数理统计

合集下载

数理统计法

数理统计法

数理统计法
数理统计法(mathematical statistics)是统计学的一个分支,研究如何利用数学方法来分析和解释统计数据的规律和性质。

它主要涉及概率论、数理分析、线性代数和统计推断等数学工具。

数理统计法的目标是通过收集和分析数据来推断总体的特征和参数,并对统计结果进行合理的推断和解释。

它包括描述统计学和推断统计学两个方面。

描述统计学主要关注收集和整理数据,通过统计指标如均值、方差、频数分布等来描述数据的特征和分布。

推断统计学则通过对样本数据的分析来推断总体的特征和参数,包括点估计、区间估计和假设检验等。

数理统计法使用概率论的概念和方法,研究随机变量和概率分布的性质,建立统计模型和假设,利用统计推断方法
来对总体参数做出估计和推断。

它还通过数理分析和数值
计算等方法进行统计推断的演绎和计算。

数理统计法在科学研究、经济预测、社会调查等领域有广
泛应用。

它的理论和方法为决策科学和数据科学提供了重
要工具和技术,对推动科学发展和社会进步起着重要作用。

数理统计的基础知识

数理统计的基础知识
样本值:( x1 , x2 , , xn ) =(100,85,70,65,90,95,63,50,77,86)
样本容量:=10
1 10 1 (2)x xi (100+85+&&+86)=78.1 10 i 1 10
n 1 1 * 2 2 2 s ( x x ) [21.9 6.9 i n 1 i 1 9
1. 定义 设 1 ,
称为自由度为n的 分布.
2. 临界值表的结构和使用 设 ~ 2(n),若对于: 0<<1,
存在
则称
2
0 满足 2 2 P{ } , 为 2 (n) 分布的上分位点。
2
( ; n)
2 2
例16.3 给定=0.05,自由度n=25,求 满足下面等式的临界值:
2 *2
1 x,1 x 0, 解:分布密度为 p( x) 1 x,0 x 1, 0, 其它
则 E x(1 x)dx x(1 x)dx 0
1 0
0
1
1 D x (1 x )dx x (1 x )dx 1 0 6
(4) F 统计量及其分布
总体 ~ N (1, 12),(1, 2, ... n1 )为样本, ,S
*2 1
1 2 ( ) i n1 1 i 1
2 2
n1
总体 ~ N (2, ),(1, 2, ... n2 )为样本, , S 2*2 1 n2 2 ( ) i n2 1 i 1
(1) P{F 2 } (2) P{F 1}
解 (1)2 F ( ; n1, n2 ) F (0.1;10,5) 3.3

数理统计定理及公式

数理统计定理及公式

数理统计定理及公式数理统计是应用数学的一个分支,研究收集、整理、分析和解释数据的方法和技术。

在数理统计中,有一些重要的定理和公式,用于描述和计算概率、分布、样本统计量和假设检验。

1. 大数定理(Law of Large Numbers):在重复多次独立实验的情况下,随着实验次数的增多,样本均值会趋近于总体均值。

大数定理是数理统计的基础之一,它是对样本均值的收敛性质的描述。

数学表达式为:其中,X1、X2、..、Xn是来自总体的独立同分布的随机变量,μ是总体的均值,n是样本大小。

2. 中心极限定理(Central Limit Theorem):在若干相互独立的随机变量的和的情况下,随着随机变量数量的增大,和的分布趋向于服从正态分布。

中心极限定理是数理统计中非常重要的一个定理,它不仅在理论上解释了为什么正态分布在自然界中具有如此重要的地位,而且提供了许多统计学中方法的理论基础。

数学表达式为:其中,X1、X2、..、Xn是独立同分布的随机变量,μ是总体的均值,σ是总体的标准差,n是样本大小。

3. 伯努利分布(Bernoulli Distribution):又称为两点分布,是最简单的概率分布之一、伯努利分布描述了只有两个可能结果的离散随机试验,如抛硬币的结果。

数学表达式为:其中,p表示事件出现的概率,1-p表示事件不出现的概率,X为随机变量。

4. 正态分布(Normal Distribution):也称为高斯分布,是统计学中最常见的连续型概率分布之一、正态分布具有钟形曲线,均值和标准差决定了曲线的位置和形状。

它在自然界中广泛存在,并且许多现实世界中的随机变量都可以近似地服从正态分布。

数学表达式为:其中,μ是均值,σ是标准差,x是随机变量。

5. t分布(Student's t-distribution):t分布是用于小样本情况下对总体均值进行假设检验的重要工具。

它形状类似于正态分布,但是更扁平,并且具有更重的尾部,以补偿小样本情况下对总体均值的估计不准确性。

数理统计公式

数理统计公式

数理统计是研究数据收集、整理、分析和解释的一门学科,其中涉及到许多公式和方法。

以下是一些常用的数理统计公式:
1. 均值公式:
均值(平均值)是一组数据的总和除以数据的个数。

均值= (x1 + x2 + ... + xn) / n
2. 方差公式:
方差是一组数据与其均值之差的平方和的平均值。

方差= ((x1 - 平均值)^2 + (x2 - 平均值)^2 + ... + (xn - 平均值)^2) / n
3. 标准差公式:
标准差是方差的平方根,用于衡量数据的离散程度。

标准差= 方差的平方根
4. 相关系数公式:
相关系数用于衡量两个变量之间的线性关系的强度和方向。

相关系数= 协方差/ (x的标准差* y的标准差)
5. 正态分布公式:
正态分布是一种常见的概率分布,其概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))
6. 估计公式:
估计公式用于根据样本数据估计总体参数。

例如,样本均值可以用来估计总体均值,样本方差可以用来估计总体方差。

这只是数理统计中的一小部分公式,还有许多其他公式和方法,如假设检验、置信区间等。

具体使用哪些公式取决于具体的问题和数据类型。

数理统计学(基础性学科理论)

数理统计学(基础性学科理论)
费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30-50年代费歇尔是统计学的中心人 物。1959年费歇尔退休后在澳大利亚度过了最后三年。
与社会经济学关系
相同点
历史
不同点
历史
社会经济统计学在原始社会末期,奴隶社会早期就已经开始萌芽,主要是对人口数量与土地的丈量进行统计, 伴随着社会和经济的发展,社会经济统计学在封建社会就已经初具规模,在资本主义时期,其发展更是到了上升 时期。社会经济统计学的发展离不开人类的实践活动,在实践中逐渐成熟。直到在统计学中引入了概率论以后, 才使统计学诞生出新的学科,即数理统计学。
从数学上对生物统计进行研究的第一人是英国统计学家皮尔逊,他曾在伦敦大学学院学习,然后去德国学物 理,1881年在剑桥大学获得学士学位,1882年任伦敦大学应用数学力学教授。
具体地说与人们生活有关的如某种食品营养价值高低的调查;通过用户对家用电器性能指标及使用情况的调 查,得到全国某种家用电器的上榜品牌排名情况;一种药品对某种疾病的治疗效果的观察评价等都是利用数理统 计方法来实现的。
相同点
社会经济统计学和数理统计学都是对事物的统计规律进行研究,并且在研究方法论方面具有共通性,两者都 是利用归纳推理的研究方法而不是演绎推理的研究方法。在许多教材中,在对数理统计学的学科性质进行阐述时 都明确表示数理统计学是对随机现象的数据进行统计,并对其规律性进行研究与揭示。而关于社会经济统计学的 研究对象,在统计学术界还存在一些争议,一部分学者认为,社会经济统计学属于独立的社会科学类,主要是对 具体时间、具体地点条件下的社会经济现象中的数量表现进行研究和统计,并揭示其数量规律,认为其数量表现 和规律就是社会经济统计学需要研究的对象。还有一部分学者则认为社会经济统计学属于统计方法论科学类,重 在对社会经济现象下的数据进行收集、整理、统计与分析,认为其统计方法论就是需要研究的对象。而经过长期 的实践来看,社会经济统计学和数理统计学两者在研究对象上其实具有同一性,这两门学科都是在对事物的统计 规律进行研究和揭示。

第六章 数理统计的基本概念

第六章 数理统计的基本概念

1 n 2 S S ( X X ) i n 1 i 1
2
(4) 样本k阶(原点)矩
1 n k Ak X i n i 1
k 1, 2,
k 2,3,
(5) 样本k阶中心矩
1 n Bk ( X i X )k n i 1
§2
常用统计量的分布
统计量的分布称为抽样分布.下面介绍三种由 正态总体演化而来的统计量的分布:
• 从二战后到现在,是统计学发展的第三个时期,这是一个在 前一段发展的基础上,随着生产和科技的普遍进步,而使这 个学科得到飞速发展的一个时期,同时,也出现了不少有待 解决的大问题.
学科奠基者



数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。他1909 年入剑桥大学,攻读数学物理专业,三年后毕业。毕业后,他曾去投资办工 厂,又到加拿大农场管过杂务,也当过中学教员。1919年,他开始对生物统 计学产生了浓厚的兴趣,参加罗萨姆斯泰德试验站的工作,致力于数理统计 在农业科学和遗传学中(费歇尔1890—1962)的应用研究。 年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定。 在一般人看来枯燥乏味的数学,常能带给研究者极大的慰藉,费歇尔热衷于 数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据 而不减少信息、对一个模型的参数估计等。 最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面 “科学化”了,不知节省了多少人力和物力,提高了若干倍的工效。 费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30- 50年代费歇尔是统计学的中心人物。1959年费歇尔退休后在澳大利亚度过了 最后三年。
若 x1 , x2 , , xn 是样本的观察值, 则 g ( x1 , x2 , xn ) 是 g ( X 1 , X 2 , X n )

第五章 数理统计的基本概念

第五章  数理统计的基本概念

线性无偏估计量
定义:如果总体参数的 点估计 满足 ( 1 ) 是样本的线性函数; (2)E
最小方差线性无偏估计量
定义:如果总体参数的 点估计 满足 ( 1 ) 是样本的线性函数; (2)对 的一切线性无偏估计量 0,D D 0
定理 (R-C不等式)
设总体X具有分布密度f ( x; )。抽取样本( x1 ,..., xn ), 设g ( )为 的一个可估函数,T T ( x1 ,..., xn )为g ( ) 的一个无偏估计量,且 满足正则条件
• 若12, 22已知
(X Y) ( 1 2 ) U ~ N (0,1)
2 1
n

2 2
m
• 若12, 22未知,但是12= 22
T (X Y) ( 1 2 ) ~ t (m n 2)
12
m

2 2
n

mS12
12

2 nS2 2 2
T
(X Y) (1 2 ) 1 1 2 mS12 nS2 /(m n 2) m n
~ t (m n 2)
推论:设( X 1 ,..., X n )和(Y1 ,..., Ym )分别为来自
2 2 正态总体N ( 1 , 1 )和N ( 2 , 2 )的两个相互
独立的样本,则随机变量
F
2 若 1 2 2
2 2 Sm / 1 2 Sn 2 / 2
~ F (m 1, n 1)
F
2 Sm 2 Sn
~ F (m 1, n 1)
第六章 参数估计
第一节 点估计
• 定义:设为总体分布中的未知参数,从X 中抽取样本 (x1,…,xn) ,构造适当的统计量 (x1,…,xn), 估计 (以的值作为的近似), 这种方法称为参数的点估计。 • 统计量称为的点估计量; • 对于一组样本观测值 (x1,…,xn) ,该统计量 相应的值(x1,…,xn)称为的点估计值 • 的点估计量和点估计值简称为的点估计。

数理统计的基本概念

数理统计的基本概念
第二章 数理统计的基本概念
概率论与数理统计的区别: 在概率论中,假设随机变量的分布列或者分布函数已知,然 后描述随机变量的统计规律. 数理统计首先解决,如何知道 随机变量的分布规律,如何知道分布中所含的参数.
数理统计研究问题:它研究怎样有效地收集整理和分析带有随 机性的数据,以对所考察的问题作出推断或预测,直至为采取一 定的决策和行动提供依据和建议.
概率统计的基本问题:依据有限个观测或试验如何对整体所作 出推论的问题.这种伴随有一定概率的推断称为统计推断.
母体与子样、经验分布函数
1、母体:把研究对象的全体所构成的一个集合称为母体或总体; 组成母体的每一个成员称为个体. 注:10、实际应用中总体往往指研究对象的某项数值指标的全体。 20、总体的某个数值指标是一个具有分布函数F(x)随机变量,称 总体为具有分布函数F(x)的总体。 30、也可能是一个随机向量,相应的分布函数就为多元函数.
(i
n! 1)!(n
i)![F (
y)]i1[1
F(
y )] n1
f
(
y),
0 ,
a yb 其它
证明 第 i个次序统计量(i)落入无穷小区间 [ y , y y)
内这一事件等价于”容量为n的子样1 ,2 , n 中有(i 1)
个分量落入区间[a , y)内,1个分量落入区间[ y , y y)内,
n
F ( x1 ,, xn ) F ( xi ) i 1
例1 设总体 X 服从参数为 ( 0)的指数分布, ( X1, X2 ,, Xn )
是来自总体的样本, 求样本( X1, X2 ,, Xn )的概率密度.

总体 X 的概率密度为
ex ,
f (x)

数学的数理统计学

数学的数理统计学

数学的数理统计学数理统计学是一门应用数学的分支学科,旨在研究数据的收集、分析和解释。

它是现代科学、工程和社会科学中必不可少的工具之一。

本文将从数学的角度出发,介绍数理统计学的基本概念、方法和应用。

一、基本概念数理统计学的基本概念包括总体、样本、随机变量和概率分布等。

总体是指研究对象的全体,样本则是从总体中选取的一部分个体。

随机变量是描述随机现象的数值特征,概率分布则描述了随机变量的取值规律。

二、数据的收集与描述在数理统计学中,收集和描述数据是关键的一步。

常见的数据收集方法包括抽样调查、实验和观测等。

而对数据进行描述的手段主要有集中趋势度量和离散程度度量。

集中趋势度量包括均值、中位数和众数等,用于反映数据的中心位置;离散程度度量包括方差、标准差和变异系数等,用于反映数据的离散程度。

三、概率与概率分布概率是数理统计学的重要概念之一,用来描述随机现象发生的可能性。

概率分布则用于描述随机变量的取值规律。

常见的概率分布包括正态分布、二项分布和泊松分布等。

正态分布是一种重要的连续型概率分布,其以钟形曲线为特征,广泛应用于自然科学和社会科学领域。

二项分布和泊松分布则常用于描述离散型随机变量的概率分布。

四、参数估计与假设检验参数估计与假设检验是数理统计学中的核心内容。

参数估计是根据样本数据对总体参数进行估计,常用的方法包括点估计和区间估计。

假设检验则是用于判断总体参数是否满足某个假设,常用的方法包括单样本假设检验、双样本假设检验和方差分析等。

五、回归与相关分析回归分析是研究两个或多个变量之间关系的统计方法。

简单线性回归分析用于描述两个变量之间的线性关系,多元线性回归分析则考虑多个自变量对因变量的影响。

相关分析则用于描述两个变量之间的相关程度,常用的是皮尔逊相关系数。

六、应用领域数理统计学在各个领域都有广泛的应用。

在自然科学方面,数理统计学可以帮助分析实验数据,验证理论模型。

在工程领域,数理统计学可以应用于质量控制、可靠性分析等。

数理统计的基本概念

数理统计的基本概念

数理统计的基本概念第6章数理统计的基本概念6.1 内容框图6.2 基本要求(1)理解总体、样本及统计量的概念,并熟练掌握常⽤统计量的公式.(2)掌握矩法估计和极⼤似然估计的求法,以及估计⽆偏性、有效性的判断. (3)掌握三⼤抽样分布定义,并记住其概率密度的形状.(4)理解并掌握有关正态总体统计量分布的⼏个结论,如定理6.4~6.9及定理6.11.6.3 内容概要1) 总体与样本在数理统计中,我们把作为统计研究对象的随机变量称为总体,记为ξ,η,… 。

对总体进⾏ n 次试验后所得到的结果,称为样本,记为(n X X X ,,,21 ),(n Y Y Y ,,,21 ),……,其中,试验次数 n 称为样本容量。

样本(n X X X ,,,21 )中的每⼀个 i X 都是随机变量。

样本所取的⼀组具体的数值,称为样本观测值,记为总体与样本统计量点估计矩阵估计常⽤统计量定义统计量的分布正态总体统计量的分布极⼤似然估计点估计的评价三⼤抽样分布(n x x x ,,,21 )。

具有性质:(1)独⽴性,即 n X X X ,,,21 相互独⽴。

(2)同分布性,即每⼀个 i X 都与总体ξ服从相同的分布。

称为简单随机样本。

如果总体ξ是离散型随机变量,概率分布为 }{k P =ξ,那么样本(n X X X ,,,21 )的联合概率分布为∏∏=========ni i ni i in n x P x XP x X x X x X P 112211}{}{},,,{ξ。

如果总体ξ是连续型随机变量,概率密度为 )(x ?,那么样本(n X X X ,,,21 )的联合概率密度为∏∏====ni i ni i X n x x x x x i1121)()(),,,(*??。

如果总体ξ的分布函数为 )(x F ,那么样本(n X X X ,,,21 )的联合分布函数为∏∏====ni i n i i X n x F x F x x x F i 1121)()(),,,(* 。

常见数理统计量

常见数理统计量

常见数理统计量
均值(Mean):均值是所有数据值的总和除以数据的个数。

它反映了数据的“平均”水平,是描述数据分布中心位置的重要指标。

中位数(Median):中位数是将一组数据从小到大排列后,位于中间位置的数。

当数据量较大或存在极端值时,中位数更能反映数据的中心趋势。

众数(Mode):众数是一组数据中出现次数最多的数。

它反映了数据的“主流”水平,有助于我们了解数据的集中程度。

方差(Variance):方差是每个数据值与均值之差的平方和的平均值。

它描述了数据与其均值的离散程度,反映了数据的波动性。

标准差(Standard Deviation):标准差是方差的平方根,用于衡量数据分布的离散程度。

与方差相比,标准差具有相同的量纲,更便于在不同数据集之间进行比较。

偏度(Skewness):偏度描述了数据分布形态的偏斜程度。

正值表示数据分布向右偏斜,负值表示数据分布向左偏斜。

偏度有助于我们了解数据分布的不对称性。

峰度(Kurtosis):峰度反映了数据分布形态的尖锐程度。

与正态分布相比,峰度值大于3的分布更为陡峭,峰度值小于3的分布则更为平缓。

峰度有助于我们了解数据分布的尖锐程度。

这些数理统计量在数据分析、预测、决策等领域具有广泛应用。

通过综合运用这些统计量,我们可以更全面地了解数据的特征,为实际问题提供科学依据。

数理统计-第一章 统计量及其分布

数理统计-第一章 统计量及其分布

太原理工大学 景英川
第一章 统计量及其分布
太原理工大学 景英川
第一章 统计量及其分布
但在实际中,在样本量特别大时 (如 n≥100 ),又常用分组样本来代替完 全样本,这时需要对样本进行分组整理, 它能简明扼要地表示样本,使人们能更 好地认识总体,这是分组样本的优点。
太原理工大学 景英川
第一章 统计量及其分布
则 Fn (x)是一非减右连续函数,且满足 Fn (-∞) =0, Fn (+ ∞)=1 由此可见, Fn (x)是一个分布函数,称 Fn (x)为经验分 布函数。 太原理工大学 景英川
第一章 统计量及其分布
1.6 某食品厂生产听装饮料,现从生产线上随机 抽取 5 听饮料,称得其净重为(单 位:克) 351 347 355 344 351 这是一个容量为 5 的样本,经排序可得有序样本:
而若第一次抽到的是合格品,则第二次抽到不合格品 的概率为
太原理工大学 景英川
第一章 统计量及其分布
显然,如此得到的样本不是简单随 机样本。但是,当 N 很大时,我们可 以看到上述二种情 形的概率都近似等 于 p。所以当 N 很大,而 n不大(一个 经验法则是 )时可以把 该样本近似地 看成简单随机样本。
从总体中抽取样本可以有不同的抽法,为了能 由样本对总体作出较可靠的推断,就希望 样本能很 好的代表总体。这就需要对抽样方法提出一些要 求,最常用的"简单随机抽样”有 如下二个要求: (1)样本具有随机性,即要求总体中每一个个体 都有同等机会被选入样本,这便意味着每一样品xi 与总体X有相同的分布。 (2)样本要有独立性,即要求样本中每一样品的 取值不影响其它样品的取值,这意 味着x1, x2, …,xn 相互独立。
第一章 统计量及其分布

常用数理统计公式

常用数理统计公式

常用数理统计公式以下是一些常用的数理统计公式:1. 样本均值 (Sample Mean):x̄ = (Σxi) / n2. 总体均值 (Population Mean):μ = (Σxi) / N3. 样本方差 (Sample Variance):s^2 = (Σ(xi - x̄)^2) / (n - 1)4. 总体方差 (Population Variance):σ^2 = (Σ(xi - μ)^2) / N5. 样本标准差 (Sample Standard Deviation):s=√s^26. 总体标准差 (Population Standard Deviation):σ=√σ^27. 样本协方差 (Sample Covariance):Cov(x, y) = (Σ(xi - x̄)(yi - ȳ)) / (n - 1)8. 总体协方差 (Population Covariance):Cov(X, Y) = (Σ(xi - μx)(yi - μy)) / N9. 样本相关系数 (Sample Correlation Coefficient):r = Cov(x, y) / (sxsy)10. 总体相关系数 (Population Correlation Coefficient):ρ = Cov(X, Y) / (σXσY)11. 样本标准误 (Standard Error of the Mean):SEM=s/√n12. 置信区间 (Confidence Interval):CI=x̄±(zα/2*SEM)13. z分数 (z-Score):z=(x-μ)/σ14. t分数 (t-Score):t=(x-μ)/(s/√n)15. 卡方检验 (Chi-Square Test):Chi^2 = Σ((O - E)^2) / E16. t检验 (t-Test):t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))17. 方差分析 (Analysis of Variance, ANOVA):F=(MSB/MSE)18. 线性回归方程 (Linear Regression Equation):y=b0+b1*x19. 残差 (Residual):e=y-ŷ20. 判定系数 (Coefficient of Determination):R^2=(SSR/SST)=1-(SSE/SST)这些公式可以用于描述和分析数据集的中心趋势、变异性、相互关系和模型拟合程度。

数理统计公式大全

数理统计公式大全
(1)联合分布
离散型
如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机量。
设=(X,Y)的所有可能取值为,且事件{= }的概率为pij,,称
为=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2

yj

x1
p11
p12
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。
分布密度f(x,y)具有下面两个性质:
(1)f(x,y)≥0;
(2)
(2)二维随机变量的本质
(3)联合分布函数
设(X,Y)为二维随机变量,对于任意实数x,y,二元函数
称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
分布函数是一个以全平面为其定义域,以事件的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有

6.1.数理统计的基本概念

6.1.数理统计的基本概念

对容量较小的样本可分为5-6组,容量100左右的可分7-10组,
容量200左右的可分9-13组,容量300左右及以上的可分12-20 组,目的是使用足够的组来表示数据的变异。本例中只有20个 数据,我们将之分为5组,即k=5。
(2) 确定每组组距:每组区间长度可以相同也可以不同,实用中 常选用长度相同的区间以便于进行比较,此时各组区间的长度 称为组距,其近似公式为:
频数fi
3
4
8
3
2
试写出此分组样本的经验分布函数。
解:由经验分布函数的定义得到
0
0.15
Fn
(
x)
0.35 0.75
0.9
1
x 37.5 37.5 x47.5 47.5 x57.5 57.5 x67.5 67.5 x77.5 x 77.5
例6 以下是一组来自标准正态分布总体的样本的观测值: -1.4462 , -0.7012 , 1.2460 , -0.6390 , 0.5774 , -0.3600 , -0.1356, -1.3493 , -1.2704 , 0.9846
13
100—110
105
16
110—120
从总体X中抽取一个个体,就是对总体X进行一次观察并记 录其结果。取样是随机的,且观察前无法预知起结果,故每 个观察结果都是随机变量,且与总体同分布。
定义 1 在相同的条件下,对总体X进行n次重复的、独立的 观察,得到n个结果 X1, X 2 , , X n ,称随机变量X1, X 2 , , X n 为来自总体X的容量n的简单随机样本,简称样本。其观测值
641 635 640 637 642 638 645 643 639 640 这是一个容量为10的样本的观测值,对应的总体为该厂生产 的瓶装啤酒的净含量。

数理统计法

数理统计法

数理统计法
数理统计法,数学的一门分支学科。

它以概率论为基础运用统计学的方法对数据进行分析、研究导出其概念规律性(即统计规律)
中文名数理统计法
外文名Mathematics Statistics
属性数学的一门分支学科
基础以概率论为基础
方法统计学的方法
它主要研究随机现象中局部(字样)与整体(母体)之间。

以及各有关因素之间相互联系的规律性。

它主要是利用样本的平均数、标准差、标准误、变异系数率、均方、检验推断、相关、回归、聚类分析、判别分析、主成分分析、正交试验、模糊数学和灰色系统理论等有关统计量的计算来对实验所取得的数据和测量、调查所获得的数据进行有关分研究得到所需结果的一种科学方法。

它要求具有随机性,而且数据必须真实可靠,这是进行定量分析的基础。

这种方法在不借助计算机来进行的同时,亦能达到快速、准确和实施大量计算的目的。

数理统计的定义

数理统计的定义

数理统计的定义
哎呀呀,啥是数理统计呀?这可真是个让人头疼又好奇的问题!
对我这个小学生来说,一开始听到“数理统计”这四个字,就感觉像是遇到了一个大怪兽,神秘又可怕。

不过呢,后来老师给我们讲了讲,我好像有点明白了。

数理统计就好像是一个超级侦探,能从一堆乱七八糟的数据里面找出有用的线索。

比如说,我们班同学的考试成绩,这一堆数字看起来乱糟糟的,可通过数理统计就能知道大家的平均成绩怎么样,谁进步了,谁退步了。

这难道不神奇吗?
再比如说,我们去超市买糖果,有各种各样的品牌和价格。

要是有人能通过数理统计来分析一下,哪个品牌卖得最好,哪个价格大家最能接受,那超市的老板不就能更好地进货和定价了吗?
就像我们在拼图,数理统计就是帮我们把那些小小的数据碎片拼成一幅完整又有意义的图画。

老师还跟我们说,数理统计在很多很多地方都有用呢!科学家们用它来研究天气变化,医生们用它来分析病人的病情,就连工程师们造大桥、盖高楼也离不开它。

我就想啊,要是没有数理统计,这个世界得多乱套呀!大家都像没头的苍蝇一样,不知道该怎么做决定。

我现在还只是懂了一点点数理统计的皮毛,可我觉得它真的好厉害!我一定要好好学习,以后也能像那些厉害的大人一样,用数理统计解决好多好多问题。

我觉得呀,数理统计就是我们生活中的秘密武器,能帮我们把复杂的事情变得简单清楚,让我们做出更聪明的选择!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计
数理统计(Mathematics Statistics)
什么是数理统计
数理统计是以概率论为基础,研究社会和自然界中大量随机现象数量变化基本规律的一种方法。

其主要内容有参数估计、假设检验、相关分析、试验设计、非参数统计、过程统计等。

数理统计的特点
它以随机现象的观察试验取得资料作为出发点,以概率论为理论基础来研究随机现象.根据资料为随机现象选择数学模型,且利用数学资料来验证数学模型是否合适,在合适的基础上再研究它的特点,性质和规律性.
例如灯泡厂生产灯泡,将某天的产品中抽出几个进行试验.试验前不知道该天灯泡的寿命有多长,概率和其分布情况.试验后得到这几个灯泡的寿命作为资料,从中推测整批生产灯泡的使用寿命.合格率等.为了研究它的分布,利用概率论提供的数学模型进行指数分布,求出值,再利用几天的抽样试验来确定指数分布的合适性.
数理统计的起源与发展
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的由集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议.
数理统计起源于人口统计、社会调查等各种描述性统计活动.公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,按人口分地,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质.可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作.
在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计.到了亚里土多德时代,统计工作开始往理性演变.这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载.统计一词,就是从意大利一词逐步演变而成的.
数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段.
古典时期(19世纪以前).
这是描述性的统计学形成和发展阶段,是数理统计的萌芽时期.在这一时期里,瑞土数学家贝努里(1654-1795年)较早地系统论证了大数定律.1763年,英国数学家贝叶斯提出了一种归纳推理的理论,后被发展为一种统计推断方法――贝叶斯方法,开创了数理统计的先河.法国数学家棣莫佛(1667-1754)于1733年首次发现了正态分布的密度函数.并计算出该曲线在各种不同区间内的概率,为整个大样本理
论奠定了基础.1809年,德国数学家高斯(1777-1855)和法国数学家勒让德(1752-1833)各自独立地发现了最小二乘法,并应用于观测数据的误差分析.在数理统计的理论与应用方面都作出了重要贡献,他不仅将数理统计应用到生物学,而且还应用到教育学和心理学的研究.并且详细地论证了数理统计应用的广泛性,他曾预言:"统计方法,可应用于各种学科的各个部门."
近代时期(19世纪末至1845年)
数理统计的主要分支建立,是数理统计的形成时期.上一世纪初,由于概率论的发展从理论上接近完备,加之工农业生产迫切需要,推动着这门学科的蓬勃发展.
1889年,英国数学家皮尔逊(1857-1936)提出了矩估计法,次年又提出了频率曲线的理论.并于1900年在德国数学家赫尔梅特在发现 c 2分布的基础上提出了c 2 检验,这是数理统计发展史上出现的第一个小样本分布.
1908年,英国的统计学家戈塞特(1876-1937)创立了小样本检验代替了大样本检验的理论和方法(即t分布和t检验法),这为数理统计的另一分支――多元分析奠定理论基础.
1912年,英国统计学家费歇(1890-1962)推广了t检验法,同时发展了显著性检验及估计和方差分析等数理统计新分支.
这样,数理统计的一些重要分支如假设检验、回归分析、方差分析、正交设计等有了其决定其面貌的内容和理论.数理统计成为应用广泛、方法独特的一门数学学科.
现代时期(1945年以后)
美籍罗马尼亚数理统计学家瓦你德(1902-1950)致力于用数学方法使统计学精确化、严密化,取得了很多重要成果.他发展了决策理论,提出了一般的判别问题.创立了序贯分析理论,提出著名的序贯概率比检法.瓦尔德的两本著作《序贯分析》和《统计决策函数论》,被认为是数理发展史上的经典之作.
由于计算机的应用,推动了数理统计在理论研究和应用方面不断地向纵深发展,并产生一些新的分支和边缘性的新学科,如最优设计和非参数统计推断等.
当前,数理统计的应用范围愈来愈广泛,已渗透到许多科学领域,应用到国民经济各个部门,成为科学研究不可缺少的工具.。

相关文档
最新文档