高等数学线性代数概率统计20200922
《线性代数与概率统计》教学大纲
《线性代数与概率统计》教学大纲适用专业:各工程类专业和经济管理类专业总学时:36—60学时一、课程的性质、目的与任务“线性代数与概率统计”课程是高等学校工程专科各专业的一门必修的重要基础课。
本课程由线性代数、概率统计模块构成。
由于线性问题广泛存在于技术科学的各个领域,而非线性问题也常常可以转化为线性问题,所以本课程所介绍的线性代数方法广泛地应用于各个学科。
通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。
概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。
通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。
二、本课程与其他课程的关系本课程以《高等数学》必修模块所学的知识为基础,并为后继专业课程准备必要的基础知识。
如果学生接触过各自专业的专业(基础)课程,则为本课程提供了更广阔的舞台,使数学的应用更具针对性。
三、课程内容与学时分配第一部分线性代数(一)行列式1.知道n阶行列式的全面展开规则。
了解行列式的性质。
2.熟练掌握二、三阶行列式的计算,掌握四阶行列式的消元降阶算法。
3.知道行列式的代数余子式组合定理和克莱姆法则。
(二)矩阵1.理解矩阵的概念。
2.熟练掌握矩阵的转置、线性运算、乘法运算及其运算规则。
3.理解逆矩阵的概念及其存在的充分必要条件。
4.熟练掌握矩阵的初等变换规则,掌握用初等变换法求矩阵的逆。
5.知道矩阵分块的概念及分块矩阵的运算规则。
(三)线性方程组1.熟练掌握通过矩阵的初等行变换对线性方程组进行消元的方法。
2.了解矩阵秩的概念,掌握用初等变换法求矩阵的秩。
理解非齐次线性方程组有解的充分必要条件和齐次线性方程组有非零解的充分必要条件。
(整理)高等数学概率论线性代数
高等数学概率论线性代数回答者:357386379|四级| 2009-12-3 19:40数三考试科目是《高等数学》、《线性代数》、《概率论与数理统计》这三门,这个数三的大纲可以参考一下:第一章:函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、了解数列极限和函数极限(包括左极限与右极限)的概念。
6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7、理解无穷小的概念和基本性质。
掌握无穷小的比较方法。
了解无穷大量的概念及其与无穷小量的关系。
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第二章:一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(l'hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
考研数学(高等数学-线性代数-概率论)公式
目录一.高等数学公式1导数公式 12.基本积分表 13..三角函数的有理式积分 14.一些初等函数. 25.两个重要极限 26.三角函数公式: 27.高阶导数公式——莱布尼兹(Leibniz)公式: 38. 中值定理与导数应用: 39.曲率 3910.定积分的近似计算 411.定积分应用相关公式 412.空间解析几何和向量代数 413.多元函数微分法及应用514.微分法在几何上的应用: 615.方向导数与梯度 616.多元函数的极值及其求法 617.重积分及其应用 718.柱面坐标和球面坐标 719.曲线积分 720.曲面积分 821.高斯公式 922.斯托克斯公式——曲线积分与曲面积分的关系 923.常数项级数 924.级数审敛法 3225.绝对收敛与条件收敛 1026.幂级数 1027.函数展开成幂级数 1128.一些函数展开成幂级数 1130.三角级数 1231.傅立叶级数 1232微分方程的相关概念. 132二.概率公式整理1.随机事件及其概率 142.概率的定义及其计算 143.条件概率 154随机变量及其分布 155.离散型随机变量 156.连续性随机变量 167.多维性随机变量及其分布 178.连续型二维随机变量 179.二维随机变量的条件分布 1810.随机变量的数字特征 18三.线性代数部分1.基本运算 202.有关乘法的基本运算 213.可逆矩阵的性质 224.伴随矩阵的基本性质 235.伴随矩阵的其他性质 236.线性表示 247.线性相关 248.各性质的逆否形式 259.极大无关组 2610.矩阵的秩的简单性质 2611.矩阵在运算中秩的变化 2712.解的性质 2713.解的情况判断 2814.特征值特征向量 2915.特征值的性质 2916.特征值的应用 2917.正定二次型与正定矩阵性质与判别 3018.基本概念 3120.范德蒙行列式 3221.乘机矩阵的列向量与行向量 3322.初等矩阵及其在乘法中的作用 3423.乘法的分块法则 3424矩阵方程与可逆矩阵 3525可逆矩阵及其逆矩阵 3526.伴随矩阵 3527.线性表示 3528.线性相交性 3629..极大无关组和秩 3630.有相同线性关系的向量组 3631.矩阵的秩 3732.方程组的表达形式 3833.基础解系和通解 3834.通解 3835.特征向量与特征值 3936.特征向量与特征值计算 3937.n阶段矩阵的相似关系 3938.n阶段矩阵的对用化 3939判别法则 4040.二次型(实二次型) 4041.可逆线性变量替换 4142.实对称矩阵的合同 4143.二次型的标准化和规范化 4144.正二次型与正定矩阵 42附录一内积,正交矩阵,实对称矩阵的对角化1.向量的内积 452.正交矩阵 463.施密特正交化方法 474.实对称矩阵的对角化 47附录二向量空间1.n维向量空间及其子空间 492.基,维数,坐标 493.过渡矩阵,坐标变化公式 504.规范正交积..................................................................... .. (51)一.高等数学公式1.导数公式:2.基本积分表:3.三角函数的有理式积分:4.一些初等函数:5. 两个重要极限:6.三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α -sinα-cosαtgαctgα270°-α -cosα-sinαctgαtgα270°+α -cosαsinα-ctgα-tgα360°-α -sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:7.高阶导数公式——莱布尼兹(Leibniz)公式:8.中值定理与导数应用:9.曲率:10.定积分的近似计算:11.定积分应用相关公式:12.空间解析几何和向量代数:13.多元函数微分法及应用14.微分法在几何上的应用:15.方向导数与梯度:16.多元函数的极值及其求法:17.重积分及其应用:18.柱面坐标和球面坐标:19.曲线积分:20.:曲面积分:21.高斯公式:22.斯托克斯公式——曲线积分与曲面积分的关系:23.常数项级数:24.级数审敛法:25.绝对收敛与条件收敛:26.幂级数:27.函数展开成幂级数:28.一些函数展开成幂级数:29.欧拉公式:30.三角级数:31.傅立叶级数:周期为的周期函数的傅立叶级数:32.微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程二.概率公式整理1.随机事件及其概率吸收律:反演律:2.概率的定义及其计算若对任意两个事件A, B, 有加法公式:对任意两个事件A, B, 有3.条件概率乘法公式全概率公式Bayes公式4.随机变量及其分布分布函数计算5.离散型随机变量(1) 0 – 1 分布(2) 二项分布若P ( A ) = p*Possion定理有(3) Poisson 分布6.连续型随机变量(1) 均匀分布(2) 指数分布(3) 正态分布N ( , 2 )*N (0,1) —标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布9.二维随机变量的条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的k阶原点矩X 的k阶绝对原点矩X 的k阶中心矩X 的方差X ,Y 的k + l阶混合原点矩X ,Y 的k + l阶混合中心矩X ,Y 的二阶混合原点矩X ,Y 的二阶混合中心矩X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) =E ((X - E(X))2)协方差相关系数三.线性代数部分梳理:条理化,给出一个系统的,有内在有机结构的理论体系。
(整理)高等数学概率论线性代数
高等数学概率论线性代数回答者:357386379|四级| 2009-12-3 19:40数三考试科目是《高等数学》、《线性代数》、《概率论与数理统计》这三门,这个数三的大纲可以参考一下:第一章:函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、了解数列极限和函数极限(包括左极限与右极限)的概念。
6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7、理解无穷小的概念和基本性质。
掌握无穷小的比较方法。
了解无穷大量的概念及其与无穷小量的关系。
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第二章:一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(l'hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
线性代数与概率统计论文
数学在人类文明的发展中起着非常重要的作用,数学推动了重大科学技术的进步,在早期社会发展的历史上,限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现,数学为人类生产和生活带来的效益容易被忽视。
进入二十世纪,尤其式到了二十世纪中叶以后,科学技术发展到现在的程度,数学理论研究与实际应用之间的时间已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化和信息通道的大规模联网,依据数学所作的创造设想已达到即时试、即时实施的地步,数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的技术,故而当今和未来的发展将更倚重数学的发展。
数学对人的影响也式非常深刻的,“数学是锻炼思维的体操”,数学的重要性不仅仅是它蕴含在各个知识领域之中,而且更重要的是它能很好地锻炼人的思维,有效地提高能力,而能力(理解能力、分析能力、运算能力)则是关系到学习效率的更重要因素。
概率论与数理统计总结第一章&第二章概率论引论& 条件概率本章知识点:1.随机事件及其运算(随机试验,随机事件与样本空间,事件之间的关系及其运算)2.概率的定义、性质及其运算(频率,概率的统计定义,古典概率,概率的公理化定义,概率的性质)3.条件概率及三个重要公式(乘法公式,全概率公式,贝叶斯公式)4.事件的独立性及贝努里(Bernoulli)概型理解重点:1.理解随机事件的概念,了解样本空间的概念,掌握事件的关系与基本运算;2.理解事件频率的概念,了解随机现象的统计规律性,理解概率的公理化定义和概率的其它性质;3.理解古典概率的定义,掌握古典概率的计算,了解几何概率的定义及计算;4.掌握概率的基本性质和应用这些性质进行概率计算;5.理解条件概率的概念,熟练掌握条件概率的计算,熟练掌握乘法公式、全概率公式和贝叶斯公式以及应用这些公式进行概率计算;6.理解事件的独立性概念,掌握应用事件独立性进行概率计算,理解贝努利试验的概念,熟练掌握二项概率公式(贝努利概型)及其应用。
高等数学、线性代数、概率论与数理统计考研考试大纲
考研数学一大纲考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等教学56%线性代数22%概率论与数理统计 22%4、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
线性代数概率统计课程教学大纲
线性代数、概率统计课程教学大纲课程代码:12211课程名称:线性代数、概率统计英文名称:Engineer Mathematic C(Linear Algebra 、Probability and Statistic)课程总学时:48 (其中理论课48 学时,实验0 学时)学分: 3课程类别:必修课程性质:公共基础课先修课程:高等数学面向专业:网络、软件、建工系各专业开课单位:计算机工程系、建筑工程系一、课程的性质、地位和任务工程数学C课程包括线性代数部分和概率统计部分,是建筑工程系各专业和计算机工程系部分专业的一门重要的公共基础课程。
通过本课程教学,使学生掌握线性代数的基本理论和方法,掌握线性代数在解决问题中的基本方法和应用技巧;掌握概率论与数理统计的基本概念和基本理论,初步学会处理随机现象的基本思想和方法;培养和提高学生的抽象思维能力和严格的逻辑推理能力,培养学生正确运用数学知识来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。
二、课程的教学目标(一)理论、知识方面1.理解n行列式的定义,熟练掌握用行列式性质与行列式按行(列)展开定理,计算二、三、四阶行列式以及简单的n 阶行列式的方法,了解Cramer法则。
2.熟练掌握矩阵的加法、数乘、乘法和转置等运算及其性质,了解初等阵、分块矩阵及其运算,熟练掌握矩阵的初等变换,矩阵可逆的条件及逆矩阵的求法,矩阵的秩及其求法。
3.熟练掌握n维向量的加法、数乘运算及其性质。
理解n维向量组的线性相关性,熟练掌握其判别法则,n维向量组的最大线性无关组,n维向量组的秩及其求法。
4.掌握齐次线性方程组有非零解的充分必要条件与线性方程组有解的充分必要条件,线性方程组的解的结构,熟练掌握用初等行变换求齐次线性方程组的基础解系与通解,非齐次线性方程组的通解。
5.理解随机事件的概念,概率的公理化定义,条件概率的概念,事件的独立性概念。
熟练掌握事件之间的关系与运算,概率的基本性质及概率加法定理,概率的乘法定理。
线性代数与概率统计
765 4 987 6
下面给出一个注 意观察的例子, 看看有无规律。
例:请每位同学在0到9这十个基本数字中任选一 个,先用你选的这个数加上1,再乘以3,再乘以
线 3,然后将所得的结果进行“横加”(如:25“横 性 加”即为2+5=7),再将横加后所得的结果乘以
70,再加上36。大家得出的结果是多少?
记为 [aij ]mn。其表示形式(通式)为:
数
a11 a12 a1n
a21
a22
a2n
am1
am2
amn
一、矩阵的定义
a11 a12 a1n
a21
a22
a2n
线
am1
am2
amn
性
其中,横向排列的 ai1, ai2,···,ain 是的 [aij ]mn 第i
行;纵向排列的 a1 j ,a2 j ,···,amj 是 [aij ]mn 的第j
贝尔,一个叫伽罗瓦。
性
阿贝尔的一生是不幸的。他在当时所写的数学论文都
没有得到老一辈数学家们的重视。如:他曾五次将一篇
代 “五次方程不能由公式给出其解”的论文寄给在格廷根的
高斯,但都没有得到回音。由于他的不断出外求学,致使
数 经济状况十分糟糕,最后只得回到自己的故乡—挪威。没
过多久,他就在忧郁中结束了自己年仅27岁的短暂生命。
通过勘察测算,获得一组有关建设费用的预算数据:
线
性
代
我们也可以用矩阵的形式给出有关建设费用的预算数据:
0 2 3.5 3
数
2
0
1
2
3.5 1 0 1.5
3
2 1.5
0
例2 (田忌赛马问题,即对策论或竞赛论问题)
线性代数和概率论重要公式
线性代数和概率论重要公式一.线性代数必背公式(完全整理版)1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mm m m rnr r n n n n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)二.概率公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=ni ini iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-* Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt tex F d 21)(222)(σμσπ* N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x tex xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2) 二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10. 随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(kX E X 的 k 阶绝对原点矩)|(|kX E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(lkY X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY=ρ简单整理了一下,中心极限定理及数理统计部分多概念少公式故未详细列出,有问题可以给我来信,希望能与大家多交流。
《线性代数与概率统计》课后答案
方程组对应的导出组为 ,分别取 ,得导出组的一组基础解系 ,所以方程组的通解为
三、计算题(本大题共两小题,每题8分,共16分)
1.λ取何值时,非齐次线性方程组 ,
⑴有惟一解;⑵无解;⑶有无穷多个解?
解:系数矩阵行列式 。
⑴ 当 时, ,方程组有惟一解;
⑵ 当 时,增广矩阵
,方程组无解。
3、已知A、B为n阶非零矩阵,则下列公式成立的是(A )
(A) ; (B) ;
(C) 则 ; (D) ;
4、已知A为3阶矩阵,且 =2,则 =(B)
(A)2; (B)4; (C)0; (D)8;
5、下列命题正确的是( C )
(A)若向量组 是线性相关的,则 可由 线性表示;
(B)若有不全为零的数 ,使 成立,则 线性相关, 线性相关;
五、证明题(本大题满分9分)
设 元齐次线性方程组 的基础解系为: ,令 ,证明:对于任意可逆的 阶矩阵 , 的列向量组构成 的基础解系
证明:因为C为 阶可逆矩阵,所以 ,且 的列向量组中共有 个向量,故 的列向量组线性无关且含有 个向量,又因为 为 元齐次线性方程组 的基础解系,所以 ,故 ,所以 的列向量组是齐次线性方程组 的解,综合以上有 的列向量组构成 的基础解系。
也即 能由 线性表示,故 (2)
由(1),(2)得 ,也即 与 有相同的线性相关性,故向量组 线性无关的充分必要条件是向量组 , 线性无关。
2.证明:如果 维单位坐标向量组 可以由 维向量组 线性表示,则向量组 线性无关。
证明:因为 维单位坐标向量组 可以由 维向量组 线性表示,所以 ,又因为 线性无关,所以 ,故 ,所以 线性无关。
解:令 ,
高等数学线性代数概率统计每日一题2020年10月1日-20日 大学数学云课堂
X x1 x2 而Y的概率密度为fY ( y), fY ( y)为定义在(-¥, +¥)上的连续函 pk 1- p p 求随机变量函数Z = X + Y的概率密度fZ (z).
大学数学云课堂
高等数学线性代数概率统计每日一题20201018视频详解
高等数学
ò 例9 求 sin2 x × cos5 xdx.
概率统计
例3.12 设随机变量X ~ U (0,1),当观察到X = x(0 < x < 1)时,Y ~ U (x,1), 求Y的概率密度fY ( y).
大学数学云课堂
高等数学线性代数概率统计每日一题20201011视频详解
高等数学
同学提问 常见的三角函数等式有哪些?
线性代数
16.解下列非齐次线性方程组.
(x)
=
ìe-x , x > 0
í î
0, 其他
,
fY
( y)
=
ìe- y , y > 0
í î
0, 其他
求X 和Y的联合概率密度为f (x, y).
大学数学云课堂
高等数学线性代数概率统计每日一题20201013视频详解
高等数学 线性代数
ò 例4 求
1 a2 + x2dx.
16.解下列非齐次线性方程组.
高等数学 线性代数
例3 求
1
ò
x(1
+
5 ln
dx. x)
16.解下列非齐次线性方程组.
概率统计
(5)
ìïí34xx11-+x22x+2
- x3 2x3
=2 = 10
ïî 11x1 + 3x2 = 8
线性代数与概率统计课程教学体系的构建
线性代数与概率统计课程教学体系的构建线性代数与概率统计是高等数学领域中关键的两门课程。
这两门课程的知识点在现代科学和工程学中应用广泛,因此建立一套系统的课程教学体系非常重要。
线性代数是研究向量空间、线性变换和矩阵等概念以及其相应的运算法则的一门数学学科。
线性代数的主要内容包括:向量、线性方程组、矩阵、矩阵运算、线性变换、特征值与特征向量等。
在实际应用中,线性代数的方法被广泛应用于信息论、统计学、物理学、工程学、计算机科学等领域。
概率统计是研究随机现象的一种数学方法,主要包括概率论和数理统计两个部分。
概率论是研究随机现象的发生规律的一种数学方法,其研究的对象是随机变量及其分布,主要内容包括:概率、条件概率、期望、方差、随机变量、概率密度函数、累积分布函数等。
数理统计是用数学方法研究统计问题和数据的科学,其主要研究内容包括参数估计、假设检验、方差分析、回归分析等。
概率统计在生物学、金融、工程、医学等领域得到了广泛的应用。
对于线性代数与概率统计这两门重要的数学学科,其课程教学体系的构建具体包括以下几个方面:1. 教学目标的明确在建立教学体系时,应该明确教学目标。
线性代数与概率统计的教学目标是什么?要达到什么程度?针对不同学习层次、不同学科背景和不同人群,应该制定不同的教学目标,并根据教学目标有针对性地安排教学内容和教学方法。
2. 教学内容的设置针对不同学习层次和不同人群,应该确定合适的教学内容。
例如,对于初学者,应该从基础知识入手,侧重于向量、矩阵、行列式等基本概念的讲解;对于有一定数学基础的学生,则可以加强线性变换、特征值与特征向量等方面的讲解。
对于概率统计,应该包括概率论和数理统计的基本知识,学生需要掌握概率分布、似然函数、置信区间等重要概念。
3. 教学方法的选择教学方法应该随着教学目标和教学内容的不同而相应变化。
在教学线性代数时,适合通过一些具体的例子来讲解抽象的概念;在教学概率统计时,可以采用一些实际的数据来进行分析并帮助学生更好地理解相关概念。
线性代数与概率统计重点难点及考点
一、考试题型及分值安排
1.单项选择题(每题5分,共40分)
2.计算题(每题8分,共48分)
3.应用题(每题6分,共12分)
二、考点安排
章节
重点与难点内容
题型
线性代数与概率统计
Байду номын сангаас第一章行列式
行列式计算;行列式性质;
选择题;计算题;
第二章矩阵
矩阵运算;特殊矩阵;逆矩阵;
选择题;计算题;
不考
第七章有限元方法的一般步骤
不考
第八章有限元结构分析程序系统特点
不考
第三章矩阵的初等变换与线性方程组
解线性方程组;
选择题;计算题;
第四章随机事件及其概率
事件的运算;古典概率;加法公式;乘法公式;条件概率;独立性;
选择题;计算题;
第五章随机变量的分布与数字特征
离散型随机变量;连续型随机变量;分布函数;密度函数;数学期望;方差;
选择题;计算题;应用题;
第六章有限元方法引论
高等数学、线性代数、概率论和数理统计
- 考研大纲】考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求。
数一数学高数线代概率比例
数一数学高数线代概率比例数学是一门广泛应用于各个领域的学科,其中包括高等数学、线性代数、概率论和数理统计等分支。
这些分支在不同领域中发挥着重要的作用,为我们提供了解决问题的工具和方法。
高等数学是大多数理工科学生大一必修的一门学科。
它的内容包括极限与连续、微分与积分、级数等。
高数在培养学生的逻辑思维能力、数学建模能力以及解决实际问题的能力方面起到了重要的作用。
通过学习高数,我们可以了解数学的基本概念和基本原理,培养一种严谨的思维方式,提高解决问题的能力。
线性代数是一门研究向量空间、线性变换和矩阵的学科。
在现代科学和技术领域,线性代数的应用非常广泛。
它在计算机图形学、信号处理、量子力学等领域中起着重要的作用。
线性代数的概念和方法不仅能够解决实际问题,还能够帮助我们理解和研究抽象的数学结构。
概率论是研究随机现象和概率模型的学科。
概率论的研究对象包括事件的概率、随机变量的分布、大数定律和中心极限定理等。
概率论在金融学、统计学、生物学等领域中有广泛的应用。
通过学习概率论,我们可以通过概率模型对实际问题进行建模并进行概率分析,帮助我们做出决策。
比例是数学中一个常用的概念,它用于表示两个量之间的关系。
比例在数学中有很多应用,例如在解决实际问题中可以通过建立比例关系来进行计算。
比例也是数学中一个重要的思维方式,它能够帮助我们发现问题之间的相似性和关联性,从而提高解决问题的能力。
综上所述,高等数学、线性代数、概率论和比例在数学中都有着重要的地位和作用。
它们不仅能够帮助我们在学术上掌握数学的基本概念和方法,还能够提高我们解决实际问题的能力。
因此,在学习数学的过程中,我们应该全面、系统地学习这些分支,并通过实际练习和应用来加深理解和提高能力。
只有掌握了这些数学工具,我们才能更好地应对未来的挑战和机遇。
大学数学解题技巧(高数、线性代数、概率)
高数(上册)期末复习要点第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法(变dx/变前面)2、分部积分法(注意加C)(最好都自己推导一遍,好记)定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f (x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。