建立数学模型的方法、步骤、特点及分类 ()
数学建模的基本步骤与方法
数学建模的基本步骤与方法数学建模是利用数学方法和技巧对实际问题进行数学化描述和分析的一门学科。
它在现代科学和工程领域有着广泛的应用。
本文将介绍数学建模的基本步骤与方法。
一、问题的分析与理解在进行数学建模之前,首先要对问题进行充分的分析与理解。
这包括对问题的背景、目标和约束条件的明确,以及对问题所涉及的各个因素和变量的了解。
只有充分理解问题,才能设计合理的数学模型。
二、建立数学模型建立数学模型是数学建模的核心步骤。
模型是对实际问题的一种抽象和简化,通过数学表达来描述问题的关系和规律。
建立数学模型的关键是要确定问题的输入、输出和中间变量,以及它们之间的函数关系或约束条件。
在建立数学模型时,可以使用各种数学方法和技巧。
例如,可以利用微分方程描述物理过程的变化,利用优化方法求解最优化问题,利用概率统计模型描述随机现象的规律等。
根据具体问题的特点和要求,选择合适的数学方法是十分重要的。
三、模型的求解与分析建立数学模型后,需要对模型进行求解和分析。
这包括利用数值方法或解析方法求解模型,得到问题的解析解或近似解。
在模型求解的过程中,可能需要编写计算程序、进行数值计算和统计分析等。
模型求解过程中,还需要对模型的解进行评估和分析。
例如,可以对模型的稳定性、收敛性、误差估计等进行分析,以确定模型的可行性和有效性。
四、模型的验证与应用在对模型进行求解和分析之后,需要对模型进行验证和应用。
验证是指将模型的结果与实际数据进行比较,以检验模型的准确性和可靠性。
如果模型的结果与实际数据吻合较好,说明模型是可信的。
模型的应用是指将模型的结果用于解决实际问题或做出决策。
根据模型的目标和应用场景,可以对模型的结果进行解释和解读,提出合理的建议和决策。
五、模型的改进与扩展建立数学模型是一个动态的过程,模型的改进与扩展是不可缺少的环节。
通过对模型的不断改进和扩展,可以提高模型的准确性和适用性,更好地描述和解决实际问题。
模型的改进与扩展可以从多个方面入手。
关于数学建模方面的知识
关于数学建模⽅⾯的知识关于数学建模⽅⾯的知识⼀、数学模型的定义现在数学模型还没有⼀个统⼀的准确的定义,因为站在不同的⾓度可以有不同的定义.不过我们可以给出如下定义:“数学模型是关于部分现实世界和为⼀种特殊⽬的⽽作的⼀个抽象的、简化的结构.”具体来说,数学模型就是为了某种⽬的,⽤字母、数学及其它数学符号建⽴起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式.⼀般来说数学建模过程可⽤如下框图来表明:数学是在实际应⽤的需求中产⽣的,要解决实际问题就必需建⽴数学模型,从此意义上讲数学建模和数学⼀样有古⽼历史.例如,欧⼏⾥德⼏何就是⼀个古⽼的数学模型,⽜顿万有引⼒定律也是数学建模的⼀个光辉典范.今天,数学以空前的⼴度和深度向其它科学技术领域渗透,过去很少应⽤数学的领域现在迅速⾛向定量化,数量化,需建⽴⼤量的数学模型.特别是新技术、新⼯艺蓬勃兴起,计算机的普及和⼴泛应⽤,数学在许多⾼新技术上起着⼗分关键的作⽤.因此数学建模被时代赋予更为重要的意义.⼆、建⽴数学模型的⽅法和步骤1. 模型准备要了解问题的实际背景,明确建模⽬的,搜集必需的各种信息,尽量弄清对象的特征.2. 模型假设根据对象的特征和建模⽬的,对问题进⾏必要的、合理的简化,⽤精确的语⾔作出假设,是建模⾄关重要的⼀步.如果对问题的所有因素⼀概考虑,⽆疑是⼀种有勇⽓但⽅法⽋佳的⾏为,所以⾼超的建模者能充分发挥想象⼒、洞察⼒和判断⼒,善于辨别主次,⽽且为了使处理⽅法简单,应尽量使问题线性化、均匀化.3. 模型构成根据所作的假设分析对象的因果关系,利⽤对象的内在规律和适当的数学⼯具,构造各个量间的等式关系或其它数学结构.这时,我们便会进⼊⼀个⼴阔的应⽤数学天地,这⾥在⾼数、概率⽼⼈的膝下,有许多可爱的孩⼦们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱⼤国,别有洞天.不过我们应当牢记,建⽴数学模型是为了让更多的⼈明了并能加以应⽤,因此⼯具愈简单愈有价值.4. 模型求解可以采⽤解⽅程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学⽅法,特别是计算机技术.⼀道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运⾏情况⽤计算机模拟出来,因此编程和熟悉数学软件包能⼒便举⾜轻重.5. 模型分析对模型解答进⾏数学上的分析. “横看成岭侧成峰,远近⾼低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更⾼的档次.还要记住,不论那种情况都需进⾏误差分析,数据稳定性分析.三、数模竞赛出题的指导思想传统的数学竞赛⼀般偏重理论知识,它要考查的内容单⼀,数据简单明确,不允许⽤计算器完成.对此⽽⾔,数模竞赛题是⼀个“课题”,⼤部分都源于⽣产实际或者科学研究的过程中,它是⼀个综合性的问题,数据庞⼤,需要⽤计算机来完成.其答案往往不是唯⼀的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯⼀的),呈报的成果是⼀编“论⽂” .由此可见“数模竞赛”偏重于应⽤,它是以数学知识为引导计算机运⽤能⼒及⽂章的写作能⼒为辅的综合能⼒的竞赛.四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1. 实际问题背景涉及⾯宽——有社会,经济,管理,⽣活,环境,⾃然现象,⼯程技术,现代科学中出现的新问题等.⼀般都有⼀个⽐较确切的现实问题. 若⼲假设条件有如下⼏种情况:1)只有过程、规则等定性假设,⽆具体定量数据;2)给出若⼲实测或统计数据;3)给出若⼲参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据⾃⼰收集或模拟产⽣数据.要求回答的问题往往有⼏个问题,⽽且⼀般不是唯⼀答案。
数学模型与数学建模
数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。
它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
一、建立数学模型的要求:1、真实完整。
1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
2、简明实用。
在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化。
随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
在体育实践中常常提到优秀运动员的数学模型。
如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
数学建模简介
●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?
数学建模介绍
数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。
一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。
究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。
这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。
(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。
如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。
这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。
数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。
数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。
建立数学模型的过程称为数学建模。
(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。
在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。
计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。
数学建模简介1
数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。
具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。
建立数学模型的方法
建立数学模型的方法数学模型是指用数学语言和符号描述现实世界中某个问题的方法。
它是一种把复杂的现实问题转化为数学问题来进行研究和解决的手段。
建立数学模型的过程不仅需要数学知识,还需要对实际问题的深刻理解和把握。
本文将从以下几个方面介绍建立数学模型的方法。
一、分析问题建立数学模型的第一步是分析问题,要明确问题的性质、特点、目的和限制条件。
在分析问题的过程中,需要了解问题的背景和相关知识,明确问题的主要矛盾和关键因素,确定问题的量化指标和评价标准,以及考虑问题的可行性和实际性。
例如,对于一个生产企业来说,它需要分析如何提高生产效率,减少成本,同时保证产品质量和员工安全。
这就需要考虑生产设备的利用率、员工的工作效率、原材料的采购成本、产品的质量检测等因素,以及企业的资源和技术条件。
二、建立数学模型在分析问题的基础上,可以建立数学模型。
数学模型是用数学语言和符号来描述现实问题的形式化表达。
数学模型可以是代数方程、微分方程、差分方程、概率统计模型、图论模型、优化模型等等。
例如,对于上述生产企业的问题,可以建立一个生产效率的数学模型。
设生产效率为E,设生产设备的利用率为x1,员工的工作效率为x2,原材料的采购成本为x3,产品的质量检测为x4,则可以建立以下数学模型:E=f(x1,x2,x3,x4)其中,f为生产效率的函数。
可以根据实际情况选择不同的函数形式,例如线性函数、指数函数、对数函数、多项式函数等等。
三、模型求解建立数学模型后,需要进行模型求解。
模型求解是指利用数学方法和计算机技术来求解数学模型,得到问题的解答或决策。
例如,对于上述生产效率的数学模型,可以利用优化方法来求解。
假设企业的目标是最大化生产效率,同时满足设备利用率≥80%、员工工作效率≥90%、采购成本≤100万元、产品合格率≥95%等限制条件。
则可以建立以下优化模型:Max E=f(x1,x2,x3,x4)s.t. x1≥0.8, x2≥0.9, x3≤100, x4≥0.95其中,s.t.表示限制条件。
数学教学中的模型建构方法
数学教学中的模型建构方法数学教学是培养学生数学思维和解决问题能力的重要途径。
为了提高学生的学习效果,教师需要采用有效的教学方法。
其中,模型建构方法被认为是一种高效的数学教学方法。
本文将介绍数学教学中的模型建构方法,并分析其优势和应用。
一、模型建构方法的概念模型建构方法是指教师通过引导学生运用数学知识与技能来构建数学模型,以解决实际问题的过程。
模型是对事物本质特征的简化和抽象,可以帮助学生理解和分析问题。
模型建构方法有助于培养学生的数学思维,提高他们的问题解决能力。
二、模型建构方法的步骤模型建构方法可以分为以下几个步骤:1. 问题分析:教师引导学生深入分析实际问题的背景和要求,确定需要构建模型的数学关系。
2. 建立假设:学生根据问题的特点和要求,提出合理的假设,并对模型中的变量和参数进行定义。
3. 模型构建:学生运用数学知识和技能,建立数学模型,表达出问题的数学关系。
4. 模型求解:学生运用数学方法和技巧,对所建立的模型进行求解,得出问题的数学解。
5. 解释和验证:学生解释和验证数学解的意义和正确性,对模型的建立和求解进行评价。
三、模型建构方法的优势模型建构方法具有以下几点优势:1. 激发学生的学习兴趣:通过引导学生解决实际问题,模型建构方法能够使学生主动参与学习,提高他们对数学的兴趣和学习动力。
2. 培养学生的综合运用能力:模型建构方法要求学生综合运用数学知识和技能,培养他们的综合运用能力和问题解决能力。
3. 增强学生的数学思维:通过构建数学模型,学生需要深入思考问题的本质和数学关系,从而培养和提高他们的数学思维能力。
4. 促进跨学科融合:模型建构方法通常需要结合其他学科的知识和技能,如物理、经济等,有助于促进跨学科融合。
四、模型建构方法的应用模型建构方法在数学教学中有着广泛的应用。
它可以应用于各个年级和不同层次的数学教学中,丰富教学内容,提高教学效果。
例如,在小学数学教学中,可以通过引导学生观察和探索简单问题,培养他们建立数学模型的能力。
3建立数学模型方法和步骤
3建立数学模型方法和步骤建立数学模型是将实际问题转化为数学问题,以便进行定量分析和求解的过程。
建立数学模型能够帮助我们更好地理解问题背后的本质,为决策和预测提供依据。
下面将介绍建立数学模型的方法和步骤。
方法一:方程法方程法是一种常用的建立数学模型的方法,其基本步骤包括以下四个方面:1.确定问题的基本要素,包括变量、参数和指标。
变量是问题中可变的量,可以进行测量和观察,而参数是固定的量,通常是由以前的实验或者经验确定的。
指标是评价问题结果的标准。
2.建立数学方程或者不等式,用变量、参数和指标之间的关系来描述问题。
这些方程或者不等式可以是线性的,也可以是非线性的。
可以根据问题背景和要求,选择适当的数学模型,常见的数学模型包括数学规划模型、统计模型、差分方程模型等。
3.对建立的数学方程或者不等式进行求解,得到问题的解。
求解方法可以是数值求解,也可以是符号求解,具体方法取决于问题的特点和求解的难度。
4.对问题的解进行分析和解释,对模型的有效性进行验证。
通过对问题解的分析和解释,可以得出有关问题的结论,并对建立的模型的准确性和可靠性进行评估。
方法二:概率论和统计学方法概率论和统计学是建立数学模型的重要工具,其基本步骤如下:1.通过对问题的分析和理解,确定问题的基本要素,包括变量、参数和指标。
与方程法相似,变量是问题中可变的量,参数是固定的量,指标是评价问题结果的标准。
2.基于问题的特点和要求,选择适当的概率分布,建立数学模型。
常见的概率分布包括正态分布、泊松分布、指数分布等。
3.通过对问题相关数据的收集和分析,估计模型中的参数。
可以使用最大似然估计、矩估计等方法。
4.利用统计推断的方法对问题进行分析和预测。
可以通过置信区间、假设检验等方法对问题进行定量分析。
5.对模型的有效性和可靠性进行评估。
通过对实际数据和推断结果的比较,可以评估模型的准确性和可信度。
方法三:系统动力学模型系统动力学模型是一种常用的建立动态系统模型的方法,其基本步骤如下:1.确定问题的系统边界。
常见的建立数学模型的方法
常见的建立数学模型的方法1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。
1987年高等教育出版社出版了国内第一本《数学模型》教材。
20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。
近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。
本文主要介绍了数学建模中常用的方法。
常见的建立数学模型的方法 1原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。
模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。
一个原型,为了不同的目的可以有多种不同的模型。
数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。
数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。
二、教学模型的分类数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。
常见的建立数学模型的方法 31.类比法数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。
如何建立数学模型
如何建立数学模型建立数学模型是指将实际问题抽象化,通过数学语言和符号来描述和解决问题的过程。
数学模型的建立可以帮助我们更好地理解问题的本质,分析问题的规律,预测问题的结果,以及优化问题的解决方案。
以下是建立数学模型的一般步骤和方法。
一、明确问题:首先,需要明确所要解决的问题以及问题所涉及的背景和条件。
确保对问题的理解准确明确,同时将问题与数学建模相结合。
二、问题建模:1.确定变量:将问题中涉及的各种因素抽象为数学模型中的变量。
变量可以是数值、时间、物理量等,具体根据问题的特点进行确定。
2.建立关系:确定各个变量之间的关系,包括线性关系、非线性关系、概率关系等。
可以通过实际观测数据、统计分析等方法来确定变量之间的关系。
3.建立约束条件:确定对变量的约束条件,包括等式约束、不等式约束等。
这些约束条件可以是问题中固有的限制,也可以是为了使得模型更加逼真和实际而添加的额外限制条件。
三、数学描述:1.建立数学方程:将问题中的各个变量之间的关系用数学方程来表示。
可以根据问题的特点选择合适的数学公式和方程,如线性方程组、非线性方程、微分方程等。
2.建立目标函数:如果问题是优化问题,需要建立一个目标函数,该函数描述了所要优化的目标以及变量之间的关系。
目标函数可以是最大化、最小化或者使得一些条件满足的函数。
四、求解模型:建立完数学模型后,可以通过数学方法来求解模型。
具体的求解方法根据模型的特点和问题的要求而定,例如数值计算、迭代方法、优化算法等。
求解模型的目的是得到模型的解或近似解,以用于问题的研究和应用。
五、模型验证:对建立的数学模型进行验证是非常重要的。
通过将模型的解与实际数据进行比较,或者进行模拟实验来验证模型的有效性和准确性。
如果模型的结果与实际情况相符合或者较为接近,那么该模型可以被认为是有效的。
六、模型分析和应用:对于建立的数学模型,可以进行进一步的分析和应用。
例如,可以通过灵敏度分析,研究模型对于初始条件和参数变化的敏感度;通过稳定性分析,研究模型在不同情况下的行为;通过模型的推广和延伸,应用于解决其他类似问题等。
建立数学模型的方法步骤特点及分类
建立数学模型的方法步骤特点及分类方法:1.归纳法:通过观察和分析问题的特点,总结规律,建立数学模型。
这种方法适用于一些具有规律性的问题。
2.拟合法:通过收集和分析实际数据,找到数据之间的关系,并用数学函数来拟合数据,建立数学模型。
这种方法常用于实际问题中的数据分析和预测。
3.分析法:通过对问题进行分析,找出问题的关键因素和数学关系,建立数学模型。
这种方法适用于复杂和抽象的问题。
步骤:1.确定问题:明确问题的背景、条件和目标。
2.收集数据:收集相关的实际数据,了解问题的现状。
3.建立假设:对问题进行分析,提出一些可能的假设。
4.建立模型:根据问题的性质和假设,选择合适的数学方法和函数,建立数学模型,将实际问题转化为数学问题。
5.求解模型:通过数学计算和推理,解决建立的数学模型,得出结论。
6.模型验证:将模型的结果与实际情况进行比较和分析,检验模型的准确性和可靠性。
7.结果解释:将模型的结果解释给决策者或用户,提供对问题的认识和决策依据。
特点:1.抽象性:数学模型对实际问题进行了抽象和简化,从而能够更好地描述和解决问题。
2.精确性:数学模型具有精确的语言和推理,能够给出准确的数值结果。
3.可行性:数学模型能够通过计算和推理得出结果,帮助解决实际问题。
4.替代性:数学模型可以替代实验或观测,节省时间和成本。
分类:1.数量模型:用数学表达式和符号来描述问题的数量关系,包括线性模型、非线性模型、离散模型、连续模型等。
2.质量模型:用数学方法描述问题的质量关系,包括概率模型、统计模型、优化模型等。
3.动态模型:描述问题随时间变化的规律和趋势,包括微分方程模型、差分方程模型、随机过程模型等。
4.静态模型:描述问题的状态和平衡点,包括线性规划模型、非线性规划模型、输入输出模型等。
总之,建立数学模型是解决实际问题的重要方法之一、根据问题的性质和要求,选择合适的建模方法和模型类型,通过建立、求解和验证数学模型,可以得出有关问题的结论和解决方案。
建立数学模型的基本步骤和技巧
建立数学模型的基本步骤和技巧在现代科学和工程领域中,数学模型是解决问题和预测现象的重要工具。
建立一个准确有效的数学模型,不仅需要深厚的数学功底,还需要一定的实践经验和创造力。
本文将介绍建立数学模型的基本步骤和技巧,帮助读者更好地理解和应用数学模型。
第一步:问题定义和背景分析建立数学模型的第一步是明确问题的定义和背景分析。
我们需要了解问题的起源、目标和约束条件,以及问题所涉及的物理、化学或生物过程。
通过深入分析问题的本质和特点,我们可以确定适用的数学方法和模型类型。
第二步:建立假设和简化在建立数学模型时,我们通常需要进行一些假设和简化。
这些假设和简化可以使问题更易于处理,但也可能导致模型与实际情况存在一定差异。
因此,在建立模型时,我们需要权衡精确性和可行性,并确保模型的假设和简化与问题的实际情况相符合。
第三步:选择数学方法和模型类型根据问题的特点和要求,我们需要选择适当的数学方法和模型类型。
常见的数学方法包括微积分、线性代数、概率论和统计学等。
而模型类型则包括差分方程、微分方程、优化模型和统计模型等。
选择合适的数学方法和模型类型是建立准确有效模型的关键一步。
第四步:建立数学方程和关系在建立数学模型时,我们需要根据问题的特点和数学方法的要求,建立相应的数学方程和关系。
这些方程和关系可以描述问题中的物理规律、动力学过程或统计关系。
我们可以利用已有的数学理论和公式,或者根据问题的特点和需求,自行推导和建立数学方程和关系。
第五步:参数估计和模型验证在建立数学模型后,我们需要进行参数估计和模型验证。
参数估计是指根据实验数据或观测结果,估计模型中的未知参数值。
而模型验证则是通过与实际数据的比较,评估模型的准确性和可靠性。
参数估计和模型验证可以帮助我们优化模型,提高模型的预测能力和适用性。
第六步:模型分析和应用建立数学模型后,我们可以进行模型分析和应用。
模型分析可以帮助我们理解模型的行为和特性,探索模型的稳定性、收敛性和灵敏度等。
数学建模简介word文档-华南师范大学数学科学学院
1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。
例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。
模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。
――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。
―――适用于卫星的发射。
二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。
上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。
数学模型的建立与求解方法总结
数学模型的建立与求解方法总结数学模型在各个领域中具有广泛的应用,它通过定量的形式将实际问题抽象为数学描述,能够帮助我们深入理解问题的本质并提供解决方案。
在建立数学模型的过程中,我们需要选择适当的数学工具和求解方法。
本文将总结数学模型的建立与求解方法,并给出一些实际案例。
1. 数学模型的建立方法数学模型的建立过程包括问题的抽象、假设的设定、数学表达式的建立和参数的确定等步骤。
以下是建立数学模型的几种常见方法:(1) 经验法:基于经验和直觉来建立数学模型,适用于问题较为简单且已有相关经验的情况。
(2) 归纳法:通过观察现象和数据,总结规律后建立数学模型。
这种方法需要大量的实验数据支持,适用于问题较为复杂的情况。
(3) 解析法:通过解析表达式建立数学模型,将实际问题转化为数学方程。
这种方法适用于问题具有明确的物理和数学规律的情况。
(4) 统计法:通过统计数据和概率理论建立数学模型,适用于问题涉及到大量数据和随机性的情况。
2. 数学模型的求解方法数学模型的求解是指利用数学方法和计算工具得出问题的解析解或数值解的过程。
以下是常见的数学模型求解方法:(1) 解析解法:通过求解数学方程得到问题的解析解。
这种方法需要较强的数学能力和推导技巧,适用于问题具有明确解析解的情况。
(2) 近似解法:通过近似方法求解数学模型,如泰勒级数展开、插值法等。
这种方法适用于问题的解析解较难得到或者需要大量计算的情况。
(3) 数值解法:通过数值计算得出问题的数值解,如迭代法、数值微分和数值积分等。
这种方法适用于问题的解析解难以获得或者问题较为复杂的情况。
3. 实际案例数学模型的建立和求解方法非常灵活,并可以应用于各个领域。
以下是一些实际案例:(1) 病毒传播模型:通过建立病毒传播的差分方程或微分方程模型,预测疫情发展趋势,并制定相应的防控策略。
(2) 交通流模型:通过建立交通流的微分方程模型,优化信号灯控制策略,提高道路通行效率,减少交通拥堵。
建立数学模型的方法步骤特点及分类
建立数学模型的方法步骤特点及分类一、建立数学模型的方法1.形象化方法:通过对问题的直观观察和理解,用图表、关系、函数等形式来表示问题,并通过观察找出问题中的数学关系。
2.分解合成方法:将复杂的问题分解成若干个相对简单的子问题,通过研究每个子问题建立相应的数学关系,最后通过合成得到整体问题的数学模型。
3.类比方法:将问题和已有的类似问题进行比较,找出相似之处,借鉴已有模型的建模思路和方法。
4.假设推理方法:根据对问题的了解和背景知识,提出假设并进行推理,从而建立相应的数学模型。
二、建立数学模型的步骤1.确定问题:明确问题的背景、目标和限制条件,明确问题的具体要求。
2.分析问题:对问题进行归纳、提炼和分析,找出问题的关键要素和数学关系。
3.建立假设:根据对问题的了解和分析,提出相应的假设,假设可能对解决问题有帮助。
4.建立数学模型:根据问题的关键要素和数学关系,选取适当的数学方法和理论,建立数学模型。
5.模型求解:对建立的数学模型进行求解,得到问题的解析解或近似解。
6.模型评估:对求解结果进行评估,比较模型的合理性和可行性。
7.模型验证:利用实际数据和实验进行模型验证,检验模型的有效性和准确性。
8.模型应用:将建立好的数学模型与实际问题相结合,进行实际应用和测试。
三、建立数学模型的特点1.抽象化:数学模型通过抽象化将实际问题转化为数学语言和符号,简化问题的复杂性,更容易进行分析和求解。
2.理论性:数学模型建立在数学理论的基础上,具有一定的科学性和理论支持。
3.系统性:数学模型采用系统的方法,通过建立各个部分之间的关系,形成一个完整的系统。
4.程序化:数学模型具有可操作性,可以通过特定的数学方法和算法来进行求解和分析。
5.可变性:数学模型可以根据问题的不同,采用不同的数学方法和参数进行调整和改进。
四、建立数学模型的分类根据研究对象和数学描述的方法,数学模型可以分为以下几类:1.静态模型和动态模型:静态模型是在特定时间点观察系统状态的模型,动态模型是研究系统随时间变化的模型。
建立数学模型的基本步骤与技巧
建立数学模型的基本步骤与技巧数学模型是现代科学研究中不可或缺的工具,它可以用来描述和解释各种实际问题,并为问题的分析和解决提供指导。
建立一个有效的数学模型需要经过一系列的步骤和技巧。
本文将介绍建立数学模型的基本步骤与技巧,并通过实例来说明。
第一步是问题的抽象。
在建立数学模型之前,首先需要对实际问题进行抽象和概括。
这包括确定问题的关键要素、变量和参数,并理清它们之间的关系。
例如,假设我们要研究一个城市的交通拥堵问题,那么我们需要确定影响交通拥堵的因素,如道路的容量、车辆的数量和速度等。
第二步是建立数学表达式。
在抽象问题的基础上,需要建立数学表达式来描述问题的关系。
这可以通过数学公式、方程和不等式等来实现。
例如,对于交通拥堵问题,我们可以建立一个简单的数学模型:拥堵指数 = 车辆数量 / 道路容量。
这个数学表达式可以帮助我们量化交通拥堵的程度。
第三步是确定模型的参数和变量。
在建立数学模型时,需要确定模型中的参数和变量。
参数是模型中的常数,而变量是随着问题的变化而变化的量。
在确定参数和变量时,需要考虑其物理意义和范围。
例如,在交通拥堵模型中,车辆数量和道路容量是变量,而拥堵指数是参数。
第四步是模型的验证和调整。
建立数学模型后,需要对模型进行验证和调整,以确保其准确性和可靠性。
这可以通过与实际数据进行比较和分析来实现。
如果模型的预测结果与实际情况相符,则可以认为模型是有效的;如果不符,则需要对模型进行调整和改进。
第五步是模型的解析和求解。
建立数学模型后,需要对模型进行解析和求解,以获得问题的解。
这可以通过数学方法和技巧来实现,如微积分、线性代数和优化理论等。
例如,在交通拥堵模型中,可以使用微积分方法来计算拥堵指数的最大值和最小值。
除了上述基本步骤外,建立数学模型还需要一些技巧和经验。
首先,需要选择合适的数学工具和方法来解决问题。
不同的问题可能需要不同的数学技巧,因此需要根据具体情况选择适当的方法。
其次,需要进行合理的假设和简化。
建立数学几何模型的步骤与技巧
建立数学几何模型的步骤与技巧数学几何模型是一种用数学语言和符号来描述和解释现实世界中几何问题的工具。
它可以帮助我们更好地理解和分析几何问题,并为解决实际问题提供指导。
然而,建立数学几何模型并不是一件容易的事情,需要经过一系列的步骤和技巧。
本文将介绍建立数学几何模型的步骤与技巧,希望能对读者有所帮助。
第一步是明确问题。
在建立数学几何模型之前,我们首先需要明确问题的具体内容和要求。
例如,我们要解决一个关于三角形的问题,我们需要明确问题是关于三角形的哪个性质或者是要求我们求解三角形的哪个参数。
只有明确了问题,我们才能有针对性地建立数学几何模型。
第二步是选择适当的几何工具。
在建立数学几何模型时,我们需要选择适当的几何工具来描述和解释问题。
例如,如果问题涉及到三角形的性质,我们可以选择使用三角函数和三角恒等式来建立模型;如果问题涉及到平面几何,我们可以选择使用向量和坐标系来建立模型。
选择适当的几何工具是建立数学几何模型的关键一步。
第三步是建立数学模型。
在选择了适当的几何工具之后,我们需要根据问题的要求和几何工具的特点来建立数学模型。
建立数学模型的关键是要建立准确和简洁的数学关系式,以描述和解释问题。
这需要我们对几何工具的性质和数学方法有深入的理解和掌握。
在建立数学模型时,我们可以利用几何图形、坐标系、向量等来表示和计算问题的各个参数和关系。
第四步是验证和优化模型。
建立数学几何模型之后,我们需要对模型进行验证和优化。
验证模型是指通过实际计算和对比结果来检验模型的准确性和可靠性。
如果模型的结果与实际情况相符,那么我们可以认为模型是有效的;如果模型的结果与实际情况不符,那么我们需要对模型进行优化。
优化模型是指通过调整和改进模型的参数和关系,使模型更加符合实际情况。
验证和优化模型是建立数学几何模型的重要环节,可以提高模型的准确性和可靠性。
最后一步是应用模型。
建立数学几何模型的最终目的是为了解决实际问题。
在应用模型时,我们需要根据具体的问题和要求,利用数学模型来计算和分析问题的各个参数和关系,并得出结论和解决方案。
数学模型的建立与分析
数学模型的建立与分析数学模型是指将实际问题抽象化和数学化,使用数学符号和方程进行描述和解决的工具。
它在各个领域的科学研究、工程设计等方面起着至关重要的作用。
本文将介绍数学模型的建立与分析的基本过程和方法。
一、数学模型的建立数学模型的建立一般分为四个步骤:问题的描述、选择适当的数学工具、建立数学模型、模型的求解和验证。
首先,问题的描述是建立数学模型的第一步。
需要准确地描述问题的背景、目标和具体的约束条件。
这有助于我们明确问题的关键因素和参数。
接下来,选择适当的数学工具是建立数学模型的关键。
根据问题的特点和要求,可以选择代数方程、微分方程、概率论、优化理论等数学工具。
需要对所选择的数学工具有充分的了解和掌握。
然后,建立数学模型是将问题转化为数学语言的过程。
可以利用方程、不等式、函数等数学符号来描述问题的关系。
需要注意的是,数学模型应该简化和抽象问题的实际情况,以便进行求解和分析。
最后,模型的求解和验证是数学模型建立的最后一步。
可以使用数值方法、解析解法或计算机模拟等手段来求解模型,并将结果与实际情况进行比较和验证。
如果模型的结果与实际情况吻合度较高,那么此模型就可以用来解决实际问题。
二、数学模型的分析数学模型的分析是对数学模型进行定性和定量分析的过程。
通过数学分析,可以揭示模型的内在规律和性质,理解问题的本质并提出解决方案。
在数学模型的分析中,一般会涉及到以下几个方面:解的存在性和唯一性、稳定性、收敛性、最优性等。
解的存在性和唯一性是分析模型是否有解以及解的数量和性质。
稳定性是对模型解的行为和变化趋势进行研究。
收敛性是研究模型的解是否趋向于某个特定值。
最优性是研究如何找到使目标函数取得最优值的解。
在进行数学模型的分析时,需要运用数学分析的方法和理论。
例如,可以使用微分方程的稳定性理论、最优化理论、变分法等。
同时,还可以利用计算机模拟和数值计算等方法对模型进行分析。
通过数值计算,可以得到模型的近似解,并对模型进行灵敏度分析和参数优化。
建立数学模型的方法、步骤、特点及分类
建立数学模型的方法、步骤、特点及分类(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--建立数学模型的方法、步骤、特点及分类[学习目标]1.能表述建立数学模型的方法、步骤;2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;;3.能表述数学建模的分类;4.会采用灵活的表述方法建立数学模型;5.培养建模的想象力和洞察力。
一、建立数学模型的方法和步骤—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。
这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。
即用机理分析建立模型的结构,用系统辨识确定模型的参数.可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。
那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。
建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示.图16-5 建模步骤示意图模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.模型检验把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.模型应用应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§16.3建立数学模型的方法、步骤、特点及分类[学习目标]1.能表述建立数学模型的方法、步骤;2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;;3.能表述数学建模的分类;4.会采用灵活的表述方法建立数学模型;5.培养建模的想象力和洞察力。
一、建立数学模型的方法和步骤—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。
测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。
这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。
即用机理分析建立模型的结构,用系统辨识确定模型的参数.可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。
那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。
建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示.图16-5建模步骤示意图模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.模型检验把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.模型应用应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式.二、数学模型的特点我们已经看到建模是利用数学工具解决实际问题的重要手段。
数学模型有许多优点,也有弱点。
建模需要相当丰富的知识、经验和各方面的能力,同时应注意掌握分寸.下面归纳出数学模型的若干特点,以期在学习过程中逐步领会.模型的逼真性和可行性一般说来总是希望模型尽可能逼近研究对象,但是一个非常逼真的模型在数学上常常是难于处理的,因而不容易达到通过建模对现实对象进行分析、预报、决策或者控制的目的,即实用上不可行.另一方面,越逼真的模型常常越复杂,即使数学上能处理,这样的模型应用时所需要的“费用”也相当高,而高“费用”不一定与复杂模型取得的“效益”相匹配.所以建模时往往需要在模型的逼真性与可行性,“费用”与“效益”之间做出折衷和抉择.模型的渐进性稍微复杂一些的实际问题的建模通常不可能一次成功,要经过上一节描述的建模过程的反复迭代,包括由简到繁,也包括删繁就简,以获得越来越满意的模型.在科学发展过程中随着人们认识和实践能力的提高,各门学科中的数学模型也存在着一个不断完善或者推陈出新的过程.从19世纪力学、热学、电学等许多学科由牛顿力学的模型主宰,到20世纪爱因斯坦相对论模型的建立,是模型渐进性的明显例证.模型的强健性模型的结构和参数常常是由对象的信息如观测数据确定的,而观测数据是允许有误差的.一个好的模型应该具有下述意义的强健性:当观测数据(或其他信息)有微小改变时,模型结构和参数只有微小变化,并且一般也应导致模型求解的结果有微小变化.模型的可转移性模型是现实对象抽象化、理想化的产物,它不为对象的所属领域所独有,可以转移到另外的领域.在生态、经济、社会等领域内建模就常常借用物理领域中的模型.模型的这种性质显示了它的应用的极端广泛性.模型的非预制性虽然已经发展了许多应用广泛的模型,但是实际问题是各种各样、变化万千的,不可能要求把各种模型做成预制品供你在建模时使用。
模型的这种非预制性使得建模本身常常是事先没有答案的问题(Open—endproblem).在建立新的模型的过程中甚至会伴随着新的数学方法或数学概念的产生.模型的条理性从建模的角度考虑问题可以促使人们对现实对象的分析更全面、更深入、更具条理性,这样即使建立的模型由于种种原因尚未达到实用的程度,对问题的研究也是有利的。
模型的技艺性建模的方法与其他一些数学方法如方程解法、规划解法等是根本不同的,无法归纳出若干条普遍适用的建模准则和技巧.有入说。
建模目前与其是一门技术、不如说是一种艺术.是技艺性很强的技巧.经验、想象力、洞察力、判断力以及直觉、灵感等在建模过程中起的作用往往比一些具体的数学知识更大.模型的局限性这里有几方面的含义.第一,由数学模型得到的结论虽然具有通用性和精确性,但是因为模型是现实对象简化、理想化的产物,所以一旦将模型的结论应用于实际问题,就回到了现实世界,那些被忽视、简化的因素必须考虑,于是结论的通用性和精确性只是相对的和近似的.第二,由于人们认识能力和科学技术包括数学本身发展水平的限制,还有不少实际问题很难得到有着实用价值的数学模型.如一些内部机理复杂、影响因素众多、测量手段不够完善、技艺性较强的生产过程,像生铁冶炼过程,需要开发专家系统,与建立数学模型相结合才能获得较满意的应用效果.专家系统是一种计算机软件系统,它总结专家的知识和经验,模拟人类的逻辑思维过程,建立若干规则和推理途径,主要是定性地分析各种实际现象并做出判断.专家系统可以看成计算机模拟的新发展.第三,还有些领域中的问题今天尚未发展到用建模方法寻求数量规律的阶段,如中医诊断过程,目前所谓计算机辅助诊断也是属于总结着名中医的丰富临床经验的专家系统.建模过程是一种创造性思维过程,除了想象、洞察、判断这些属于形象思维、逻辑思维范畴的能力之外,直觉和灵感往往也起着不可忽视的作用。
当由于各种限制利用已有知识难以对研究对象做出有效的推理和判断时,凭借相似、类比、猜测、外推等思维方式及不完整、不连续、不严密的,带启发性的直觉和灵感,去“战略性”地认识对象,是人类创造性思维的特点之一,也是人脑比按程序逻辑工作的计算机、机器人的高明之处.历史上不乏在科学家的直觉和灵感的火花中诞生的假说、论证和定律.当然,直觉和灵感不是凭空产生的,它要求人们具有丰富的背景知识,对问题进行反复思考和艰苦探索,对各种思维方法运用娴熟.相互讨论和思想交锋,特别是不同专业的成员之间的探讨,是激发直觉和灵感的重要因素.所以由各种专门人才组成的所谓团队工作方式(Teamwork)越来越受到重视.前面说过,建模可以看成一门艺术.艺术在某种意义下是无法归纳出几条准则或方法的.一名出色的艺术家需要大量的观摩和前辈的指教,更需要亲身的实践.类似地,掌握建模这门艺术培养想象力和洞察力,一要大量阅读、思考别人做过的模型,二要亲自动手,认真做几个实际题目.三、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分.如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分.如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分.有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等.5.按照对模型结构的了解程度分.有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.习题16.3为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外还常常需要从侧面或反面思考.试尽可能迅速地回答下面的问题:1、某甲早8时从山下旅店出发沿一条路径上山,下午5时到达山顶并留宿.次日早8时沿同一路径下山,下午5时回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?2、37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束。