴原式=-(2x-3)-(3x-5)+(5x+1),=-2x+3-3x+5+5x+1,=9.②当-<x≤时,∴原式=-(2x-3)-(3x-5)-(5x+1),=-2x+3-3x+5-5x-1,=-10x+7.③当<x<时,∴原式=2x-3-(3x-5)-(5x+1),=2x-3-3x+5-5x-1,=-6x+1.④当x≥时,∴原式=2x-3+3x-5-(5x+1),=2x-3+3x-5-5x-1,=-9.综上所述:原式=.【解析】【分析】根据题意分四种情况来讨论:①x<-,②-<x<,③<x<,④x>,根据绝对值的性质去掉绝对值,化简即可得出答案.12.【答案】解:①当x≤-1时,∴原式=|-(2x-4)-6|-(3x-6),=|-2x-2|-3x+6,=-(2x+2)-3x+6,=-2x-2-3x+6,=-5x+4.②当-1<x<2时,∴原式=|-(2x-4)-6|-(3x-6),=|-2x-2|-3x+6,=2x+2-3x+6,=-x+8.③当2≤x<5时,∴原式=|2x-4-6|+3x-6,=-(2x-10)+3x-6,=-2x+10+3x-6,=x+4.④当x≥5时,∴原式=|2x-4-6|+3x-6,=2x-10+3x-6,=5x-16.综上所述:原式=.【解析】【分析】根据题意分四种情况来讨论:①x≤-1②-1<x<2③2≤x<5④x≥5,根据绝对值的性质去掉绝对值,化简即可得出答案.13.【答案】解:当a≤0时,|a|=-a,∴原式=a-a=0;当a>0时,|a|=a,∴原式=a+a=2a.【解析】【分析】根据绝对值的性质分情况讨论:①当a≤0时,②当a>0时,之后化简即可.。

初一奥数竞赛绝对值

初一奥数竞赛绝对值

初一奥数竞赛第2讲绝对值例1 a,b为实数,以下各式对吗?假设不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)假设|a|=b,那么a=b;(5)假设|a|<|b|,那么a<b;(6)若a>b,那么|a|>|b|.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.例3已知x<-3,化简:|3+|2-|1+x|||.例5假设|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.例8 化简:|3x+1|+|2x-1|.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该知足的条件及此常数的值.练习二1.x是什么实数时,以劣等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简以下各式: (2)|x+5|+|x-7|+|x+10|.3.假设a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,关于知足p≤x≤15的x来讲,求T的最小值6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点别离为A,B,C,若是|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左侧;(3)在A,C点之间;(4)以上三种情形都有可能答案解析:例1解 (1)不对.当a,b同号或其中一个为0时成立.( 2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.6)不对.当a+b>0时成立.例2解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.依照有理数加减运算的符号法那么,有b-a<0,a+c<0,c-b<0.再依照绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x例4解因为 abc≠0,因此a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情形加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很经常使用.例5解因为|x-y|≥0,因此y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.因此x+y的值为-1或-5.例6解 a,b,c均为整数,那么a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,因此只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.不管①或②都有|b-c|=1且|a-b|+|c-a|=1,因此|c-a|+|a-b|+|b-c|=2.例7解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,因此必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得 2y=2002, y=1001,因此例8分析此题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.假设别离去掉每一个绝对值符号,那么是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.那个地址咱们为三个部份(如图1-2所示),即如此咱们就能够够分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这种题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,如此就将数轴分成几个部份,依照变数字母的这些取值范围分类讨论化简,这种方式又称为“零点分段法”.例9分析第一用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时, y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,因此y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时, y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,因此-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时, y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,因此0≤-3x+3≤6,y的最大值是6.(4)当x≥1时, y =(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,因此1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10分析此题也可用“零点分段法”讨论计算,但比较麻烦.假设能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得加倍简捷便利.解设a,b,c,d,x在数轴上的对应点别离为A,B,C,D,X,那么|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|别离表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,确实是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,因此A,B,C,D的排列应如图1-3所示:因此当X在B,C之间时,距离和最小,那个最小值为AD+BC,即(d-a)+(c-b).例11分析与解要使原式对任何数x恒为常数,那么去掉绝对值符号,化简归并时,必需使含x的项相加为零,即x的系数之和为零.故此题只有2x-5x+3x=0一种情形.因此必需有|4-5x|=4-5x且|1-3x|=3x-1.故x应知足的条件是现在原式=2x+(4-5x)-(1-3x)+4=7.。

奥数-绝对值-2

奥数-绝对值-2
补充题1已知m、n为整数,且 ,那么 的值为多少?
解:2或3或5或6
补充题2已知 ,如果 , ,那么y的最大值是多少?
解:当x=96时,y取最大值211
补充题3已知 ,且 ,那么 _______
解:
初中数学竞赛真题选讲
——绝对值
绝对值的题型主要包括绝对值方程,绝对值不等式,最值,几何意义等几类。
例题部分
例4解方程
解:零点分段法,x=7/3
C)解不等式
例5解下列不等式1、
2、
解:1,x<-1或x>9;2,x>2或x<-3
例6解不等式
解:零点分段法,x〉17/13
例7解不等式
解:不等式的解集为任意数
D)最值问题
例8已知 ,求 的最大值与最小值
解:当 时,取最大值为5;当 时,取最小值为-3
例9已知 ,求 的最大值与最小值
11.(同步,P114)(1997,希望杯)有理数a和b满足 ,则()
A B C D
12.(同步,P120)(第10届,希望杯)已知 ,那么 的最大值等于()
A 1 B5 C8 D 3
13.(同步,P127)(1999,武汉市)若 ,则方程 的解集是________.
14.(同步,P133)(1997,希望杯)有理数a和b满足 ,则()
18.(同步,P209)(2001,北京市初二决赛)在6张纸片的正面分别写上整数1,2,3,4,5,6,打乱次序后,将纸片翻过来,在它们的反面也随意写上1~6这六个整数,然后计算每张纸片正面与反面所写数字之差的绝对值,得出6个数,请你证明:所得的六个数中至少有两个是相同的。
练习部分
19.(同步,P77)(南京市竞赛题)讨论关于x的方程 的解的情况

奥数知识之绝对值

奥数知识之绝对值

奥数知识之绝对值(总2页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初一之绝对值一、知识要点:1. 绝对值的代数意义:x (x>0) |x|= 0 (x=0) -x (x<0)3. 绝对值的常用性质:(1)0||≥a(2) 222||||a a a == (3)||||||b a ab ⋅= (4) )0(||||||≠=b b a b a (5) ||||||b a b a +≤+ (6) ||||||b a b a -≥- 4. 解决含绝对值问题的常用方法:(1)零点分段法; (2)数形结合法;二、例题精选及相应练习:例1. 已知._____||,3||,5||=+-=-==b a a ,b b a b a 则且变式:1. 若的值是则且b a b a b a ->+==,0,5||,8||( )A. 3或13B. 13或-13C. 3或-3D. -3或-13练习:已知a,b,c 满足(a+b)(b+c)(c+a)=0,且abc<0,则代数式||||||c c b b a a ++的值为________. 例2. 若a,b,c 为整数,且1||||20092009=-+-a c b a ,计算|c-a|+|a-b|+|b-c|的值。

练习1. 求满足|a-b|+ab=1的非负整数对(a,b )的值。

练习2. 若a,b,c,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,则|a-d|=________.练习3. 已知a,b,c,d 为有理数,,16||,9||≤-≤-d c b a ,25||=+--d c b a 且。

c d a b 的值求||||--- 例3. 化简:|x+2|+|x-1| 变式1. 解方程:|x+2|+|x-1|=7 变式2. 解不等式:|x+2|+|x-1|>7 例4. 求|x+2|+|x-1|的最小值。

七年级数学竞赛 第02讲 绝对值

七年级数学竞赛 第02讲 绝对值

七年级数学竞赛第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|1,所以只能是99为两个非负整数,和为|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b ±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p ≤x≤15的x来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.。

初一奥数 绝对值练习题

初一奥数 绝对值练习题

初一奥数绝对值练习题1、非负数;2、一个,0;3、B;4、D;5、5,-5;6、-1/4;7、3个,-1,0,1;8、x=-2,x=3,x=2或4;9、|a|>|b|;10、b=7或-7;11、a=-3,b=-2,c=-1;12、-n<-m<m<|n|;13、C;14、23个;15、非正数;16、无法判断大小关系;17、x=1,x=0或2;18、-2<a<0,0<b<2;19、0;20、-2;21、a+b+2cd;22、2;23、-4,-2;24、8;25、a=0,b任意;26、5,-3.7.1、有理数的绝对值是非负数;2、只有0的绝对值等于它本身;3、正确的说法是B选项;4、若一个数小于它的绝对值,则这个数为负数,因此选D;5、相反数等于-5的数是5,绝对值等于5的数是-5;6、-4的倒数为-1/4,其相反数为1/4;7、绝对值小于2的整数有3个,分别为-1,0,1;8、当|-x|=2时,x=-2或2;当|x-3|=0时,x=3;当|x-3|=1时,x=2或4;9、根据图示可知,|a|>|b|;10、由|a|+|b|=9和|a|=2可得|b|=7或-7,因此b=7或-7;11、由a0,n<0可得-n<-m<m<|n|;13、由不等式组可得-2<a<0,0<b<2;14、绝对值不大于11.1的整数有23个;15、根据定义,若a<0,则|a|=-a,因此a为负数,即选B;16、无法判断大小关系;17、由|x-1|=0可得x=1,由|1-x|=1可得x=0或2;18、由不等式组可得-2<a<0,0<b<2;19、由|a+b+3|=0可得a+b=-3,因此|a+b|=3;20、由|a-2|+|b-3|+|c-4|=0可得a=2,b=3,c=4,因此a+2b+3c=2+2(3)+3(4)=-2;21、根据题意,a和b互为相反数,c和d互为倒数,因此a+b=0,cd=1,代入式子可得a+b+2cd=2;22、由|a|=3,|b|=5,a与b异号可得|a-b|=|3-(-5)|=8;23、由a和b互为相反数可得a+b=0,2a+2b=0,因此a=-b,2a-2b=0,解得a=b=0,因此a+b=0,2a+2b=0;24、由题可得a+5=-3,因此a=-8;25、a+b 和a-b互为相反数,当a=0___成立,b任意;26、由|-x|=5可得x=5或-5,由|-(-x)|=3.7可得-x=3.7/2,因此x=-5或5,-x=-3.7/2,因此x=3.7/2或-3.7/2.27、若一个数的倒数是1.2,则这个数的相反数是-0.8333,绝对值是0.8333.28、若-a=1,则a=-1;若-a=-2,则a=2;如果-a=a,则a=0.29、已知|X-4|+|Y+2|=0,由绝对值的非负性可知X=4,Y=-2,因此2X-|Y|=4.30、若-x=-(-5),则x=5;由x-2=4可知x=6.31、绝对值小于4且不小于2的整数是-3,-2,2,3.32.已知|a|=3,|b|=5,且a<b,则a+b=8.33.若1<a<3,则3-a+1-a=-2a+4.34.若|x-2|=7,则x=-5或x=9.35.给出两个结论:①a-b=b-a;②a+b=2a-(-b)。

(完整版)七年级奥数:绝对值

(完整版)七年级奥数:绝对值

七年级奥数:绝对值阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中的一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面: 1.去绝对值符号法则(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.绝对值的几何意义从数轴上看,即表示数a 的点到原点的距离,即代表的是一个长度,故表示一个非负数.3.绝对值常用的性质222(1) ||0 (2) |||| (3) |||||| (4)(0)||(5) |||||| (6) ||||||a a a a a a ab a b b b b a b a b a b a b ===⋅=≠++-- 例题与求解例1 已知=5,=3,且=b -a ,那么a +b = .(“祖冲之杯”邀请赛试题)解题思路 由已知求出a 、b 的值,但要注意条件=b -a 的制约,这是解本例的关键.例2 如果0<p <15,那么代数式++在p ≤x ≤15的最小值是( ).(湖北省黄冈市竞赛题)(A )30 (B )0 (C )15 (D )一个与P 有关的代数式解题思路 设法脱去绝对值符号是解绝对值有关问题的基本思路,就本例而言,应结合已知条件判断每一个绝对值符号内代数式值的正负性.例3 已知12320022003123200220030x x x x x -+-+-++-+-=,求代数式3200220031222222x x x x x ----+的值.解题思路 运用绝对值、非负数的概念与性质,先求出x 、x 、x …x 、x 的值,a a a ab b a -b a -p x -15-x 15--p x 12320022003注意2-2的化简规律.例4 设a 、b 、c 是非零有理数,求++++++的值.(“希望杯”邀请赛试题)解题思路 根据a 、b 、c 的符号的所有可能情况讨论,化去绝对值符号,这是解本例的关键.例5 若a 、b 、c 为整数,且+=1,试求++的值.(北京市“迎春杯”竞赛题)解题思路 1写成两个整数的和的形式有几种可能?1写成两个非负整数的和的形式又有几种可能?这是解本例的突破口.能力训练A 级1.若m 、n 为有理数,那么,下列判断中: (1)若∣m ∣=n ,则一定有m =n ;(2)若∣m ∣>n ,则一定有∣m ∣>∣n ∣; (3)若∣m ∣<∣n ∣,则一定有m <n ;(4)若∣m ∣=n ,则一定有m =(-n )。

初一年级奥数重点题型:绝对值化简求值

初一年级奥数重点题型:绝对值化简求值

初一年级奥数重点题型:绝对值化简求值★★★★★有理数运算、绝对值化简在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7。

-1/7,0,1/9,2/9。

8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的值是___________将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。

【解析答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时a#b#c的值为b+c=5/3②4(提示,将1/9,2/9。

8/9分别赋予b、c同时赋予a四个负数;最后一组,a=0,b、c赋予两个负数即可)★★★☆☆绝对值与平方的非负性、二元一次方程组已知:(a+b)2+|b+5|=b+5,|2a-b-1|=0,求ab的值.考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。

由题意知b+50,(a+b)2+b+5=b+5,即(a+b)2=0。

①2a-b-1=0。

②解得a=1/3,b=-1/3所以ab=-1/9-1/9★★★☆☆绝对值化简,零点分段法化简|3x+1|+|2__1|零点分段法,两个零点:x=-1/3,x=1/2原式=5x(x≥1/2);x+2(-1/3≤x<1/2); -5x(x<-1/3)★★★★☆有理数乘法法则、分类讨论、整体法求值已知:abc<0,a+b+c=2,且求多项式ax4+bx2+c-5的值。

初中数学竞赛——绝对值

初中数学竞赛——绝对值

第2讲绝对值知识总结归纳一. 绝对值的定义正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.,(0)0,(0),(0)a a a a a a >⎧⎪==⎨⎪-<⎩或,(0),(0)a a a a a ≥⎧=⎨-<⎩或,(0),(0)a a a a a >⎧=⎨-≤⎩二. 绝对值的几何意义a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 三. 去绝对值符号的方法:零点分段法(1) 化简含绝对值的式子,关键是去绝对值符号.先根据所给的条件,确定绝对值符号内的数a的正负〔即0a >,0a <还是0a =〕.如果条件没有给出其正负,应该进展分类讨论.(2) 分类讨论时先假设每个绝对值符号内的数〔或式子〕等于0,得到相应的未知数的值;再把这些值表示在数轴上,对应的点〔零点〕将数轴分成了假设干段;最后依次在每一段上化简原式.这种方法被称为零点分段法.四. 零点分段法的步骤(1) 找零点; (2) 分区间; (3) 定正负; (4) 去符号.五. 含绝对值的方程(1) 求解含绝对值的方程,主要是先利用零点分段法先化简绝对值符号,化成一般形式再求解. (2) 在分类讨论化简绝对值符号时,要注意将最后的结果与分类X 围相比拟,去掉不符合要求的.六. 绝对值三边不等式:a b a b a b -≤+≤+对于代数式123n x a x a x a x a -+-+-++-〔123n a a a a ≤≤≤≤〕(1) 如果n 为奇数,那么当12n x a +=时取最小值;(2) 如果n 为偶数,那么当122n n a x a +≤≤时取最小值.典型例题一. 绝对值的化简【例1】 0b a c <<<,化简:a a b c b a c -++-+-.【例2】 a 、b 、c 的大小关系如下图,求a b b c c a ab aca b b c c a ab ac-----++----的值.【例3】 a 、b 、c 、d 满足101a b c d <-<<<<<,11a b +=+,11c d -=-,求a b c d +++的值.【例4】化简:12-+-.x x【例5】化简:525x x+--.【例6】化简:23132++---.x x x【例7】化简:5423++-++;x x x【例8】化简:21-+.x x【例9】化简:121x x--++.【例10】0x<,化简:23x xx x---.【例11】假设25x<<,化简:5252x x x x x x ---+--.【例12】假设0a<,且axa≤,化简:12x x+--.【例13】 假设245134x x x +-+-+的值恒为常数,求x 满足的条件及此常数的值.【例14】 a 、b 为有理数,且a b a b +=-,试求ab 的值.二. 绝对值方程【例15】 解方程:〔1〕2(1)5x x --+=; 〔2〕576x --=-; 〔3〕4426x x -=+.【例16】 4329x x +=+.【例17】解方程:〔1〕143-+-=;x x〔2〕324x x+-=;〔3〕13-=+.x x【例18】解方程:|||4|5x-=.【例19】解方程:||48|3|5+-=.x x【例20】解方程:324-+=.x x【例21】解方程:3212--+=+x x x【例22】解方程:213x--=.【例23】关于x的方程23-+-=,试对a的不同取值,讨论方程解的情况.x x a三.绝对值不等式【例24】解不等式:|35|10x+≤.【例25】 解不等式:23x x +>-.【例26】 解不等式:|3||21|2x x +--<.【例27】 解不等式:4231x x ---≤.【例28】 求不等式20069999x x -+≤的整数解个数.【例29】 假设不等式13x x a ++-≤有解,求a 的取值X 围.【例30】 解关于x 的不等式:11ax ax ->-.四. 绝对值的几何意义和最值问题【例31】04a ≤≤,求23a a -+-的最大值.【例32】 26141y x x x =++--+,求y 的最大值.【例33】 求35x x ++-的最小值.【例34】 〔1〕试求1437x x x x ++++-+-的最小值.〔2〕试求1232013x x x x -+-+-++-的最小值.【例35】 试求72231435100x x x x x -+-++++++的最小值.【例36】 试求214253x x x x +-+-+-的最小值.【例37】 如果122y x x x =+-+-,且12x -≤≤,求y 的最大值和最小值.五. 三角不等式【例38】 证明三边不等式:a b a b a b -≤+≤+.【例39】 21951x x y y ++-=---+,求x y +的最大值和最小值.【例40】(12)(21)(31)36x x y y z z ++--++-++=,求23x y z ++的最大值和最小值.【例41】a b c d 、、、都是有理数,9a b -≤,16c d -≤,且25a b c d --+=,求b a d c -+-的值.【例42】 0ab >,45P a b a b =-++,362Q a b a b =-++,试比拟P 与Q 的大小.思维飞跃【例43】 满足1ab a b ++=的整数对(a ,b )共有多少个?【例44】 求24x y x y -+-+-的最小值.作业1. a a =-,0b <,化简:22442(2)24323a b a b a b b a +--+++--.2. 化简:3223x x -++.3. 0a b c ++=,0abc >,化简:abca b c ++.4. 0a <,0ab <,化简:15b a a b -+---.5. 数a 、b 在数轴上对应的点如下图,化简:a b b a b a a ++-+--.6. 化简:2325x xx x --.7. 化简:123x x x -++--.8. 解方程:100100300x x ++-=.9. 解方程:116x x x +-++=.10. 解方程:〔1〕32368x x ++-=;〔2〕23143x x x +--=-.11. 解不等式:|2||3|2x x ++->.12. 计算以下式子的的最小值.〔1〕123x x x -+++-;〔2〕31523x x x -+++-;〔3〕213243x x x x +-+-+-.13. 设a b c d <<<,求x a x b x c x d -+-+-+-的最小值.14. 计算21563x x x ++-++的最小值.15. 1223y x x x =++-+-,当x a =时,y 的最小值是b ,求b a a b ⋅的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 解: 因为 abc≠0,所以 a≠0,b≠0,c≠0.
• (1)当 a,b,c 均大于零时,原式=3;
• (2)当 a,b,c 均小于零时,原式=-3;
• (3)当 a,b,c 中有两个大于零,一个小于零时,
• 原式=1;
• (4)当 a,b,c 中有两个小于零,一个大于零时,
• •
原所式以=|-1aa.| +
• 说明 :解这类题目,可先求出使各个绝对值等于零的变数字 母的值,即先求出各个分界点,然后在数轴上标出这些分界点,
这样就将数轴分成几个部分,根据变数字母的这些取值范围分 类讨论化简,这种方法又称为“零点分段法”.
例 9 、已知 y=|2x+6|+|x-1|-4|x+1|,
求 y 的最大值.
分析:首先使用“零点分段法”将y化简,然后在各个取 值范围内求出y的最大值,再加以比较,从中选出最大 者.

由|x|=3,|y|=2 可知,x<0,

即 x=-3.
• (1)当 y=2 时,x+y=-1;
• (2)当 y=-2 时,x+y=-5.
• 所以 x+y 的值为-1 或-5.
• 例 6、 若 a,b,c 为整数,

且|a-b|19+|c-a|99=1,

试计算|c-a|+|a-b|+|b-c|的值.
a
=
ì ïï í
a,当a 0,当a
> 0时 = 0时
ï ïî
-
a,当a
<
0时
• 绝对值的几何意义可以借助于数轴来认识, 它与距离的概念密切相关.在数轴上表示 一个数的点离开原点的距离叫这个数的绝 对值.
• 结合相反数的概念可知,除零外,绝对值 相等的数有两个,它们恰好互为相反 数.反之,相反数的绝对值相等也成 立.由此还可得到一个常用的结论:任何 一个实数的绝对值是非负数.
例 1 、a,b 为实数,下列各式对吗?若不对,应 附加什么条件? (1)|a+b|=|a|+|b|;(2)|ab|=|a||b|; (3)|a-b|=|b-a|; (4)若|a|=b,则 a=b; (5)若|a|<|b|,则 a<b; (6)若 a>b,则|a|>|b|.
解:(1)不对.当 a,b 同号或其中一个为 0 时成立.
绝对值
主讲:刘文峰
专题简析
• 绝对值是初中代数中的一个基本概念,在求代数 式的值、化简代数式、证明恒等式与不等式,以 及求解方程与不等式时,经常会遇到含有绝对值 符号的问题,同学们要学会根据绝对值的定义来 解决这些问题.
• 下面我们先复习一下有关绝对值的基本知识,然 后进行例题分析.
• 一个正实数的绝对值是它本身;一个负实数的绝 对值是它的相反数;零的绝对值是零.即
• 分析: 这是一个含有多层绝对值符号的 问题,可从里往外一层一层地去绝对值 符号.
• 解:原式=|3+|2&#)

=|3+|3+x||

=|3-(3+x)|(因为 3+x<0)

=|-x|

=-x.
例 4 、 若abc ? 0,则 a b + c 的所有可 能值是什么? | a | | b | | c |
• 因为任何一个实数的绝对值是非负数,所以必有 |x-y+3|=0 且|x+y-1999|=0.即
例 8 、化简:|3x+1|+|2x-1|.
• 分析: 本题是两个绝对值和的问题.解题的关 键是如何同时去掉两个绝对值符号.若分别去掉 每个绝对值符号,则是很容易的事.
• 例如,化简|3x+1|,只要考虑 3x+1 的正负,即
(2)对. (3)对.
(4)不对.当 a≥0 时成立.
(5)不对.当 b>0 时成立.
(6)不对.当 a+b>0 时成立.
例 2、 设有理数 a,b,c 在数轴上的对 应点如图 1-1 所示, 化简|b-a|+|a+c|+|c-b|.
• 解:由图1-1可知,a>0,b<0,c<0, • 且有|c|>|a|>|b|>0.根据有理数加减运算
的符号法则,有b-a<0,a+c<0,c-b<0. • 再根据绝对值的概念,得 • |b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有 • 原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.
c b0 a x 图1-1
例 3 、已知x<-3,化简: |3+|2-|1+x|||.
• 解 :a,b,c 均为整数,
• 则 a-b,c-a 也应为整数,
• 且|a-b|19,|c-a|99为两个非负整数,和为 1, 所以只能是 |a-b|19=0 且|c-a|99=1, ①
• 或 |a-b|19=1 且|c-a|99=0.

• 由①有 a=b 且 c=a±1,于是|b-c |=|c-a|=1;
可去掉绝对值符号.这里我们是分 x ? 1 与x < 1

两种情况加以讨论的,此时x =
类似地,对于|2x-1|而言,x
=
1 2
- 13是一个分3 界点3, 是一个分界点,为
同时去掉两个绝对值符号,我们把两个分界点
• 所化- 示13简和)了即12 。标x <在- 13,数- 13轴? x上12,, x ?把,12 数这轴样分我为们三就部可份以(分如类图1讨-论2
• 解: 有三个分界点:-3,1,-1. • (1)当 x≤-3 时,y=-(2x+6)-(x-1)+4(x+1)=x-1, • 由于 x≤-3,所以 y=x-1≤-4,y 的最大值是-4. • (2)当-3≤x≤-1 时,y=(2x+6)-(x-1)+4(x+1)=5x+11, • 由于-3≤x≤-1,所以-4≤5x+11≤6,y 的最大值是 6. • (3)当-1≤x≤1 时,y=(2x+6)-(x-1)-4(x+1)=-3x+3, • 由于-1≤x≤1,所以 0≤-3x+3≤6,y 的最大值是 6. • (4)当 x≥1 时,y=(2x+6)+(x-1)-4(x+1)=-x+1, • 由于 x≥1,所以 1-x≤0,y 的最大值是 0.
|
b b
|
+
|
c c
|
的所有可能值是±3,
±1
• 说明本例的解法是采取把 a,b,c 中大于零与小于零的
个数分情况加以解决的,这种解法叫作分类讨论法,它
在解决绝对值问题时很常用.
例 5 、若|x|=3,|y|=2,且|x-y|=y-x, 求 x+y 的值.
• 解: 因为|x-y|≥0,

所以 y-x≥0,y≥x.
• 由②有 c=a 且 a=b±1,于是|b-c|=|a-b|=1.
• 无论①或②都有|b-c|=1 ,且|a-b|+|c-a|=1,
• 所以|c-a|+|a-b|+|b-c |=2.
例 7 、若|x-y+3|与|x+y-1999|互为相反 数,求 x +2y 的值。
x- y
• 解: 依相反数的意义有|x-y+3|=-|x+y-1999|.
相关文档
最新文档