傅里叶变换性质.

合集下载

傅里叶变换的性质

傅里叶变换的性质
பைடு நூலகம்
由于 满足绝对可积条件,其傅里叶变换不含冲激函数,故
10) 频谱如图 5.4-8(d)所示。
(5.4-
(a)
(b)
(c) 图 5.4-8 三角脉冲信号及其频谱 若傅里叶变换式对 求导,可得频域微分性质:
(d) (5.4-11)
例 5.4-6 利用频域微分性质求斜变函数 解
的傅里叶变换。
根据频域微分性质,有
4 傅里叶变换的性质
傅里叶变换建立了信号的时域与频域间的一般关系。实际上, 通过数学运算求解一个信号的傅里叶变换不是最终的目的,重要的是在信号分 析的理论研究与实际设计中能够了解当信号在时域进行某种运算后在频域将 发生何种变化,或反过来从频域的运算推测时域信号的变动。如果采用傅里叶 变换的基本性质求解复杂信号变换,不仅计算过程简单,而且物理概念清楚。
一、线性 傅里叶变换的线性性质包含齐次性与可加性,若


(5.4-1)
式中 、 为任意常数。
上面的结论可以容易地由傅里叶变换的定义式证明。即傅里 叶变换是一种线性运算,相加信号的频谱等于各个信号的频谱之和。
二、对偶性 若

如图 5.4-1 所示,其中


图 5.4-1 对偶性说明 证明 由逆傅里叶变换公式
(5.4-8)
图 5.4-7 符号函数及其频谱 利用常数 1 和符号函数的傅里叶变换,可求得阶跃函数的变换。由于
故有
(5.4-9)
阶跃函数的傅里叶变换在 处为
,在 处为

例 5.4-5 利用时域微分性质求图 5.4-8(a)所示三角脉冲 信号的傅里叶变换。
解 三角脉冲信号可表示为
对 求两次导数,波形如图 5.4-8(b)和(c)所示。根据微分性质得

信号分析与处理——傅里叶变换性质

信号分析与处理——傅里叶变换性质

信号分析与处理——傅里叶变换性质傅里叶变换是信号处理中常用的分析方法,通过将信号在频域上进行分解,可以获得信号的频谱信息,并对信号进行频谱分析,从而实现对信号的处理与改变。

傅里叶变换具有以下几个重要的性质,这些性质对于信号处理的理解和实际应用至关重要。

1.线性性质:傅里叶变换具有线性性质,即对于任意两个信号x(t)和y(t),以及对应的傅里叶变换X(f)和Y(f),有以下关系:a) 线性叠加:傅里叶变换对于信号的叠加是可线性的,即如果有h(t) = cx(t) + dy(t),则H(f) = cX(f) + dY(f)。

b) 变换的线性组合:如果有z(t) = ax(t) + by(t),则Z(f) =aX(f) + bY(f)。

这种线性性质为信号的分析和处理提供了很大的方便,可以通过分别对不同组成部分进行变换,再进行线性组合,得到最终的处理结果。

2. 平移性质:傅里叶变换具有平移性质,即如果一个信号x(t)的傅里叶变换为X(f),则x(t - t0)的傅里叶变换为e^(-j2πft0)X(f),其中t0为平移的时间。

这意味着信号在时域上的平移将对应于频域上的相位变化,而频域上的平移则对应于时域上的相位变化。

4.卷积定理:傅里叶变换还具有卷积定理,即信号的卷积在频域上等于信号的傅里叶变换之积。

具体来说,如果两个信号x(t)和h(t)的傅里叶变换分别为X(f)和H(f),则它们的卷积y(t)=x(t)*h(t)的傅里叶变换为Y(f)=X(f)×H(f)。

这个性质在实际的信号处理中有着重要的应用。

通过将两个信号在时域上的卷积转化为频域上的乘法操作,可以方便地进行信号处理的设计和实现。

5. Parseval定理:傅里叶变换还具有Parseval定理,即信号的能量在时域和频域上是相等的。

具体来说,如果信号x(t)的傅里叶变换为X(f),则有∫,x(t),^2dt = ∫,X(f),^2df。

这个性质意味着通过傅里叶变换可以实现信号的能量分析和功率谱估计,从而对信号的能量进行定量的测量。

简述傅里叶变换

简述傅里叶变换

简述傅里叶变换傅里叶变换是现代数学、物理及工程学的基石之一,它能将一个时间域信号转换成一个频域信号,为各种信号处理、控制、通信、图像处理等领域提供了有力的工具,是第一次把两个物理量之间的变换相结合,并在证明中使用了一些非常复杂的数学方法以及接近两个世纪的科学发展而发明的。

一、傅里叶变换的定义傅里叶变换是指将一个时间域函数f(x)转换成一个频域函数F(u)的过程。

其定义是:$$F(u) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-jux}dx$$其中,j为虚数单位,u为频率,f(x)为原信号,F(u)为转换后的频率信号。

该公式中,积分的上下限为负无穷到正无穷。

分析以上公式,可以发现傅里叶变换有以下几个特点:1. 将原信号f(x)从时域转换到频域;2. 傅里叶变换公式是一个积分表达式,波形的具体形式决定了计算的难度;3. 积分变量是虚数u,表示频率;4. 傅里叶变换是线性的。

二、傅里叶变换的性质1. 时间移位性质该性质指的是如果将函数f(x)向右移动a单位,则傅里叶变换的频域函数F(u)将乘以e^-j2πau:$$FT(f(x-a)) = F(u) \cdot e^{-j2\pi ua}$$2. 频率移位性质该性质是当函数f(t)乘以一个复指数时,经傅里叶变换后,其频率也将发生移位。

$$FT(e^{j2\pi Tu}f(t)) = F(u-T) $$其中T是一个常数,表示频域移位的量。

3. 线性性质傅里叶变换是线性的,即对于任何两个函数f1(t)和f2(t),有:$$FT(af_1(t)+bf_2(t)) = aF_1(u)+bF_2(u)$$其中a和b是任何常数。

4. 傅里叶变换的共轭对称性傅里叶变换具有共轭对称性,即:$$F^*(u) = F(-u)$$5. 卷积定理该性质的表述是:f和g的卷积时f和g的傅里叶变换的乘积。

即:$$FT(f*g) = FT(f)\cdot FT(g)$$其中“*”表示卷积操作。

信号与系统3.7.8傅里叶变换的基本性质

信号与系统3.7.8傅里叶变换的基本性质
2.若f(t)是虚函数 令f(t)=jg(t),则:
R()= g(t)sin (t)dt -
X ()= g(t) cos (t)dt -
在这种情况下,R()为奇函数,X()为偶函数,即满足: R()=-R(-) X()=X(-)
而 F() 仍是偶函数,()是奇函数。
第3章 傅里叶变换
此外,无论f(t)为实函数或复函数,都具有以下性质
所以
[F(t)]=2 f(-)
若f(t)是偶函数,式(3 50)变成
[F(t)]=2 f()
(3 50) (3 51)
第3章 傅里叶变换
第3章 傅里叶变换
(二) 线性(叠加性)
若 [fi (t)]=Fi () (i=1,2,...,n),则
n
n
[ aifi (t)]= aiFi ()
i=1
f(at)e dt
令x=at
当a 0
[f(at)]= 1
f(x)e
j x a
dx=
1
F(
)
a
aa
第3章 傅里叶变换
当a 0
[f(at)]= 1

f(x)e
j
x a
dx
a +
=- 1
f(x)e
j
x
a dx=- 1
F(
)
a
aa
综合上述两种情况,便可得到尺度变换特性表达式为
[f(at)]= 1 F( )


在这种情况下,显然
R
X
()= -
()=-
f(t) cos (t)dt
f(t) sin (t)dt

(3-54)
第3章 傅里叶变换

傅里叶变换的基本性质和应用

傅里叶变换的基本性质和应用

傅里叶变换的基本性质和应用傅里叶变换,是20世纪初法国数学家傅里叶的发明,是将一个时间函数或空间函数的复杂波形分解成一系列简单的正弦波的工具。

它是信号处理和图像处理领域非常重要的一种数学变换,广泛应用于通信、图像、音频等领域。

一、傅里叶变换的基本概念傅里叶变换是一种将时域信号(即关于时间的函数)转换为频域信号(即关于频率的函数)的数学工具。

在时域中,信号可以表示为一个随着时间变化而变化的函数;在频域中,信号可以表示为它的频谱分布,即各个频率成分的大小。

傅里叶变换是互逆的,也就是说,将一样以频率表示的信号进过傅里叶逆变换,可以得到原始的时域信号。

傅里叶变换和傅里叶逆变换的基本公式分别如下:$$ F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt $$$$ f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega $$其中,$f(t)$ 是时域信号,$F(\omega)$ 是频域信号,$\omega$ 是角频率。

傅里叶变换可以看作一种基变换,将时域信号换到频域进行分析,从而可以更好地理解信号的性质。

二、傅里叶变换的基本性质1. 线性性质傅里叶变换是线性的,即对于一个常数乘以一个时域信号进行傅里叶变换,等价于将该常数乘以该信号的傅里叶变换。

即:$$ F(cf(t)) = cF(f(t)) $$其中,$c$ 是常数。

此外,傅里叶变换具有加权叠加的特性,也就是说,将两个时域信号求和再进行傅里叶变换,等价于分别对这两个信号进行傅里叶变换后再相加。

即:$$ F(f(t) + g(t)) = F(f(t)) + F(g(t)) $$2. 时移性质傅里叶变换具有时移性质,也就是说,在时域中将一个信号向右或向左平移 $\tau$ 个单位,它的傅里叶变换相位也会相应发生$\tau$ 的变化。

傅里叶变换的性质

傅里叶变换的性质

傅里叶变换的性质本质就是信号的时域运算关系在傅里叶变换域中的体现,也是求解信号傅里叶变换的基本手段。

傅里叶变换具有唯一性。

傅氏变换的性质揭示了信号的时域特性和频域特性之间的确定的内在联系。

讨论傅里叶变换的性质,目的在于:1. 了解特性的内在联系2. 用性质求3. 了解在通信系统领域中的实用这些性质在内容和形式上具有某种程度的对称性。

§3.7.1对称性质1.性质2.意义例3-7-1例3-7-2例3-7-3§3.7.2 线性1.性质2.说明§3.7.3 奇偶虚实性奇偶虚实性实际上在§3.4的“傅里叶变换的特殊形式”中已经介绍过。

1.证明:由定义可以得到2.若,则证明:设f(t)是实函数(为虚函数或复函数情况相似,略)显然§3.7.4 尺度变换性质1. 性质:2. 证明:综合上述两种情况3.意义(1) 0<a<1 时域扩展,频带压缩。

脉冲持续时间增加a倍,信号变化减缓,信号在频域的频带压缩a倍。

因此高频分量减少,幅度上升a倍。

(2) a>1 时域压缩,频域扩展a倍。

持续时间短,变化加快。

信号在频域高频分量增加,频带展宽,各分量的幅度下降a倍。

此例说明:信号的持续时间与信号占有频带成反比,有时为加速信号的传递,要将信号持续时间压缩,则要以展开频带为代价。

§3.7.5 时移特性性质幅度频谱无变化,只影响相位频谱,例3-7-8求下图所示函数的傅里叶变换。

解:由对称关系求,又因为得幅频、相频特性分别如下图所示。

幅度频谱无变化,只影响相位频谱§3.7.6 时移+尺度变换1.性质:2. 证明:(仿的证明过程)当时,设,则例3-7-9方法一:先标度变换,再时延方法二:先时延再标度变换§3.7.7 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.8 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.9 时域微分性质2. 证明即3. 特别注意如果f(t)中有确定的直流分量,应先取出直流分量单独求傅里变换,余下部分再用微分性质。

傅里叶变换的性质解析

傅里叶变换的性质解析
4
3.微分性质
如果f(t)在(-, +)上连续或只有有限个可去
间断点, 且当|t|+时, f(t)0, 则
F [f '(t)]=jwF [f(t)].
(1.17)
• 推论
• F [f(n)(t)]=(jw)nF [f(t)].
(1.18)
5
同样, 我们还能得到象函数的导数公式, 设
F [f(t)]=F(w), 则
d
dw
F (w ) F
[- jtf (t)].
一般地, 有
dn
dw n
F (w )
(-
j) n F
[t n f (t)]
jn
dn
dwn
F (w) F
[t n f (t)]
6
4. 积分性质
如果当t 时, g(t) t f (t )d t 0 -

F
t -
f
(t
)d
t
1
jw F
[ f (t)].
2j
2j
则g(t) e j2t
G(w
-
2)
1
1
j(w
-
2)
g (t) e- j2t
G(w
2)
1
1
j(w
2)
F (w)
1 2j
1
1
j(w
-
2)
-
1
1
j(w
2)
15
F (w)
1 2j
1
1
j(w
-
2)
-
1
1
j(w
2)
-
j 2
1 j(w (1 jw

傅里叶变换的性质

傅里叶变换的性质

a 1
dx
j b a
, dt
t


1
t 1

2f1
(b)
且由图(b)可得 f1 (t ) Sa(t )

幅频、相频特性
幅频、相频特性分别如图(c)(d)所示。
| F ( ) |
28 页
( )
1





0
0

(c)
(d)
幅度频谱无变化,只影响相位频谱,
退出
3.时移加尺度变换
(1)性质
2
t
4 E
退出
解 F f t

2E 4E 2E j t t t t e dt 2 2

第 15 页
e 1 2E E 2E 4 j j 2 2 F e e 2 e
则F ( t )的频谱函数形状与 f t 形状相同,t , 幅度差2
3.例题
退出

例3-7-1
t 1 , F t 1 2
4 页
例3-7-2
已知F [sgn( t )] 则 2 jt 2 j ,
2 sgn( )
相移全通 网络
j t
dt



f ( u)e j
u
du F ( )
若f ( t ) F ( ),则f ( t ) F ( )
证明
退出
证明
设f(t)是实函数(为虚函数或复函数情况相似,略)
F ( )

傅里叶变换性质

傅里叶变换性质

四.尺度变换性质
第 9

若f
(t)
F (),则f
at
1 a
F a
, a为非零实常数
意义
(1) 0<a<1 时域扩展,频带压缩。 (2) a>1 时域压缩,频域扩展a倍。
(3) a 1 f t f t, F F 。
X

(1) 0<a<1 时域扩展,频带压缩。
10

f t
F
E
E
o t
2
0
F
0
通信中调制与解调,频分复用。
X
七.微分性质
第 16

时域微分性质
f (t) F(),则f (t) jF()
频域微分性质
若f (t) F( ), 则tf (t) jd F d
d F
jtf (t)
d
jt n
f
(t)
dn F
d n

t n f (t) jn F n
X
1.时域微分
1、f(t)是实函数
实函数傅里叶变换的幅度谱和相位谱分别为偶、 奇函数
若f(t)是实偶函数,F(ω)必为ω的实偶函数
F f ( t )e j t d t
20 f ( t )cost d t
若f(t)是实奇函数,F(ω)必为ω的虚奇函数
F
f
(
t
)e
j
t
d
t
2 j f ( t )sint d t
0
X

2、 f(t)是虚函数
7 页
令 f t jgt
F jgt e jt dt
jgt cos( t )dt gt sin( t )dt

傅里叶变换的性质

傅里叶变换的性质

傅里叶变更的本量真量便是旗号的时域运算闭系正在傅里叶变更域中的体现,也是供解旗号傅里叶变更的基原脚法.之阳早格格创做傅里叶变更具备唯一性.傅氏变更的本量掀穿了旗号的时域本性战频域本性之间的决定的内正在通联.计划傅里叶变更的本量,脚法正在于:1. 相识本性的内正在通联2. 用本量供3. 相识正在通疑系统范围中的真用那些本量正在真量战形式上具备某种程度的对于称性. 1.本量2.意思例3-7-1例3-7-2例3-7-3§3.7.2 线性1.本量2.道明那个本量虽然简朴,但是本量上是应用最多的.例3-7-4§3.7.3 奇奇真真性奇奇真真性本量上正在§3.4的“傅里叶变更的特殊形式”中已经介绍过. 1.道明:由定义不妨得到,则道明:设f(t)是真函数(为真函数或者复函数情况相似,略)隐然§3.7.4 尺度变更本量1. 本量:2. 道明:概括上述二种情况3.意思(1) 0<a<1 时域扩展,频戴压缩.脉冲持绝时间减少a倍,旗号变更减慢,旗号正在频域的频戴压缩a倍.果此下频分量缩小,幅度降下a倍.(2) a>1 时域压缩,频域扩展a倍.持绝时间短,变越发快.旗号正在频域下频分量减少,频戴展宽,各分量的幅度下落a 倍.此例道明:旗号的持绝时间与旗号占有频戴成反比,奇尔为加速旗号的传播,要将旗号持绝时间压缩,则要以展启频戴为代价.§3.7.5 时移本性本量幅度频谱无变更,只做用相位频谱,例3-7-8供下图所示函数的傅里叶变更.解:由对于称闭系供,又果为得幅频、相频本性分别如下图所示.幅度频谱无变更,只做用相位频谱§3.7.6 时移+尺度变更1. 本量:2. 道明:(仿的道明历程)当时,设,则例3-7-9要发一:先标度变更,再时延要发二:先时延再标度变更二种要发截止相共.§3.7.7 频移本性1.本量2.道明3.道明4.应用通疑中调造与解调,频分复用§3.7.8 频移本性1.本量2.道明3.道明4.应用通疑中调造与解调,频分复用§3.7.9 时域微分本量1.本量2. 道明即3. 特地注意如果f(t)中有决定的曲流分量,应先与出曲流分量单独供傅里变更,余下部分再用微分本量.§3.7.10 频域微分本量本量:则或者例3-7-6解:例3-7-7解:……1. 本量2. 道明其中:(1)变上限积分用戴时移的单位阶跃的无限积分表示,成为(2)接换积分程序,即先供时移的单位阶跃的旗号的傅里叶变更(3)(5).例题——时域积分本量1. 供单位阶跃函数的傅里叶变更.解:则2. 供门函数积分的频谱函数.解:。

付立叶变换及其性质

付立叶变换及其性质

傅里叶变换的性质这里主要介绍二维离散傅里叶变换(DFT ,discrete FT )中的几个常用性质(可分离线、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理):可分离性二维离散傅立叶变换DFT 可分离性的基本思想是二维DFT 可分离为两次一维DFT 。

因此可以用通过计算两次一维的FFT 来得到二维快速傅立叶变换FFT 算法 。

根据快速傅里叶变换的计算要求,需要图像的行列数均满足2的n 次,如果不满足,在计算FFT 之前先要对图像补零以满足2的n 次。

一个M 行N 列的二维图像f(x,y),先按行对列变量y 做一次长度为N 的一维离散傅里叶变换,再将计算结果按列向对变量x 做一次长度为M 傅里叶变换就可以得到该图像的傅里叶变换结果,如下式所示:()()()()∑∑-=-=-⎥⎥⎦⎤⎢⎢⎣⎡-=10102exp 2exp ,1,M x N y M ux j N vy j y x f MN v u F ππ 将上式分解开来就是如下两部分,首先得到F(x,v)再由F(x,v)得到F(u,v):∑-=-=-=101...10]/2exp[),(1),(N y N v N vy j y x f N v x F ,,,π∑-=-=-=101,...,1,0,]/2exp[),(1),(N x M v u M ux j v x F M v u F πu=0,1,2,…M-1;v=0,1,2,...N-1计算过程如下图所示:每一行有N 个点,对每一行的一维N 点序列进行离散傅里叶变换得到F(x,u),再对得到F(x,u)按列向对每一列做M 点的离散傅里叶变换,就可以得到二维图像f(x,y)的离散傅里叶变换F(u,v)同样,做傅里叶逆变换时,先对列向做一维傅里叶逆变换,再对行做一维逆傅里叶变换,如下式所示:()()()()∑∑-=-=⎥⎦⎤⎢⎣⎡=10102exp 2exp ,,M u N v M ux j N vy j v u F y x f ππ x=0,1,2,…M-1;y=0,1,2,...N-1周期性和共轭对称性由傅里叶变换的基本性质可以知道,离散信号的频谱具有周期性。

6.4 傅里叶变换的性质

6.4 傅里叶变换的性质

1 a
F
a
.
3. 位移性质:
像原函数的位移 设 F() F [ f (t)], 则 F [ f (t t0 )] eit0 F ( ) (其中t0为常数).
时移性质
像函数的位移
设 F() F [ f (t)], 则
F f (t )ei0t F ( 0 )(其中w0为常数).
频移性质
答案:
(1) F g(t) F() F '()
(2) F g(t) i d F( ) 或 = i F( )
2 d 2
42
(3) F g(t) eiF ()
(4) F g(t) iei d F() 或 =ieiF()
d
例6 利用像函数的导数公式,求 f (t) et2
的傅里叶变换.
答案:
第六章 傅里叶变换
第四讲 Fourier变换的性质
06
CHAPTER
1. 线性性质:
设a, b 是常数,F1( ) F [ f1(t)], F2( ) F [ f2(t )], 则
F [ f1(t) f2(t)] F1( ) F2( ) F [ f1(t)] F [ f2(t)].
例1
计算F 2sin2 3t .
解 运F行下2s面in的2 3Mt A TFL[1ABc语os句6t].
>> syFm[s1]twF [cos6t]
>> f=2*(2sin((3)*t))^(2;F=6)four(ier(f6) ).
F=
-pi*Dirac(w-6)+2*pi*Dirac(w)-pi*Dirac(w+6)
i
tu(t)
i
d
d

傅里叶变换性质

傅里叶变换性质

(2)a>1 时域压缩,频域扩展a倍。
持续时间短,变化快。信号在频域高频分量增加,频 带展宽,各分量的幅度下降a倍。 此例说明:信号的持续时间与信号占有频带成反比, 有时为加速信号的传递,要将信号持续时间压缩,则 要以展开频带为代价。
五.时移特性
幅度频谱无变化,只影响相位频谱,
时移加尺度变换
六.频移特性
交换积分顺序 , 即先求时移的单位阶跃 信号的傅里叶变换
续……
……续
证明

(flash)






频谱图
1 1 F G 0 G 0 2 2 E 0 E 0 Sa Sa 2 2 2 2








将包络线的频谱一分为 二,向左、右各平移 0
E 2
f 0
f t
F 0
F
O
t
O




f t d t f 0


t 0

1 f 0 2 1 2



F e jt d F d
F 0

F d F 0B

B
f t d t

2

2
T
t
(a)三脉冲信号的波形
F0 E Sa 2
E
F0
2

O
(b)

例3-7-9
方法一:先标度变换,再时延
方法二:先时延再标度变换
相同
例3-7-6(教材例3-4) 已知矩形调幅信号 f t Gt cos 0 t ,

傅里叶变换的11个性质公式

傅里叶变换的11个性质公式

傅里叶变换的11个性质公式傅里叶变换的11个性质公式是傅立叶变换的基本性质,由他们可以推出其它性质。

其中包括线性性质、有穷性质、周期性质、旋转性质、折叠性质、应变性质、平移性质、对称性质、频域算子性质、滤波性质、压缩性质等共11条。

1、线性性质:如果x(t)和y(t)是两个信号,则有:X(ω)=F[x(t)],Y(ω)=F[y(t)],则有:X(ω)+Y(ω)=F[x(t)+y(t)];αX(ω)=F[αx(t)];X(ω)*Y(ω)=F[x(t)*y(t)]。

2、有穷性质:如果x(t)是有穷的,则X(ω)也是有穷的。

3、周期性质:如果x(t)在周期T内无穷重复,则X(ω)也在周期2π/T内无穷重复。

4、旋转性质:X(ω-ω0) = F[x(t)e^(-jω0t)],即信号x(t)经过相位旋转成x(t)e^(-jω0t),其傅里叶变换也会经过相位旋转成X(ω-ω0)。

5、折叠性质:X(ω+nω0)=F[x(t)e^(-jnω0t)],即信号x(t)经过频率折叠后变为x(t)e^(-jnω0t),其傅里叶变换也会经过频率折叠成X(ω+nω0)。

6、应变性质:X(aω)=F[x(at)],即信号x(t)经过时间应变成x(at),其傅里叶变换也会经过频率应变成X(aω)。

7、平移性质:X(ω-ω0) = F[x(t-t0)],即信号x(t)经过时间平移成x(t-t0),其傅里叶变换也会经过频率平移成X(ω-ω0)。

8、对称性质:X(-ω) = X*(-ω),即傅里叶变换的实部和虚部对称。

9、频域算子性质:X(ω)Y(ω)=F[h(t)*x(t)],即傅里叶变换不仅可以表示信号,还可以表示系统的频域表示,即h(t)*x(t),其傅里叶变换为X(ω)Y(ω)。

10、滤波性质:H(ω)X(ω)=F[h(t)*x(t)],即傅里叶变换可以用来表示滤波器的频域表示,即h(t)*x(t),其傅里叶变换为H(ω)X(ω)。

傅里叶变换的性质

傅里叶变换的性质

∫−
jtx ( t ) e
− jΩ t
dt
dX ( j Ω ) tx ( t ) ←→ j dΩ
FT
例如: 例如: du (t ) (t
dt
对应的傅里叶变换
= δ (t )
jΩ 1 = j 0 ⋅ πδ(Ω) + =1 δ(t ) ←→ jΩ[πδ(Ω) + ] jΩ jΩ
FT
再例如: 再例如:
1 d [ πδ ( Ω ) + ] jΩ FT tu ( t ) ← → j dΩ
= j π δ ′( Ω ) −
1 Ω2
七、反褶与共轭特性 设 则
FT x(t ) ←→ X ( jΩ) FT x ( − t ) ← → X ( − j Ω ) FT x * ( t ) ← → X * ( − j Ω )
由傅里叶变换公式很容易证明。 由傅里叶变换公式很容易证明。 奇偶、 八、奇偶、虚实性 1、实信号 、
FT x(t ) = x* (t ) ←→ X ( jΩ) = X * (− jΩ)

X ( jΩ) = X ( jΩ) e jϕ( Ω ) = X R (Ω) + jX I (Ω)
X * ( jΩ) = X ( jΩ) e − jϕ( Ω ) = X R (Ω) − jX I (Ω)
六、微分特性 设 则
FT x(t ) ←→ X ( jΩ) FT x ′( t ) ← → j Ω X ( j Ω )
------时域微分性 时域微分性 ------频域微分性 ------频域微分性
1 x (t ) = 2π

dX ( j Ω ) − jtx ( t ) ← → dΩ
FT
因为, 因为,由傅里叶反变换公式 等号两边同时对时间t求导数 等号两边同时对时间 求导数

傅里叶变换基本性质

傅里叶变换基本性质

傅里叶变换的基本性质(一)傅里叶变换建立了时间函数和频谱函数之间转换关系。

在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。

因此有必要讨论傅里叶变换的基本性质,并说明其应用。

一、线性傅里叶变换是一种线性运算。

若则其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。

例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。

解因由式(3-55)得二、对称性若则证明因为有将上式中变量换为x,积分结果不变,即再将t用代之,上述关系依然成立,即最后再将x用t代替,则得所以证毕若是一个偶函数,即,相应有,则式(3-56)成为可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。

式中的表示频谱函数坐标轴必须正负对调。

例如:例3-7若信号的傅里叶变换为试求。

解将中的换成t,并考虑为的实函数,有该信号的傅里叶变换由式(3-54)可知为根据对称性故再将中的换成t,则得为抽样函数,其波形和频谱如图3-20所示。

三、折叠性若则四、尺度变换性若则证明因a>0,由令,则,代入前式,可得函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示沿频率轴扩展(或频率尺度压缩) a倍。

该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。

例3-8已知,求频谱函数。

解前面已讨论了的频谱函数,且根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数两种信号的波形及频谱函数如图3-21所示。

五、时移性若则此性质可根据傅里叶变换定义不难得到证明。

它表明若在时域平移时间,则其频谱函数的振幅并不改变,但其相位却将改变。

例3-9求的频谱函数。

解: 根据前面所讨论的矩形脉冲信号和傅里叶变换的时移性,有六、频移性若则证明证毕频移性说明若信号乘以,相当于信号所分解的每一指数分量都乘以,这就使频谱中的每条谱线都必须平移,亦即整个频谱相应地搬移了位置。

傅里叶变换的性质

傅里叶变换的性质

03
共轭性质
共轭对称
定义
如果一个函数的傅里叶变换和其共轭函数的傅里叶变 换相等,则称该函数具有共轭对称性质。
数学表达式
如果 $f(t)$ 的傅里叶变换是 $F(omega)$,那么 $f(t)$ 的傅里叶变换是 $F(-omega)$。
应用
在信号处理中,共轭对称性质可以用于对称信号的分 析和合成。
共轭反对称
定义
01
如果一个函数的傅里叶变换和其共轭函数的傅里叶变
换互为相反数,则称该函数具有共轭反对称性质。
数学表达式
02
如果 $f(t)$ 的傅里叶变换是 $F(omega)$,那么 $f(-
t)$ 的傅里叶变换是 $-F(-omega)$。
应用
03
在信号处理中,共轭反对称性质可以用于分析信号的
周期性
傅里叶变换具有周期性,这意味着对于一个函数进行傅里叶变换后,其结果仍具有周期性。这 是因为傅里叶变换将一个时域函数转换为频域函数,而频域函数中的频率分量具有周期性。
周期性的具体表现是,对于一个具有周期T的函数f(t),其傅里叶变换F(ω)在频域中也是周期性 的,周期为2π/T。
傅里叶级数
傅里叶级数是傅里叶变换的一种特殊形式,它适用于具有有限个离散频率 分量的信号。
总结词
频域对称性质揭示了信号在频域和时间域之间的对称关系,为信号处理提供了重要的理论依据。
时间反转与频域反转
时间反转
将信号在时间轴上反转,其傅里叶变换在频域上会产生负 频率分量。
频域反转
将信号在频域上反转,其在时间域上会产生负时间位移。
总结词
时间反转与频域反转的性质表明,信号在时间域和频域的反转 具有对应关系,这种关系在信号处理和通信领域中具有重要应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推广
jt n
f
(t)
dn F
d n

t n f (t) jn F n
X
例1
第 15

f
t
E u
t
2
u
t
2
F
E
Sa
2
c ,t
f
E u
c
2
u
c
2
F t
1
2
E c
Sa c
2
t
E c Sa c t
宽度为2 0
2 2
的方波
若c
2 0,则有Sa( 0 t )
F F0 1 e jT e jT
E Sa 1 2cosT
2
脉冲个数增多,频谱 包络不变,带宽不变
第 17 页
F0
E
2
O
F
3E
2
O 2 4
TT
(c)三脉冲信号的频谱
X
例3:
求三角函数的频谱密度函数.
f t
E
E
F
2
2 o 2 t
4 o 4
第 18 页
X
则f (t t0 ) F( )e jt0 ;
幅度频谱无变化,只影响相位频谱,
相移t0
右 左
t0 t0
时移加尺度变换:自己证明
若f (t) F( )
则f at b
1
F
e
j
b a
a a
仿 at
1 a
t 的证明过程
X
四.频移特性
第 8

1.性质
若 f (t) F( )

f (t)e j0t F 0 f (t )ej0t F 0
jω t dt
F (w) jw
幅度乘
F f (t) jF( ) : 相位增加, j 900
X
七.时域积分性质
第 12

若f t F ,则
F 0
0时,t
f
d
F
j
F 0
0时,t
f
d
F 0
F
j
也可以记作:
F ( )
1
j
(
)
X
等效脉冲宽度与等效频带宽度
第 13

f t f 0
1.时域微分
第 11

f (t) F(),则f (t) jF()
一般情况下 f (n) t jn F()
若已知F f n(t),则F
证明:f (t) f(t)*δ('t)
F f n(t)
j n
由卷积性质得到
F(f (t))
f(t)*δ('t)
e jω t dt f(t)e jω t dt δ('t)e

0






2.证明
F f (t)ej0t f (t)ej0t ej tdt f (t)ej0 t d t F 0
X
3.说明
F ( )
F ( 0 )
第 9 页
F ( 0 )
O
O
0
0 0
时域f (t)乘ej0t ,频域频谱搬移——右移0
时域f (t)乘e j0t ,频域频谱搬移——左移0
意义
第 1

傅里叶变换具有惟一性。傅氏变换的性质揭示了 信号的时域特性和频域特性之间的确定的内在联系。 讨论傅里叶变换的性质,目的在于:
•了解特性的内在联系; •用性质求F(ω); •了解在通信系统领域中的应用。
X
一.线性性质
第 2

1.性质
若f1(t) F1( ) , f2(t) F2( ) 则c1 f1(t) c2 f2(t) c1F1( ) c2F2( )
F
E
E
o t
2
2
2 o 2
(1) 0<a<1 时域扩展,频带压缩。
f t 2
E
o
t
2E 2F 2
o
脉冲持续时间增加a倍,变化慢了,信号在频域的频
带压缩a倍。高频分量减少,幅度上升a倍。
X

(2)a>1 时域压缩,频域扩展a倍。
5 页
f 2t
E
o
t
44
1 F
2 2
E
2
4 o 4
F F 0
O
t
f td t
f 0
f 0 1 F ejt d
2
t0
1
2
F
d
2
B
O
B
F
d
F 0B
F0 f td t
等效脉冲宽
度与占有的
等效带宽成1Βιβλιοθήκη Bf反比。X
八.频域微分性质
第 14

若f (t) F( ), 则tf (t) jd F d 或 jtf (t) d F d
持续时间短,变化快。信号在频域高频分量增加,频 带展宽,各分量的幅度下降a倍。 此例说明:信号的持续时间与信号占有频带成反比, 有时为加速信号的传递,要将信号持续时间压缩,则 要以展开频带为代价。
X
第 6 页
(3) a 1 f t f t, F F F*
X
三.时移特性
第 7

若f (t) F( ),
0
G20
( )
X
例2(时移性质,)
求图(a)所示三脉冲信号的 频谱。
解:
令f0 t 表示矩形单脉冲
信号,其频谱函数F0 ,
F0
E
Sa
2
第 16 页
f t
E
T
22
Tt
(a)三脉冲信号的波形
F0
E
2
O
(b)
X
因为
f t f0 t f0 t T f0 t T 由时移性质知三脉冲函数f t 的频谱函数F 为:
分析
三角形函数求导 方波
f t
E
2 o 2 t
f t
2E
2 o
2 t
方波 求导冲激函数
f t
2E
2E
2 o 2 t
4E
X

F
f
t
2E
t
2
4E
t
2E
t
2
e
jt
d
t
第 20

2E ej 2 4E 2E ej 2 j 2 F 2F
F
1
2
2E
4.应用
通信中调制与解调,频分复用。
X
五.微分性质
第 10

时域微分性质
f (t) F(),则f (t) jF()
频域微分性质
若f (t) F( ), 则tf (t) jd F d
jtf (t) d F d
jt n
f
(t)
dn F
d n

t n f (t) jn F n
X
c1, c2为常数
X
二.尺度变换性质
第 3

若f (t) F ( ),则f at 1 F , a为非零函数
a a
意义
(1) 0<a<1 时域扩展,频带压缩。
说明……
(2) a>1 时域压缩,频域扩展a倍。
说明……
(3) a 1 f t f t, F F 说明……
X
第 4

f t
e j
2
4E
2E
e j 2
1
2
2E
e j 2
2
e
j
2
2E
2
e j
4
e j 4
2
2E
2
2
jsin
4
2
2
8E
2
sin
4
2
4
2
E Sa
2 4
2
4
X

例4
21

已知f (t) F(),求Ft 2 f t ?
解:
Ft 2 f t Ftf t 2 f t
j
d F d
2F
X

例5
22 页
已知f t F E Sa ,求f 2t 5的频谱密度函数。
2 方法一:先标度变换,再时延
a 2, f 2t 1 F E Sa
相关文档
最新文档