半导体物理与器件实验报告
半导体元器件检测实习报告
半导体元器件检测实习报告一、实习目的与要求本次实习旨在让我们了解和掌握半导体元器件的基本知识,学会使用常见的检测仪器和工具,提高我们对半导体元器件的识别和检测能力。
实习要求我们能够识别常用的半导体元器件,如二极管、三极管、场效应晶体管等,并能够熟练地使用万用表、示波器等检测工具进行检测。
二、实习内容与过程1. 半导体元器件的知识学习在实习开始阶段,我们首先学习了半导体元器件的基本知识。
半导体元器件是电子电路中不可或缺的部分,它们具有导电性能介于导体和绝缘体之间的特性。
我们了解了半导体的掺杂性、热敏性和光敏性等主要特性,以及常用的半导体材料锗和硅的性质。
2. 半导体元器件的识别我们学习了如何识别常用的半导体元器件。
以二极管为例,我们学会了通过观察其外观、引脚分布、标记等特征来识别不同类型的二极管,如整流二极管、稳压二极管等。
同时,我们还学会了如何识别三极管、场效应晶体管等元器件。
3. 检测工具的使用在实习过程中,我们学习了如何使用万用表、示波器等检测工具。
以万用表为例,我们学会了如何测量电阻、电容、电压等参数,并学会了如何根据测量结果判断元器件的好坏。
此外,我们还学会了如何使用示波器观察信号波形,判断元器件的工作状态。
4. 半导体元器件的检测实践在掌握了相关知识后,我们进行了实际的检测操作。
我们分组进行了二极管、三极管、场效应晶体管等元器件的检测练习,通过测量其电阻、电流等参数,判断元器件的好坏。
在检测过程中,我们学会了如何避免测量误差,提高了检测能力。
三、实习收获与体会通过本次实习,我对半导体元器件的基本知识有了更深入的了解,能够熟练地使用万用表、示波器等检测工具,提高了我对半导体元器件的识别和检测能力。
同时,实习过程中的实践操作,使我对电子电路的组成和原理有了更直观的认识。
实习让我认识到,半导体元器件的检测不仅需要理论知识的支持,还需要实际操作的技巧。
在今后的学习和工作中,我将继续努力提高自己的实践能力,为更好地理解和应用半导体元器件打下坚实的基础。
半导体物理实验报告1
学号 姓名 实验室 实验时间:第 11 周 星期 三 第 9-11 节 指导老师 实验名称半导体电阻率的测量实验目的1.掌握电阻率的概念和意义。
2.掌握四探针法测量电阻率的原理。
3.熟悉SDY —4型四探针测试仪的操作。
实验设备 及型号 SDY —4型四探针测试仪软件硬件 原理:1. 电阻率对任意薄层半导体,有R wρ=□,其中ρ为半导体的电阻率,单位为cm Ω⋅。
有1ρσ=,σ即半导体的电导率,单位为/S cm 。
有n p nq pq σμμ=+。
∴1n pnq pq ρμμ=+。
电阻率取决于载流子浓度和载流子迁移率。
其中,载流子在半导体中运动受到电离杂质、晶格振动(声学波散射、光学波散射)散射。
有1111isoμμμμ=++。
(i μ、s μ、o μ分别表示只有一种散射机制(电离杂质、声学波、光学波)存在时的迁移率。
)迁移率与杂质浓度和温度有关,同时,载流子浓度也与杂质浓度和温度密切相关。
所以电阻率随杂志浓度和温度而异。
轻掺杂时,电阻率与杂质浓度成简单的反比关系;杂质浓度增高时,曲线严重偏离直线。
温度较低时,电阻率随温度升高而下降;室温下,电阻率随温度升高而增大;高温时,电阻率随温度升高而急剧下降。
2.四探针法测电阻率将四根排成一条直线的探针以一定的压力垂直地压在被测样品表面上,在1、4探针间通过电流I (mA ),2、3探针间就产生一定的电压V(mV)。
按下列公式计算样品的方块电阻:()()V W D F F W Fsp I S S ρ=⨯⨯⨯⨯ cm Ω⋅其中,D:样品直径;S :平均探针间距;W :样品厚度; Fsp :探针修正系数;F(W/S):样品厚度修正系数; F(D/S):样品直径修正系数; I :1、4探针流过的电流值; V :2、3探针间取出的电压值。
3. SDY —4型四探针测试仪的使用设计思想及流程图实 验原 理及 实 验 步骤源代码及注释实验步骤面板介绍:K7:电流换向按键K6:测量/电流方式选择按键(开机时自动在电流位)K5:/Rρ□测量选择按键(开机时自动设置在R□)K4、K3、K2、K1:测量电流量程选择按键W1:电流粗调电位器W2:电流细调电位器L:主机数字及状态显示器实验内容及步骤:1.开启主机电源,预热5分钟。
半导体实习报告(共5篇)-
半导体实习报告(共5篇)第1篇: 半导体实习报告实习报告1.实习目的:根据学院对专科生要求, 我在深圳意法半导体制造(深圳)有限公司, 为期十个月的实习。
毕业实习的目的是:接触实际, 了解社会, 增强社会主义事业心, 责任感, 巩固所学理论, 获取专业实际知识, 培养初步的工作能力, 具体如下:培养从事工作的专业技能, 了解日常事物和工作流程, 学会工作的方法, 理解所学专业的意义。
培养艰苦奋斗的精神和社会注意责任感, 形成热爱专业, 热爱劳动的良好品质。
预演和准备就业, 找出自身状况和社会实际所需的差距, 并在以后的实践期间及时补充和改正, 为求职和正式工作做好从分的知识和能力储备。
2.实习时间:我于2012年7月初到2013年4月底, 为期十个月的实践学习3.实习单位:3-1.单位地址和规模:实习单位位于深圳市龙岗宝龙社区高科大道12号, 意法半导体制造(深圳)有限公司, 公司是一个子公司, 现拥有在职员工**** 柴荣 1于人, 多条生产线, 拥有产能70亿只/年的生产能力。
3-2.实习期间在单位主要职务:在实习期间, 协助工程师处理一些质量和工艺流程方面的问题, 以及提高产品的成品率。
3-2.实习单位的历史和发展:意法半导体制造(深圳)有限公司于2005年9月在深圳市正式注册成立, 由意法半导体公司全资公司意法半导体(中国)投资有限公司出资成立, 公司的成立是为了深圳市龙岗区开发建设集成电路封装测试项目, 字公司成立以来到现在, 已经拥有5000余名员工, 8条生产线, 年产能70亿只/年, 涉及十几种产品, 主要是封装测试稳压管。
3-3.实习单位.部门.职位:我在意法半导体制造(深圳)有限公司, TO220部门从事工程师助理, 主要协助工程师解决产品质量问题和工艺流程。
提高产品的成品率以及其他方面的一些实验和跟踪一些项目。
4.实习过程:2012年7月2日, 我正式在深圳意法半导体制造(深圳)有限公司, 开始了为期十个月的实习之旅, 刚来的时候, 有7天的培训, 初步了解公司的运作方式, 重点强调了安全方面的培训, 早晨8:30分开始上班, 到晚上5:30分下班, 一个星期工作40小时, 海港开**** 柴荣2始培训玩的时候, 我被分到了M/D工位做工程师助理, 接触和了解了很多工艺流程方面的知识, 以及一定的管理方法。
半导体实验报告
半导体物理实验报告
班级:
学号:
姓名:
实验一 MOS结构C—V特性测试一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
当栅压在形成反型层之前迅速突变时,高频C-V特性将发生怎样的变化?
实验二霍尔效应测量载流子浓度实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
如何通过洛仑兹力方向和输出霍尔电压的正负来判断半导体样品的极性?
实验三霍尔效应测量载流子迁移率实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
思考样品尺寸参数误差会给霍尔效应测试实验带来怎样的误差?
实验四太阳能电池光伏效应实验
实验四太阳能电池光伏效应实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
为什么要把PN结串联起来用作太阳能电池?串联数目多少是由那些因素决定?。
半导体物理与器件实验报告..
课程实习报告HUNAN UNIVERSITY题目:半导体物理与器件学生姓名:周强强学生学号:20100820225专业班级:通信二班完成日期:2012.12.22运行结果截图:2.2 函数(),cos(2/)Vx t x t πλω=-也是经典波动方程的解。
令03x λ≤≤,请在同一坐标中绘出x 的函数(),Vx t 在不同情况下的图形。
(1)0;(2)0.25;(3)0.5;(4)0.75;(5)t t t t t ωωπωπωπωπ=====。
3.27根据式(3.79),绘制出0.2()0.2F E E eV -≤-≤范围内,不同温度条件下的费米-狄拉克概率函数:()200,()300,()400a T K b T K c T K ===。
4.3 画出a ()硅,b ()锗,c ()砷化镓在温度范围200600K T K ≤≤内的本征载流子浓度曲线(采用对数坐标)。
4.46 已知锗的掺杂浓度为153a =310cm N -⨯,d =0N 。
画出费米能级相对于本征费米能级的位置随温度变化200600)K T K ≤≤(的曲线。
5.20硅中有效状态密度为 193/2c 2.810()300T N =⨯ 193/21..0410()300TN ν=⨯ 设迁移率为 3/2n =1350300T μ-⎛⎫⎪⎝⎭3/2=480300T ρμ-⎛⎫⎪⎝⎭设禁带宽带为g =1.12V E e ,且不随温度变化。
画出200600K T K ≤≤范围内,本征电导率随绝对温度T 变化的关系曲线。
6.34 n 型硅样品的掺杂浓度为16310dN cm -=,产生的过剩载流子的浓度为()1443()10exp /10p x x cm δ--=-。
在140410x ≤≤⨯范围内,绘出Fi FpE E -随x 变化的函数。
7.4均匀掺杂的GaAspn 结,其掺杂浓度为183163510,510a d N cm N cm --=⨯=⨯。
半导体物理实验报告..
电子科技大学半导体物理实验报告姓名:艾合麦提江学号:2010033040008班级:固电四班实验一 半导体电学特性测试测量半导体霍尔系数具有十分重要的意义。
根据霍尔系数的符号可以判断材料的导电类型;根据霍尔系数及其与温度的关系,可以计算载流子的浓度,以及载流子浓度同温度的关系,由此可确定材料的禁带宽度和杂质电离能;通过霍尔系数和电阻率的联合测量.能够确定我流子的迁移约 用微分霍尔效应法可测纵向载流子浓度分布;测量低温霍尔效应可以确定杂质补偿度。
霍尔效应是半导体磁敏器件的物理基础。
1980年发现的量子霍尔效应对科技进步具有重大意义。
早期测量霍尔系数采用矩形薄片样品.以及“桥式”样品。
1958年范德堡提出对任意形状样品电阻率和霍尔系数的测量方法,这是一种有实际意义的重要方法,目前已被广泛采用。
本实验的目的使学生更深入地理解霍尔效应的原理,掌握霍尔系数、电导率和迁移率的测试方法,确定样品的导电类型。
一、实 验 原 理如图,一矩形半导体薄片,当沿其x 方向通有均匀电流I ,沿Z 方向加有均匀磁感应强度的磁场时,则在y 方向上产生电势差。
这种想象叫霍尔效应。
所生电势差用V H 表示,成为霍尔电压,其相应的电场称为霍尔电场E y 。
实验表明,在弱磁场下,E y 同J (电流密度)和B 成正比E y =R H JB(1)式中R H 为比例系数,称为霍尔系数。
在不同的温度范围,R H 有不同的表达式。
在本征电离完全可以忽略的杂质电离区,且主要只有一种载流子的情况,当不考虑载流子速度的统计分布时,对空穴浓度为p 的P 型样品0pq1R H >=(2) 式中q 为电子电量。
对电子浓度为n 的N 型样品0nq1R H <-=(3)当考虑载流子速度的统计分布时,式(2)、(3)应分别修改为nq 1R pq 1R nH H p H H ⎪⎪⎭⎫ ⎝⎛μμ-=⎪⎪⎭⎫ ⎝⎛μμ=(4)式中μH 为霍尔迁移率。
半导体实习报告4篇
半导体实习报告4篇为期第三个月的实习结束了,我在这三个月的实习中学到了很多在课堂上根本就学不到的知识,受益非浅。
现在我就对这个月的实习做一个工作小结。
实习是每一个大学毕业生必须拥有的一段经历,他使我们在实践中了解社会,让我们学到了很多在课堂上根本就学不到的知识,也打开了视野,长了见识,为我们以后进一步走向社会打下坚实的基础。
实习使我开拓了视野,实习是我们把学到的理论知识应用在实践中的一次尝试。
实习时把自己所学的理论知识用于实践,让理论知识更好的与实践相结合,在这结合的时候就是我们学以致用的时候,并且是我们扩展自己充实自己的时候。
实习期间,我利用此次难得的机会,努力工作,严格要求自己,遇到不懂的问题就虚心地向师傅们请教,搞清原理,找到方法,然后再总结经验,让自己能很快融入到工作中去,更好更快的完成任务。
同时我也利用其他时间参考一些书籍、搜索一些材料来完善自己对策划管理工作的认识,这也让我收获颇多,让我在应对工作方面更加得心应手。
矽格公司是在1997年经历千辛万苦独立出来自主经营的公司,已经有十三多年的发展历史,以成为集研制、生产、销售、技术培训于一体,拥有高精度电脑控制机械加工中心等全套加工设备的大型专业包装设备制造厂。
目前主要生产驱动类集成ic与光电鼠标等,产品包括:自动和半自动轮转循环,机械有d/b 与w/b,这些机械都是日本、美国高科技的技术。
具有高精度、高效率、先进的自动模切机、dbing机、wbing机等。
该半导体厂的组织机构设置很简练。
主要是总经理——副总经理——主管管理各个部门。
由于矽格公司的设备很先进,在生产线上不会像往常的工厂那样满布工人,主要是某三五个人负责工作流程。
这对我了解该工厂的生产流程提供了方便。
该厂生产的ic依据季节可以算得上的需求稳定,是属于定单供货型的生产。
由于产品的质量要求和技术含量要求都很高,因此,生产周期也比较长,单次产品需求的数量也不大。
同时,每台产品的价格非常昂贵,在万元以上。
半导体实验报告
半导体物理实验报告
班级:
学号:
姓名:
实验一 MOS结构C—V特性测试一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
当栅压在形成反型层之前迅速突变时,高频C-V特性将发生怎样的变化?
实验二霍尔效应测量载流子浓度实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
如何通过洛仑兹力方向和输出霍尔电压的正负来判断半导体样品的极性?
实验三霍尔效应测量载流子迁移率实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
思考样品尺寸参数误差会给霍尔效应测试实验带来怎样的误差?
实验四太阳能电池光伏效应实验
实验四太阳能电池光伏效应实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
为什么要把PN结串联起来用作太阳能电池?串联数目多少是由那些因素决定?。
半导体实验报告
半导体实验报告一、实验目的本次半导体实验旨在深入了解半导体材料的特性和相关器件的工作原理,通过实验操作和数据测量,掌握半导体物理性能的测试方法,以及分析和解决实验中遇到的问题。
二、实验原理(一)半导体的导电特性半导体的导电能力介于导体和绝缘体之间,其电导率会随着温度、杂质浓度等因素的变化而发生显著改变。
这是由于半导体中的载流子(电子和空穴)浓度受到这些因素的影响。
(二)PN 结的形成与特性当 P 型半导体和 N 型半导体接触时,会在接触面形成 PN 结。
PN 结具有单向导电性,即在正向偏置时导通,反向偏置时截止。
(三)半导体器件的工作原理以二极管为例,其核心就是 PN 结。
当二极管正向偏置时,电流容易通过;反向偏置时,只有极小的反向饱和电流。
三、实验设备与材料(一)实验设备1、半导体特性测试仪2、数字示波器3、电源4、恒温箱(二)实验材料1、硅二极管若干2、锗二极管若干3、不同掺杂浓度的半导体样品四、实验步骤(一)测量二极管的伏安特性1、将二极管接入测试电路,缓慢改变施加在二极管两端的电压,从正向 0V 开始,逐步增加到较大的正向电压,然后再从 0V 开始,逐步增加到较大的反向电压。
2、记录不同电压下通过二极管的电流值。
(二)研究温度对二极管特性的影响1、将二极管放入恒温箱,设置不同的温度(如 20℃、50℃、80℃等)。
2、在每个温度下,重复测量二极管的伏安特性。
(三)测量半导体样品的电阻随温度的变化1、用四探针法测量半导体样品在不同温度下的电阻值。
2、记录温度和对应的电阻值。
五、实验数据与结果(一)二极管伏安特性1、硅二极管正向特性:在较低的正向电压下,电流增长缓慢;当电压超过一定阈值后,电流迅速增加。
反向特性:反向电流很小,且随着反向电压的增加基本保持不变,直到达到反向击穿电压。
2、锗二极管正向特性:与硅二极管相比,正向导通电压较低。
反向特性:反向饱和电流较大。
(二)温度对二极管特性的影响随着温度升高,二极管的正向导通电压降低,反向饱和电流增大。
半导体材料_实验报告(3篇)
第1篇一、实验目的1. 熟悉半导体材料的性质,掌握半导体材料的制备方法。
2. 学习使用四探针法测量半导体材料的电阻率和薄层电阻。
3. 掌握半导体材料霍尔系数和电导率的测量方法。
4. 了解太阳能电池的工作原理,并进行性能测试。
二、实验原理1. 半导体材料:半导体材料具有介于导体和绝缘体之间的电导率,其电导率受温度、掺杂浓度等因素影响。
本实验所用的半导体材料为硅(Si)。
2. 四探针法:四探针法是一种测量半导体材料电阻率和薄层电阻的常用方法。
通过测量电流在半导体材料中流过时,电压的变化,可以得到材料的电阻率和薄层电阻。
3. 霍尔效应:霍尔效应是一种测量半导体材料霍尔系数和电导率的方法。
当半导体材料中存在磁场时,载流子在运动过程中会受到洛伦兹力的作用,导致载流子在垂直于电流和磁场的方向上产生横向电场,从而产生霍尔电压。
4. 太阳能电池:太阳能电池是一种将光能转化为电能的装置。
本实验所用的太阳能电池为硅太阳能电池,其工作原理是光生电子-空穴对在PN结处分离,产生电流。
三、实验仪器与材料1. 实验仪器:四探针测试仪、霍尔效应测试仪、太阳能电池测试仪、数字多用表、温度计等。
2. 实验材料:硅(Si)半导体材料、太阳能电池等。
四、实验步骤1. 四探针法测量半导体材料电阻率和薄层电阻(1)将硅半导体材料切割成合适尺寸的样品。
(2)将样品放置在四探针测试仪上,按照仪器操作步骤进行测量。
(3)记录实验数据,计算电阻率和薄层电阻。
2. 霍尔效应测量半导体材料霍尔系数和电导率(1)将硅半导体材料切割成合适尺寸的样品。
(2)将样品放置在霍尔效应测试仪上,按照仪器操作步骤进行测量。
(3)记录实验数据,计算霍尔系数和电导率。
3. 太阳能电池性能测试(1)将硅太阳能电池放置在太阳能电池测试仪上。
(2)按照仪器操作步骤进行测试,记录实验数据。
(3)计算太阳能电池的短路电流、开路电压、填充因子等参数。
五、实验结果与分析1. 四探针法测量半导体材料电阻率和薄层电阻根据实验数据,计算得到硅半导体材料的电阻率和薄层电阻分别为:ρ =0.3Ω·m,Rt = 0.1Ω。
半导体基础实验报告
竭诚为您提供优质文档/双击可除半导体基础实验报告篇一:半导体物理实验报告电子科技大学半导体物理实验报告姓名:艾合麦提江学号:20XX033040008班级:固电四班实验一半导体电学特性测试测量半导体霍尔系数具有十分重要的意义。
根据霍尔系数的符号可以判断材料的导电类型;根据霍尔系数及其与温度的关系,可以计算载流子的浓度,以及载流子浓度同温度的关系,由此可确定材料的禁带宽度和杂质电离能;通过霍尔系数和电阻率的联合测量.能够确定我流子的迁移约用微分霍尔效应法可测纵向载流子浓度分布;测量低温霍尔效应可以确定杂质补偿度。
霍尔效应是半导体磁敏器件的物理基础。
1980年发现的量子霍尔效应对科技进步具有重大意义。
早期测量霍尔系数采用矩形薄片样品.以及“桥式”样品。
1958年范德堡提出对任意形状样品电阻率和霍尔系数的测量方法,这是一种有实际意义的重要方法,目前已被广泛采用。
本实验的目的使学生更深入地理解霍尔效应的原理,掌握霍尔系数、电导率和迁移率的测试方法,确定样品的导电类型。
一、实验原理如图,一矩形半导体薄片,当沿其x方向通有均匀电流I,沿Z方向加有均匀磁感应强度的磁场时,则在y方向上产生电势差。
这种想象叫霍尔效应。
所生电势差用Vh表示,成为霍尔电压,其相应的电场称为霍尔电场ey。
实验表明,在弱磁场下,ey同J(电流密度)和b成正比ey=RhJb(1)式中Rh为比例系数,称为霍尔系数。
在不同的温度范围,Rh有不同的表达式。
在本征电离完全可以忽略的杂质电离区,且主要只有一种载流子的情况,当不考虑载流子速度的统计分布时,对空穴浓度为p的p型样品Rh?1?0(2)pq式中q为电子电量。
对电子浓度为n的n型样品Rh??1?0nq(3)当考虑载流子速度的统计分布时,式(2)、(3)应分别修改为??h?1??h?1Rh??Rh???pqnq??p??n(4)式中μh为霍尔迁移率。
μ为电导迁移率。
对于简单能带结构??h?(5)h??h?p??nγh称为霍尔因子,其值与半导体内的散射机制有关,对晶格散射γh=3π/8=1.18;对电离杂质散射γh=315π/512=1.93,在一般粗略计算中,γh可近似取为1.在半导体中主要由一种载流子导电的情况下,电导率为?n?nq?n和?p?pq?p(6)由(4)式得到Rh?ph?p和Rh?nh?n(7)测得Rh和σ后,μh为已知,再由μ(n,T)实验曲线用逐步逼近法查得μ,即可由式(4)算得n或p。
半导体教学实验报告
一、实验目的1. 了解半导体材料的基本特性。
2. 学习半导体器件的基本原理和结构。
3. 掌握半导体器件的测试方法。
4. 培养学生的动手能力和实验技能。
二、实验原理半导体材料是一种导电能力介于导体和绝缘体之间的材料。
本实验主要研究半导体二极管和晶体管的特性。
1. 半导体二极管:二极管是一种具有单向导电特性的半导体器件。
其正向导通时,正向电压达到一定值后,电流迅速增大;反向截止时,反向电压增加,电流几乎为零。
2. 晶体管:晶体管是一种放大器件,具有电流放大作用。
本实验主要研究晶体管的电流放大特性。
三、实验仪器与材料1. 仪器:万用表、信号发生器、示波器、半导体二极管、晶体管(NPN和PNP 型)、电阻、电容等。
2. 材料:实验电路图、实验数据记录表等。
四、实验步骤1. 半导体二极管特性测试(1)搭建实验电路,如图1所示。
(2)使用万用表测量二极管的正向电压和反向电压。
(3)观察并记录二极管的正向导通和反向截止特性。
2. 晶体管放大特性测试(1)搭建实验电路,如图2所示。
(2)使用信号发生器产生一定频率和幅值的正弦波信号。
(3)使用示波器观察输入信号和输出信号的变化。
(4)调节电阻值,观察晶体管的电流放大特性。
五、实验数据与分析1. 半导体二极管特性测试(1)正向电压:Vf = 0.7V(2)反向电压:Vr = 20V(3)二极管导通和截止特性符合理论分析。
2. 晶体管放大特性测试(1)输入信号:频率f = 1kHz,幅值Vp-p = 1V(2)输出信号:频率f = 1kHz,幅值Vp-p = 10V(3)晶体管放大倍数:A = Vp-p_out / Vp-p_in = 10六、实验结论1. 本实验成功验证了半导体二极管和晶体管的基本特性和工作原理。
2. 通过实验,加深了对半导体器件的理解,提高了动手能力和实验技能。
七、实验反思1. 在实验过程中,需要注意实验仪器的使用方法和注意事项。
2. 在搭建实验电路时,要严格按照电路图进行,确保电路连接正确。
半导体物理与器件实验
• 实验报告:
中北大学微米纳米技术研究中心实验报告 《半导体物理与器件》 实验题目:______ 学生姓名:____ 学号:_____ 班级:___ 指导教师__ 一、实验目的 二、实验设备 三、实验内容 四、实验步骤 五、实验数据及处理 六、实验心得体会 七、思考题
如何通过洛仑兹力方向和输出霍尔电压的正负来判断半 导体样品的极性?
IB和IC的取值由测试条件规定,一般在测试中取IC=10IB 时的VCE值作为VCES。
6、正常管和失效管输出特性曲线的比较 根据试验中观察到的波形及记录的数据,求出各个参数
并对器件质量进行分析。
几种不正常晶体管的输出特性曲线 7、测试三种不同的BJT管的以上参数,进行对比。 8、将测得的参数与BJT管给定的参数进行对比,看是否在范 围内。
(1) ICBO, V(BR)CBO;(2) IEBO, V(BR)EBO;(3) ICEO, V(BR)CEO 测试ICEO, V(BR)CEO时,也可将晶体管E、B、C分别和三
端口相连接,将基极开路,在C、E级之间加上反向电压进行 测量。
3、输入阻抗的测试
晶体管的输入特性对于共发射极电路来说是指IB和VBE的关系, 输入阻抗用Rin表示。 以npn管为例,将被测管E、B、C极分别和三端口连接,然 后加大VCE电压,便可得到如图所示的共发射极组态下的输 入特性曲线。
• 实验内容: 1、测量霍尔元件的零位电势和零位电阻。 2、测量霍尔电压VH与工作电流Is的关系 。 3、测量霍尔电压VH与励磁电流IM的关系。 4、计算霍尔元件的霍尔灵敏度。 5、测量样品的电导率/迁移率。
• 实验步骤:
1、按仪器面板上的文字和符号提示将型霍尔效应测试仪与 霍尔效应实验架正确连接。
半导体器件物理实验报告格式[5篇模版]
半导体器件物理实验报告格式[5篇模版]第一篇:半导体器件物理实验报告格式微电子学院《半导体器件实验》实验报告实验名称:作者姓名:作者学号:同作者:实验日期:实验报告应包含以下相关内容:实验名称:一、实验目的二、实验原理三、实验内容四、实验方法五、实验器材及注意事项六、实验数据与结果七、数据分析八、回答问题实验报告要求:1.使用实验报告用纸;2.每份报告不少于3页手写体,不含封皮和签字后的实验原始数据部分;3.必须加装实验报告封皮,本文中第一页内容,打印后填写相关信息。
4.实验报告格式为:封皮、内容和实验原始数据。
第二篇:半导体器件物理教学内容和要点教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章 PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的P-N结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想P-N结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节 I-V特性的温度依赖关系一、反向饱和电流和温度的关系二、I-V特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应二、利用电荷控制方程求解τs三、阶跃恢复二极管基本理论第十节 P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(Ebers-Moll)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,hfe),共基极截止频率和共射极截止频率(Wɑ ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm、gbe、CD 的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td、tr、tf、ts三、解电荷控制方程求贮存时间ts第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12、§3.13、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gml gm CG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节 JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9 第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节 MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节等效电路和频率响应一、参数:gd gm rd二、等效电路三、截止频率第七节亚阈值区一、亚阈值概念二、MOSFET的亚阈值概念第九节 MOS场效应晶体管的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型第十节器件尺寸比例MOSFET制造工艺一、P沟道工艺二、N沟道工艺三、硅栅工艺四、离子注入工艺第七章太阳电池和光电二极管第一节半导体中光吸收一、两种光吸收过程二、吸收系数三、吸收限第二节 PN结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节太阳电池的I-V特性一、理想太阳电池的等效电路二、根据等效电路写出I-V公式,I-V曲线图(比较:根据电流分量写出I-V公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V公式五、RS对I-V特性的影响第四节太阳电池的效率一、计算 Vmp Imp Pm二、效率的概念η=FFVOCIL⨯100% Pin第五节光产生电流和收集效率一、“P在N上”结构,光照,GL=αΦOe-αx少子满足的扩散方程二、例1-1,求少子分布,电流分布三、计算光子收集效率:ηcol=JptJnGΦO讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响理解Fig7-9,Fig7-10所反映的物理意义第六节提高太阳能电池效率的考虑一、光谱考虑(多媒体演示)二、最大功率考虑三、串联电阻考虑四、表面反射的影响五、聚光作用第七节肖特基势垒和MIS太阳电池一、基本结构和能带图二、工作原理和特点阅读§7.8 第九节光电二极管一、基本工作原理二、P-I-N光电二极管三、雪崩光电二极管四、金属-半导体光电二极管第十节光电二极管的特性参数一、量子效率和响应度二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP)四、探测率(D)、比探测率(D*)第八章发光二极管与半导体激光器第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED的特性参数一、I-V特性二:量子效率:注射效率γ、辐射效率ηr、内量子效率ηi,逸出概率ηo、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布,峰值半高宽 FWHM,峰值波长,主波长,亮度第四节可见光LED一、GaP LED二、GaAs1-xPx LED三、GaN LED 第五节红外 LED 一、性能特点二、应用光隔离器阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节 MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD 第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。
半导体物理器件实验
1方案选择:产生调频信号的电路叫做调频器,对他有4个主要的要求: ① 已调波的瞬时频率与调制信号成比例变化。
② 未调制时的载波频率即已调波的中心频率具有一定的稳定度。
③ 最大频偏与调制频率无关。
④ 无寄生调幅或寄生调幅尽量小。
产生调频的方法主要归纳为两类:1 用调制信号直接控制载波的瞬时频率——直接调频。
2先将调制信号积分,然后对载波进行调相,结果得到调频波——间接调频。
变容二极管调频的主要优点是能够获得较大的频移(相对于间接调频而言),线路简单,并且几乎不需要调制功率,其主要缺点是中心频率的稳定度低。
在满足设计的各项参数的基础上尽量简化电路。
因此本次课程设计采用BB910变容二极管进行直接调频电路设计。
2调频电路设计原理分析2.1FM 调制原理:FM 调制是靠信号使频率发生变化,振幅可保持一定,所以噪声成分易消除。
设载波t w Vcm Vc c cos =,调制波t w Vsm Vs s cos =。
t w w w w s c m cos ∆+=或t f f f f s c m π2cos ∆+=,此时的频率偏移量△f 为最大频率偏移。
最后得到的被调制波m cm m V V θsin = , V m 随V s 的变化而变化。
⎰∆+==ts s c m m t w w w t w dt w 0sin )/(θ)sin sin(]sin )/(sin[sin t w m t w V t w w w t w V V V s c cm s s c cm mcm m +=∆+==θss f fw w m ∆=∆=为调制系数2.2 变容二极管直接频率调制的原理:变容二极管是利用半导体PN 结的结电容随反向电压变化这一特性制成的一种半导体二极管,它是一种电压控制可变电抗元件,它的结电容C j 与反向电压V R 存在如下关系:γ)1(0DR j j V v C C +=式中,V D 为PN 结的势垒电压(内建电势差),C j0为V R 为0时的结电容,γ为系数,它的值随半导体的掺杂浓度和PN 结的结构不同而异:对于缓变结,γ=1/3;突变结:γ=1/2;对于超突变结,γ=1~4,最大可达6以上。
半导体物理实验报告
半导体物理实验报告《半导体物理实验报告》摘要:本实验通过测量半导体材料的电阻率和霍尔系数,研究了半导体的电学性质。
实验结果表明,半导体材料的电阻率随温度的变化呈现出特定的规律,而霍尔系数则与半导体材料的载流子类型和浓度有着密切的关系。
通过实验数据的分析,我们得出了半导体材料的电子迁移率和载流子浓度的数值,并对半导体的电学特性进行了深入的研究。
引言:半导体材料因其在电子学领域的重要应用而备受关注。
通过对半导体材料的电学性质进行研究,可以深入了解其内在的物理机制,为半导体器件的设计和制备提供重要的参考。
本实验旨在通过测量半导体材料的电阻率和霍尔系数,研究半导体的电学性质,并对实验结果进行分析和讨论。
实验方法:1. 准备实验所需的半导体样品和测量设备;2. 测量半导体样品在不同温度下的电阻率,并绘制出电阻率随温度变化的曲线;3. 使用霍尔效应测量半导体样品的霍尔系数,并计算出半导体的载流子类型和浓度;4. 对实验数据进行分析,得出半导体材料的电子迁移率和载流子浓度的数值。
实验结果和讨论:通过实验测量和数据分析,我们得出了半导体材料的电阻率随温度变化的规律,以及半导体的载流子类型和浓度。
实验结果表明,半导体材料的电阻率随温度的升高呈现出指数型的变化规律,这与半导体材料的能带结构和载流子浓度有着密切的关系。
同时,霍尔系数的测量结果也表明,半导体材料的载流子类型和浓度对其电学性质有着重要的影响。
通过对实验数据的分析,我们得出了半导体材料的电子迁移率和载流子浓度的数值,并对半导体的电学特性进行了深入的研究。
结论:本实验通过测量半导体材料的电阻率和霍尔系数,研究了半导体的电学性质,得出了半导体材料的电子迁移率和载流子浓度的数值,并对半导体的电学特性进行了深入的研究。
实验结果对于深入了解半导体材料的内在物理机制,以及为半导体器件的设计和制备提供了重要的参考。
物理实验技术中的半导体材料与器件性能测试
物理实验技术中的半导体材料与器件性能测试引言半导体材料与器件是现代电子技术的基础,其性能测试是研究与开发半导体技术的重要环节。
本文将探讨物理实验技术中半导体材料与器件性能测试的相关内容,包括测试的方法、装置和应用。
一、半导体材料测试1. 电学性能测试半导体材料的电学性能测试包括电阻、电容与电流-电压特性的测量。
使用四探针法测量材料的电阻,通过计算电阻率来评估材料的导电性能;使用LCR表测量电容,以评估材料的介电性能;使用源测量器测量电流-电压特性,以了解材料的电导性。
2. 光学性能测试半导体材料的光学性能测试主要包括吸光度、透过率与光谱响应的测量。
通过光纤光谱仪可以测量材料的吸光度和透过率,从而了解材料对光的吸收与透过能力;使用光谱分析仪可以测量材料的光谱响应,以研究其在不同波长下的光学性能。
3. 结构性能测试半导体材料的结构性能测试主要包括晶体结构与表面形貌的测量。
使用X射线衍射仪可以测量晶体的结晶结构,从而评估材料的晶体质量与取向;使用扫描电子显微镜可以观察材料的表面形貌,以了解其表面质量与形貌特征。
二、半导体器件测试1. 晶体管性能测试半导体晶体管的性能测试主要包括直流电流增益、射频特性和噪声指数的测量。
使用源测量器可以测量晶体管的直流电流增益,以评估其放大性能;使用网络分析仪可以测量晶体管的射频特性,了解其在高频电路中的传输性能;使用功率谱仪可以测量晶体管的噪声指数,以评估其在低噪声电路中的性能。
2. 二极管性能测试半导体二极管的性能测试主要包括电压-电流特性、频率响应和非线性失真的测量。
使用源测量器可以测量二极管的电压-电流特性,评估其导通电压和正常工作区域;使用示波器可以测量二极管的频率响应,以了解其在高频电路中的工作频率范围;使用信号发生器和频谱分析仪可以测量二极管的非线性失真,评估其在低失真电路中的性能。
3. 光电器件性能测试半导体光电器件的性能测试主要包括光电流-光照强度特性、响应时间和量子效率的测量。
半导体实验报告1
半导体物理实验报告物理学院 12级电子3班 郭旭洪学号:3112008307合作者:冯嘉进实验一 半导体的霍尔效应实验目的1、了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2、学习用“对称测量法”消除副效应的影响,测量试样的VH-IS 和VH-IM 曲线。
3、确定试样的导电类型、载流子浓度以及迁移率。
实验仪器霍尔效应实验组合仪实验步骤⑴ 开关机前,测试仪的“IS 调节”和“IM 调节”旋钮均置零位(即逆时针旋到底)。
⑵ 按图1.2 连接测试仪与实验仪之间各组连线。
注意:①样品各电极引线与对应的双刀开关之间的连线已由制造厂家连接好,请勿再动!②严禁将测试仪的励磁电源“IM 输出”误接到实验仪的 “IS 输入”或“VH、V 输出”处,否则,一旦通电,霍尔样品即遭损坏!样品共有三对电极,其中A 、A/或C 、C/用于测量霍尔电压H V ,A 、C 或A/、C/用于测量电导,D 、E 为样品工作电流电极。
样品的几何尺寸为:d=0.5mm ,b=4.0mm ,A 、C 电极间距l=3.0mm 。
仪器出产前,霍尔片已调至中心位置。
霍尔片性脆易碎,电极甚细易断,严防撞击,或用手去摸,否则,即遭损坏! 霍尔片放置在电磁铁空隙中间,在需要调节霍尔片位置时,必须谨慎,切勿随意改变y 轴方向的高度,以免霍尔片与磁极面磨擦而受损。
⑶ 接通电源,预热数分钟,电流表显示“.000”( 当按下“测量选择”键时 )或“0.00”(放开“测量选择”键时),电压表显示为“0.00”。
⑷ 置“测量选择”于IS 挡(放键),电流表所示的值即随“IS 调节”旋钮顺时针转动而增大,其变化范围为0-10mA ,此时电压表所示读数为“不等势”电压值,它随IS 增大而增大,IS 换向,VH极性改号(此乃“不等势”电压值,可通过“对称测量法”予以消除)。
图1.2 实验线路连接装置图⑸ 置“测量选择”于IM 挡(按键),顺时针转动“IM 调节” 旋钮,电流表变化范围为0-1A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程实习报告HUNAN UNIVERSITY题目:半导体物理与器件学生姓名:周强强学生学号:20100820225专业班级:通信二班完成日期:2012.12.22运行结果截图:2.2 函数(),cos(2/)Vx t x t πλω=-也是经典波动方程的解。
令03x λ≤≤,请在同一坐标中绘出x 的函数(),Vx t 在不同情况下的图形。
(1)0;(2)0.25;(3)0.5;(4)0.75;(5)t t t t t ωωπωπωπωπ=====。
3.27根据式(3.79),绘制出0.2()0.2F E E eV -≤-≤范围内,不同温度条件下的费米-狄拉克概率函数:()200,()300,()400a T K b T K c T K ===。
4.3 画出a ()硅,b ()锗,c ()砷化镓在温度范围200600K T K ≤≤内的本征载流子浓度曲线(采用对数坐标)。
4.46 已知锗的掺杂浓度为153a =310cm N -⨯,d =0N 。
画出费米能级相对于本征费米能级的位置随温度变化200600)K T K ≤≤(的曲线。
5.20硅中有效状态密度为 193/2c 2.810()300T N =⨯ 193/21..0410()300TN ν=⨯ 设迁移率为 3/2n =1350300T μ-⎛⎫⎪⎝⎭3/2=480300T ρμ-⎛⎫⎪⎝⎭设禁带宽带为g =1.12V E e ,且不随温度变化。
画出200600K T K ≤≤范围内,本征电导率随绝对温度T 变化的关系曲线。
6.34 n 型硅样品的掺杂浓度为16310dN cm -=,产生的过剩载流子的浓度为()1443()10exp /10p x x cm δ--=-。
在140410x ≤≤⨯范围内,绘出Fi FpE E -随x 变化的函数。
7.4均匀掺杂的GaAspn 结,其掺杂浓度为183163510,510a d N cm N cm --=⨯=⨯。
画出200500K T K ≤≤温度区间内,内建电势差随温度变化的曲线。
8.3 300T K =,理想硅pn 结的少子寿命分别为670010,10n p s s ττ--==。
N 区的掺杂浓度为16310d N cm -=。
绘制出当a N 的范围是151831010a N cm -≤≤时,空间电荷区内空穴电流占总电流的比例随a N 变化的曲线图(采用对数坐标)。
9.10 金与掺杂浓度为16310d N cm -=的n 型硅基础形成肖特基二极管。
简要说明肖特基势垒降低现象。
()a 绘出肖特基势垒降低值φ∇与反偏电压在050R V V ≤≤时的图形;()b 绘出()()/0sT R sT R J V J V =与反偏电压在050R V V ≤≤时的图形。
实验源代码(基于mathematica7.0):2.2V1=Cos[ 2 π x / λ - 0];V2=Cos[ 2 π x / λ - 0.5 π];V3=Cos[ 2 π x / λ - π];V4=Cos[ 2 π x / λ - 1.5 π];V5=Cos[ 2 π x / λ - 2 π];λ =1;Plot [{V1,V2,V3,V4,V5},{x,0,3}, PlotStyle→{RGBColor[1,0,1], RGBColor[1,0.5,0],RGBColor[1,0,0.5],RGBColor[0,1,0],RGBColor[0,0,1]},AxesLabel→{"(/λ)","V(x,t)"}]3.27F1 = 1/(1+Exp[ x/(k * 200)]);F2 = 1/(1+Exp[ x/(k * 300)]);F3 = 1/(1+Exp[ x/(k * 400)]);k=0.0000861;Plot [{F1,F2,F3},{x,-0.2,0.2},PlotStyle→{RGBColor[1,0,0],RGBColor[0,1,0],RGBColor[0,0,1]},AxesLabel→{"(E-E)"," "}]F4.3(*设x=1000/T*)Si =Sqrt[2.8 * 1.04 * 1038* (1000/ x /300 )^3 * Exp[-1.12/(0.0000861*1000/x)]];Ge =Sqrt[1.04 * 6 * 1037* (1000 /x /300 )^3 * Exp[-0.66/(0.0000861* 1000 /x)]];GaAs =Sqrt[4.7 * 7 * 1035* (1000 /x /300 )^3 * Exp[-1.42/(0.0000861* 1000/ x)]];LogLogPlot[{Si,Ge,GaAs},{x,10/6,5},PlotStyle→{RGBColor[1,0,0],RGBColor[0,1,0],RGBColor[0,0,1]},AxesLabel→{"(1000/T)","本征载流子浓度Ni"}]4.46Nc=1.04 * 1019;Nv=6 * 1019;Eg=0.66;k =8.62 *10-5;Na=1015;Nd=0;ni =N c N vT3003ExpE gk T;p0=(Na-Nd)/2+N a N d22n i2;f=k * T * Log[p0/ni];Plot[f,{T,200,600}, AxesLabel->{"T",""}]5.20Nc=2.8 * 1019 (T/300)3/2 ;Nv= 1.04 * 1019 (T/300)3/2 ; μn=1350 (T/300)-3/2 ;μp = 480 (T/300)-3/2 ;ni =N c N v ExpE gk T;k=8.62 * 10-5;Eg=1.12;n=ni;p=ni;e=1.6 *10-19;σ=e*(μn * n + μp * p);Plot[σ,{T,200,600}, AxesLabel->{"T","σ"}] 6.34δp[x] = 1014 Exp[-x/10-4];Nd=1016;ni=1.5 * 1010;n0= Nd;p0=Subscript[n, i]2/n;kT=0.0259;f=kT * Log[(p0+ δp[x])/ni];Plot[f,{x,0,4 * 10-4}, AxesLabel ->{"x", "EFi -EFp"}]7.4Nd=5*1016;Na=5 *1018;Nc=4.7 * 1017;Nv=7*1018;k = 1.38 *10-23;e = 1.6 * 10-19;Eg=1.42;ni =N c N vT3003ExpE g0.0259300T;V bi =(k * T)/e Log[(N a N d )/Subscript[n, i]2]; Plot[V bi ,{T,200,500 }, AxesLabel->{"T","V bi "}] 8.3τn0=10-6;τp0=10-7;N d =1016; D n =25; b=10;f=(1/N dbp0)/(1/N dbp0+1/N aD nn0);LogLogPlot[f,{N a ,1015,1018}, PlotStyle →{RGBColor[0,1,0]}, AxesLabel->{"N a ",""}]9.10aφm=5.1; χ=4.01;N c =2.8*1019;N d =1016;εs=11.7 * 8.85 *10-14;e=1.6 * 10-19;φB0=φm-χ;φn=0.0259 Log[N c /N d ]; V bi =φB0-φn;x n =2sV bi V ReN d;E 1=(e * N d )/εs* x n ;∆φ=e E 14s;Plot[∆φ,{V R ,0,50},AxesLabel->{"V R ","∆φ"}]9.10bφm=5.1; χ=4.01;N c =2.8*1019;N d =1016;εs=11.7 * 8.85 *10-14;e=1.6 * 10-19;φB0=φm-χ;φn=0.0259 Log[N c /N d ]; V bi =φB0-φn;x n =2sV bi V ReN d;E 1=(e * N d )/εs* x n ;∆φ=e E 14s;x n1=2sV bi eN d;E 2=(e * N d )/εs* x n1;∆φ1=e E 24s;k=1.38 * 10-23; T = 300;f=Exp[(e*∆φ)/(k*T)]/Exp[(e*∆φ1)/(k*T)]Plot[f,{V R ,0,50},AxesLabel->{"V R ","J sT (V R )/J sT (V R =0)"}]。