用列举法求概率学案2(无答案)(新版)新人教版
九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)
知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。
ﻬ
情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。
九年级数学上册 25.2 用列举法求概率学案(新版)新人教版
用列举法求概率问题情景大家都玩过石头、剪刀、布的游戏,你知道甲、乙两人随机出手一次,共有多少种情况?求甲获胜的概率,乙获胜的概率,这个游戏公平吗?合作交流:同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2。
思考“同时掷两个质地均匀的骰子”与“先后两次掷一个骰子”这两种实验的所有可能结果数一样吗?请你在课本上迅速完成课本138页的2题25.2 用列举法求概率(1)问题情景大家都玩过石头、剪刀、布的游戏,你知道甲、乙两人随机出手一次,共有多少种情况?求甲获胜的概率,乙获胜的概率,这个游戏公平吗?合作交流:同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2。
思考“同时掷两个质地均匀的骰子”与“先后两次掷一个骰子”这两种实验的所有可能结果数一样吗?请你在课本上迅速完成课本138页的2题自学目标:理解用频率来估计概率的方法;了解概率的实验背景及其现实意义.学习重点:通过对事件发生的频率的分析来估计事件发生的概率学习难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率一、知识链接:1、在生产的100件产品中,有95件正品,5件次品。
从中任抽一件是次品的概率为( ).A.0.05B.0.5C.0.95D.952.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是()(A)6 (B)16 (C)18 (D)24二、合作学习:3.实验:描点:n4.思考:(1)分析上面图像可以得出频率随着实验次数的增加,稳定于左右.(2)从试验数据看,硬币正面向上的概率估计是(3)根据推理计算可知,抛掷硬币一次正面向上的概率应该是结论:对于一般的随机事件,在大量重复试验时,随着实验次数的增加,一件事件出现的频率,总在一个数的附近摆动,我们就可以用这个数去估计此事件的概率。
人教版数学九年级上册用列举法求概率学案
用列举法求概率(2)一. 成功学习1. 成功目标(学习要高效,目标不可少)⑴.会用列表法、画树状图法分析一次实验中涉及两个或两个以上因素的等可能性事件发生结果的总数,并比较两种方法的使用范围。
⑵.进一步体会概率在实际问题中的应用,能根据事件发生的概率对一些问题做出正确的选择和决策。
2.成功自学:⑴.如果事件发生的等可能结果比较多,那么用上节课中的列举法求概率就比较繁琐,也容易 或 ,在教材中选用的方法是 和 来求事件发生的概率。
⑵.借助列表法或画树状图法求概率的前提条件①.可能出现的结果只是 ;②.各种结果出现的可能性 。
⑶.列表法和画树状图法求概率的适用范围(要分清放回与不放回)①.当一次实验涉及 因素(步骤),可以用列表法或画树状图法;②.当一次实验涉及 因素或更多因素(步骤),通常采用画树状图法。
3.成功合作:⑴.成功自学后组长带领组员解决自学过程中疑惑,相信在你们共同的探讨交流下,每个同学都能很快学会,不信你试试⑵.合作学习后的小组进入成功量学吧4.成功量学:⑴.从两双颜色不同的手套中任意取出两只,恰巧能配成一双同色的概率是 。
⑵.小红上学要经过三个十字路口,每个路口遇红、绿灯的机会相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是 。
⑶.小红、小明、小芳在一起做游戏时,需要确定游戏先后顺序,他们约定用“剪刀、石头、布”的方式确定,在一个回合中三人都出布的概率是 。
二.成功展示(勇敢展示,你是最棒的)三.成功检测(成功检测,相信我最棒)1.基础题⑴.有2名男生和2名女生,王老师随机地、两两一对地为他们排座位,一男一女排在一起的概率是 ( )A.41B.31C.21D.32 ⑵.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为 ( )A.81B.41C.83D.21 ⑶.从-2,-1,2这三个数任取两个不同的数作为点的坐标,该点在第四象限的概率是 。
九年级数学上册 25.2 用列举法求概率(第2课时)教案 新人教版(2)
25.2 用列举法求概率教学目标:1.进一步理解有限等可能性事件概率的意义。
2.会用树形图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
3.进一步提高分类的数学思想方法,掌握有关数学技能(树形图)。
教学重点:正确鉴别一次试验中是否涉及3个或更多个因素。
教学难点;用树形图法求出所有可能的结果。
一、解决问题,提高能力例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点子数相同;(2)两个骰子的点子数的和是9;(3)至少有一个骰子的点数为2。
分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有很多,我们用怎样的方法才能既不重复又不遗漏地求出所有可能的结果呢?这个问题要让学生充分发表意见,在次基础上再使学生认识到列表法可以清楚地列出所有可能的结果,体会其优越性。
列出表格。
也可用树形图法。
其实,求出所有可能的结果的方法不止是列表法,还有树形图法也是有效的方法,要让学生体验它们各自的特点,关键是对所有可能结果要做到:既不重复也不遗漏。
板书解答过程。
思考:教科书第135页的思考题。
例2 教科书第136页例4。
分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?你打算用什么方法求得?在学生充分思考和交流的前提下,老师介绍树形图的方法。
第一步可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行。
第二步可能产生的结果有C、D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D和E。
第三步可能产生的结果有两个H和I,两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I。
(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数。
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计
人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。
这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。
通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。
但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。
四. 教学重难点1.重点:列举法求概率的方法及运用。
2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。
3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。
4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。
六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。
2.练习题:准备一些相关练习题,用于巩固所学知识。
3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。
《用列举法求概率(第2课时)》教案 人教数学九年级上册
25.2 用列举法求概率(第2课时)一、教学目标【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】1.会用列表法和树状图法求随机事件的概率.2.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】1.列表法是如何列表,树状图的画法.2.列表法和树状图的选取方法.五、课前准备课件等.六、教学过程(一)导入新课出示课件2:现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?你能用列表法列举所有可能出现的结果吗?出示课件3:通过播放视频,体会用“列表法”的不方便,从而导入新课.(板书课题)(二)探索新知探究利用画树状图法求概率教师问:抛掷一枚均匀的硬币,出现正面向上的概率是多少?(出示课件5)学生答:P(正面向上)=1.2教师问:同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?学生答:可能出现的结果有:(正,正)(正,反)(反,正)(反,反).P(正面向上)=14教师问:还有别的方法求上面问题的概率吗?学生思考交流后,师生共同解答.(出示课件6).P(正面向上)=14出示课件7:如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:教师归纳:树状图法:按事件发生的次序,列出事件可能出现的结果.出示课件8:同学们:你们玩过“石头、剪刀、布”的游戏吗,小明和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏能用概率分析解答吗?尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A、B、C的概率.A:“小明胜”B:“小华胜”C:“平局”学生尝试用树状图分析,师生共同解答.(出示课件9,10)一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A 发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头); 事件B 发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布); 事件C 发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布). 所以,P(A)=3193=;P(B)=3193=;P(C)=3193=.出示课件11,12:教师归纳:1.画树状图求概率的定义用树状图的形式反映事件发生的各种情况出现的次数和方法、以及某一事件发生的可能性次数和方式,并求出概率的方法.适用条件:当一次试验涉及两个及其以上(通常3个)因素时,采用树状图法.2.画树状图求概率的基本步骤(1)将第一步可能出现的A 种等可能结果写在第一层;(2)若第二步有B 种等可能的结果,则在第一层每个结果下面画B 个分支,将这B 种结果写在第二层,以此类推;(3)根据树状图求出所有的等可能结果数及所求事件包含的结果数,利用概率公式求解.出示课件13,14:例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.学生独立思考后师生共同解答.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41.123出示课件15:教师强调:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复、不遗漏地得出n和m.巩固练习:(出示课件16,17)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率(1)三辆车全部继续直行;(2)两车向右,一车向左;(3)至少两车向左.学生自主思考后,独立解决,一生板演.解:画树状图,得;(1)P(全部继续直行)=127(2)P(两车向右,一车向左)=1;9.(3)P(至少两车向左)=727出示课件18:例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A:“传球三次后,球又回到甲的手中”,写出A发生的所有可能结果;(3)P(A).学生思考交流后师生共同解答.(出示课件19)解:画树状图,得“传球三次后,球又回到甲的手中”的结果有甲-乙-丙-甲、甲-丙-乙-甲2种..4182)(==A P教师强调:(出示课件20)当试验包含两步时,列表法比较方便;当然,此时也可以用树状图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.巩固练习:(出示课件21,22)现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b).甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?学生自主思考后独立解决.解:用“树状图”列出所有可能出现的结果:每种结果的出现是等可能的.“取出1件蓝色上衣和1条蓝色裤子”记为事件A,那么事件A发生的概率是P(A)=16.所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是16.(三)课堂练习(出示课件23-32)1.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.162.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.193.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.4.三女一男四人同行,从中任意选出两人,其性别不同的概率为()A.14B.13C.12D.345.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为45,则n= .6.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1)两次取出的小球上的数字相同;(2)两次取出的小球上的数字之和大于10.7.甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3个小球上全是辅音字母的概率是多少?参考答案:1.C解析:如图所示,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的.两个小球上都写有数字2的概率是:142.A解析:画树状图如图:由树状图可知,共有9种等可能结果,其中两次.都摸到黄球的有4种结果,所以两次都摸到黄球的概率为493.104.C5.86.解:根据题意,画出树状图如下:(1)两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)=31.93(2)两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之.和大于10)=497.解:由树状图得,所有可能出现的结果有12个,它们出现的可能性相等.⑴满足只有一个元音字母的结果有5个,则P(一个元音)=5.12满足只有两个元音字母的结果有4个,则P(两个元音)=41=.123满足三个全部为元音字母的结果有1个,则P(三个元音)=1.12⑵满足全是辅音字母的结果有2个,则P(三个辅音)=21=.126(四)课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?(五)课前预习预习下节课(25.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。
九年级数学上册25.2用列举法求概率教案(新版)新人教版 (2)
(六)小结
(一)等可能性事件的两的特征:
1.出现的结果有限多个;
2.各结果发生的可能性相等;
(二)列举法求概率.
1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.
(1)指针指向红色;
(2)指针指向红色或黄色;
(3)指针不指向红色.
分析问题中可能出现的结果有7个,即指针可能指向7个扇形中的任何一个.由于这是7个相同的扇形,转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等.因此可以通过列举法求出概率.
解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7.
解:(1)A区域的方格共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,踩A区域的任一方格,遇到地雷的概率是.
(2)B区域中共有
9×9-9=72
个小方格,其中有
10-3=7
个方格内各藏有1颗地雷.因此,踩B区域的任一方格,遇到地雷的概率是。
由于,所以踩A区域遇到地雷的可能性大于踩B区域遇到地雷的可能性,因而第二步应该踩B区域。
P(抽到1号)=。
“抽到偶数号”这个事件包括抽到2,4这两种可能结果,在全部5种可能的结果中所占的比为,于是这个事件的概率
P(抽到偶数号)=。
例题
例l掷一个骰子,观察向上的一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数为奇数;
(3)点数大于2且小于5.
(三)归纳
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=
九年级数学 用列举法求概率2 教案人教版
课题:列举法求概率(3)—画树形图求概率教学目标:1.使学生会画树形图计算简单事件的概率.2.通过画树形图求概率的过程培养学生思维的条理性,提高学生分析问题、解决问题的能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.教学重点:画树形图计算简单事件的概率.教学难点:通过学习画树形图计算概率,培养学生思维的条理性.教学方法:学生自主探究、合作交流与教师启发引导相结合.教学用具:计算机辅助教学.教学过程:种空竹的概率.学生利用学过的知识,自主探究解决上述问题.学生在探究学习活动中会有不同的表现,针对可能出现的情况设计教学预案如下:教学预案1:直接列举法的指导具体到抽象:有的学生用“木质”“塑料”来直接列举;有的学生用字母、数字、符号来表示“木质”“塑料”进行列举.及时对学生不同的方法给予肯定,对那些进行简化的同学更要给予表扬,在简化过程中培养学生抽象思维能力.无序到有序:及时肯定学生的参与意识.对于列举不完全或重复的同学,引导他们进行有序地列举,同时请学生思考如何做到不重不漏;对于列举完全的同学,启发他思考能否更直观地展现列举过程.教学预案2:列表法的指导用这个方法时,如何把一次试验的三个步骤同时反映在一个表格中,学生会遇到困难.此时引导学生思考:为什么这个问题用列表的方法不容易解决呢?还有没有其它更好的列举方法呢?教学预案3:画树形图的指导少数学生也有可能画出树形图,表扬使用这种方法的学生,并请学生阐述这种方法的优越性,及如何实施这种方法.如果没有学生画设计探究学习活动,有利于展示学生对问题解决的不同策略,真正体会问题解决的过程,培养学生的创新精神和克服困难的勇气.探究活动前的教学预案使课堂的指导更有针对性.把发现新方法的机会留给学生,增强学生学习的自信心和成就感.塑料木质实物投影展示学生的答案,师生共同进行点评.变式1:从本班中选三个学生参加公益活动,试求选出的三人中恰好有两个学生性别相同的概率?变式2:同时抛三枚硬币,其中恰好有两枚正面朝上的概率是多少?练习2、袋中放有08年奥运会吉祥物五福娃纪念币一套,依次取出(不放回)两枚纪念币,求取出的两枚纪念币中恰好有一枚是“欢欢”的概率是多少?解:两枚纪念币中恰好有一枚是“欢欢”记为事件A .解法1:直接列举求得52208)(==A P ; 解法2:列表法求得52208)(==A P ;解法3:画树形图求得52208)(==A P .发散思维训练:你能以此题为背景编一道计算等可能事件概率的题目吗?请学生小组讨论后派代表发言,教师点评.变式训练使学生正确区分随机事件,并体会不同的实际问题可以抽象为同一个数学模型.练习2是两步不放回地抽取,展示学生解题策略的多样性,也体现画树形图求概率应用的广泛性.培养学生发散思维和创新能力,此处灵活选择.六、归纳小结 布置作业 师生小结:(1)总结画树形图求概率的方法,并和其它列举法求概率的方法进行比较.(2)画树形图求概率体现数形结合及分类的思想.培养学生归纳总结的能力..4386)(==恰有两只手同向P .83)(=恰有两枚正面向上P .4386)(==恰有两个学生性别相同P教学设计说明一、教学背景列举法求概率是建立在等可能事件的前提下,在没有排列组合相关知识的基础上,通过列举所有等可能结果来求概率的一种方法.由于学生已经初步了解随机事件和概率的有关概念,并能用直接列举和列表法求简单事件的概率,在学生已有的基础上,本节课再寻求一种更一般的列举方法求概率——画思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.二、教学过程本节课由“探究学习——交流展示——剖析例题——巩固新知”有序地展开新课,并向学生提供充分从事数学活动的机会,使学生在活动中感受列举方法由无序到有序,呈现方式由无序到有序,解决问题由无序到有序,逻辑思维由无序到有序的过程.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,由于学生在小学或其它学科中接触过“树形图”,因此本节课在引入树形图这种新的列举方法时,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.使学习过程成为发现与创造的过程,合作交流的过程充分展示学生解题策略的多样性,挖掘每个学生的学习潜能,使学生人人有成就感,并享受学习带来的快乐.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在问题解决的过程中培养兴趣、追求简捷、重视直观、学会抽象.。
新人教版九年级数学上册导学案:25.2用列举法求概率(2)
新人教版九年级数学上册导学案:25.2用列举法求概率(2)【学习目标】1、进一步认识“例举法”的条件和解题方法,并灵活应用它解决一些实际问题。
2、进一步认识有限等可能性事件概率的意义。
3、会用树形图求出一次试验中涉及2个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
预习导学一 知识链接:1、在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一球,两次都摸到黑球的概率是( ) A.41 B.31C.21 D.32 2、计算概率的两个前提条件是:一次试验中,可能出现的结果 多个;各种结果发生的可能性 .3、如何计算概率? 一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为 二、探究新知:自主探究:阅读课本P134—P137。
一、在例3中;先作图探究:自己画一个坐标系,感知坐标的唯一性。
1、同时投掷两个骰子,可能出现的结果有 。
2、满足两个骰子点数相同的结果有 。
3、满足两个骰子点数和为9的结果有 。
4、满足至少有一个骰子点数为2的结果有 。
二、在例4中;1、可能出现的结果有 个。
2、只有1个元音字母的结果有 个。
3、只有2个元音字母的结果有 个。
4、全部是元音字母的结果有 个。
探究:一次试验要涉及2个因素时,为什么要采用列表法?一次试验要涉及3个因素时,为什么要采用树形图?【温馨提示】1、结合实际引入本节知识2、一次试验要涉及2个或3个因素时。
哪些是元音字母?学以致用1、一次抛掷三枚质地均匀的硬币,求下列问题的概率:(1)正好一个正面朝上的概率是 ;(2)正好两个正面朝上的概率是 ;(3)至少一个正面朝上的概率是 。
2、将一枚质地均匀的硬币掷两次,正好两次都是正面朝上的概率是 ;3、均匀的正四面体标有1、2、3、4四个数字,同时抛掷两个这样的正四面体,它们着地的一面数字相同的概率是 。
九年级数学上册 25.2 用列举法求概率(2)教案 (新版)新人教版
25.2 用列举法求概率(2)
教学目标:能够运用列表法计算简单事件发生的概率.
教学重点、难点:当实验涉及两个因素时,会列表表示出所有可能出现的结果.
教学过程
一、预习导学简记同时掷两枚质地均匀的硬币,求下列事件的概率:
(1)两枚硬币全部正面向上;(2)一枚硬币正面朝上,一枚硬币反面朝上.
二、学习研讨
例同时掷两枚质地均匀的骰子,计算下列事件的概率
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
(3)至少有一枚骰子的点数为2.
将这两枚骰子分别记为第1枚和第2枚,完成下表:
思考:如果将上题中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,
所得到的结果有变化吗?
三、巩固练习
1.口袋里装有大小相同的卡片4张,且分别标有1、2、3、4. 从口袋里简记抽取一张卡片然后放回,再抽取一张卡片. 请求出两次取出的卡片上的
数字之和为偶数的概率.
2.口袋里装有大小相同的卡片4张,且分别标有1、2、3、4. 从口袋里
抽取一张卡片不放回,再抽取一张卡片. 请求两次取出的卡片上的数字
之和为奇数的概率.
3.第一盒乒乓球中有3个白球1个黄球,第二盒乒乓球中有2个白球2个
黄球,分别从每个盒中随机地取出1个球来,求下列事件的概率:
(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.
教后反思。
2019-2020学年九年级数学上册 25.2 用列举法求概率学案2(新版)新人教版.doc
2019-2020学年九年级数学上册 25.2 用列举法求概率学案2(新版)新人教版自主学习、课前诊断一、温故知新:1.利用直接列举法求“等可能性事件”的概率的关键是什么?2.将分别标有数字1,2的两张卡片任意抽取一张作为十位上的数字,放回后,再抽取一张作为个位上的数字,则组成的两位数恰好是12的概率是2.如果将上题的卡片改为“1,1,2,3”,其它不变,则组成的两位数恰好是12的概率是二、设问导读:阅读课本P138-139完成下列问题:1.树状图法:阅读课本例题3,思考:(1)本题完成一个事件需要___个步骤:第一步:从甲口袋中取出一个小球可能出现的结果是_____或______;第二步:从乙口袋中取出一个小球可能出现的结果是_____或______或______;第三步:从丙口袋中取出一个小球可能出现的结果是_____或______;(2)如何画树状图?怎样从树状图上确定可能出现的结果?(3)什么情况下用树状图方便?三、自学检测:1.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是( )A.12B.13C.14D.162.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球,不放回布袋,搅匀,再摸出一个球,记下颜色,用树状图求得到的两个颜色中有“一红一黄”的概率互动学习、问题解决导入新课二、交流展示学用结合、提高能力一、巩固训练:1.在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?2.经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车右转,一辆车左转;(3)至少有两辆车左转 .3.如图所示的三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张,第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母,用列表法或画树状图法求能组成分式的概率是多少?二、当堂检测:在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?并求出其概率.(1)从盒子中取出一个小球,小球是红球.(2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同.(3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.三、拓展延伸:“手心手背”是同学们中间广为流传的游戏,游戏时甲、乙、丙三方每次做“手心”“手背”两种手势中的一种,规定:⑴出现三个相同手势不分胜负须继续比赛;⑵出现一个“手心”和或一个“手背”和两个“手心”时,则一种手势者为胜,两种相同手势者为负.假定甲、乙、丙三人每次都是等可能地做这两种手势,那么,甲、乙、丙三位同学获胜的概率是否一样?这个游戏对三方是否公平?若公平,请说明理由,若不公平,如何修改游戏规则才能使游戏对三方都公平?课堂小结、形成网络______________________________________________________________________________________ _____________________________________。
人教版九年级数学上册《用列举法求概率》参考教案2
义务教育基础课程初中教学资料25.2 用列举法求概率教学目标:1、知识目标:学习用树形图法和列表法计算两步或三步试验的随机事件发生的概率。
2、能力目标:经历计算理论概率的过程,在活动中培养学生的合作交流意识,提高学生对所研究问题的反思和拓广的能力。
3、情感目标:鼓励学生思维多样性,发展学生的创新意识。
教学重点:学习用树形图法和列表法计算两步或三步试验的随机事件发生的概率。
教学难点:正确的利用树形图法,计算三步试验随机事件的发生概率。
教学方法:引导——探究法一、创设问题情境 引入新课我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题。
下面我们来做一个小游戏:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢。
请问,你们觉得这个游戏公平吗?(学生通过计算后回答问题) 回答问题:若把其所能产生的结果全部列举出来,是正正、正反、反正、反反。
所有的结果共有四种,并且这个结果出现的可能相同。
(1)满足两枚硬币一正一反(记为事件A )2142)(==A P(2)满足两枚硬币两面一样(记为事件B )2142)(==B P 由于双方获胜的概率一样,所以游戏是公平的。
当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易全部列举出来,但如果出现结果的数目较多时,要想不重不漏的列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题。
二、讲授新课 探究1:如果有两组牌,它们牌面数字分别为1、2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于4的牌概率是多少?(先自己思考再与同伴交流)多媒体展示学生的各种做法:方法1:所有产生的结果全部列举出来共九种:牌面数字和等于4的概率39)(==A P 方法2:1 2 31 2 3 1 2 3 1 2 3 (2) (3) (4) (3) (4) (5) (4) (5) (6)牌面数字和等于4的概率3193)(==A P 方法3:牌面数字大于4的概率39)(==A P归纳总结:当一次试验涉及两个因素并且可能出现的结果数目较多的时候,为不重不漏的列出所有的可能结果,通常采用列表法或树形图法。
25用列举法求概率2 学案 人教版数学九年级上册
25.2用列举法求概率导学案【学习目标】会用画树状图法求出事件发生的概率.【学习重点】用画树状图法列举所有可能出现的结果.【学习难点】:画树状图.【学习方法】合作探究式【学时安排】共2课时【课前复习】1、列表法求概率的一般步骤:【课前预习】1、假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果3枚卵全部成功孵化,则3只雏鸟中恰有3只雌鸟的概率是多少?【自主学习】知识点1:树状图法问题1抛掷一枚均匀的硬币,出现正面向上的概率是多少?问题2同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?思考:"同时掷两枚质地均匀的硬币"与"先后两次掷一枚质地均匀的硬币",这两种试验的所有可能结果一样吗?【合作探究】树状图法:按事件发生的次序,列出事件可能出现的结果.如一个试验中涉及2个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况.例3 甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?用树状图求概率的基本步骤:1.明确试验的几个步骤及顺序;2.画树形图列举试验的所有等可能的结果;3.计算得出m,n的值;4.计算随机事件的概率.思考:求概率时,什么时候用“列表法”方便?什么时候用“树状图”方便?【拓展训练】1、妞妞和爸爸玩“石头、剪刀、布”游戏.每次用一只手可以出“石头”“剪刀”“布”三种手势之一,规则是“石头”赢“剪刀”、“剪刀”赢“布”、“布”赢“石头”,若两人出相同手势,则算打平.【课堂检测】1、学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. 23B.12C.13D.142、有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的概率为()A. 16B.14C.13D.123、从1、2、-3三个数中,随机抽取两个数相乘,积是负数的概率是.4、一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,只好把杯盖与茶杯随机地搭配在一起,求颜色搭配正确和颜色搭配错误的概率各是多少?5、第一个盒中有2个白球、1个黄球,第二个盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求下列事件的概率:(1)取出的2个球都是黄球;(2)取出的2个球中1个白球,1个黄球.【课堂小结】本节课你有哪些收获?【布置作业】【教学反思】。
用列举法求概率 精品导学案2(无答案)(新版)新人教版
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
用列举法求概率课题:25.2 用列举法求概率(2)序号学习目标:1、知识和技能:会用列举法求简单随机事件的概率。
2、过程和方法:通过对简单随机事件的模拟实验,体会当随机事件的试验结果比较少时,用列举法求解的简洁性。
3、情感、态度、价值观:通过应用列表法解决实际问题,提高自我解决问题的能力,发展应用意识。
学习重点:用列举法求概率。
学习难点:用列举法求概率时,列举结果不重不漏。
导学过程一、课前预习:①掷一枚质地均匀的硬币,有几种可能的结果?②先后掷两枚硬币,又有几种可能的结果呢?结果是由几个因素确定的?③“先后掷两枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗?二、课堂导学:1、导入:刚学完概率的定义,小明和小军在解答:求掷俩玫硬币,全部正面朝上的概率,意见出现了分歧,你能帮他们做出判断吗?出示任务、自主学习:会用列举法求简单随机事件的概率。
3、合作探究:阅读教材P134,回答下列问题:(1)为什么列举掷俩枚硬币出现的结果有四种呢?(2)正反”与“反正”为什么是两种不同的结果?(3)“两枚硬币至少有一枚正面朝上”的概率是多少?为什么?(4)上述问题中影响事件发生可能性的因素有几个?每个因素可能出现的结果有几个?(5)用什么样的办法才能不重不漏的列举出所有可能出现的结果?三、展示反馈1,完成教材134页练习2.2.完成《问题与导学》122——123“自主测评”1——3,“基础反思”1、2.四、学习小结:1.本节课你学到了什么?有什么收获?2.你有什么疑惑的地方吗?五、达标检测:完成《问题与导学》122——123“展题设计”1、2.“能力提升”3、4.课后作业: .必做题: 138页2、4板书设计:25.2用列举法求概率(2)例2小结课后反思:本课教学反思英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
人教版九年级数学上册25.2.1用列举法求概率2 学案
德州市第七中学学案25.2.1用列举法求概率第2课时学案编制人:李媛媛课型:新授【学习目标】1、阅读课本理解“一个实验分为两步并且每一步的结果为有限多个”的情景2、通过例题和练习掌握列表法法求概率的方法3、通过例题和练习掌握列树形图法求概率的方法【学习重点】会用列表法和树形图法求简单事件的概率【课前预习】认真自学课本P136-P137的内容完成下列例题:1.甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其它结果,甲得1分.谁先累积到10分,谁就获胜.你认为______(填“甲”或“乙”)获胜的可能性更大.2.同时抛掷两枚正方体骰子,所得点数之和为7的概率是______.3.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?4.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?【课堂学习】例2:把一个骰子掷两次,观察向上一面的点数,计算下列事件的概率两次骰子的点数相同;(2)两次骰子点数的和为9;(3)至少有一次骰子的点数为2解:由题意列表得:由表可知,所有等可能的结果的总数共有个由表可知,所有等可能的结果的总数共有个第1次第2次巩固练习:在一个口袋中有5个完全相同的小球,把它们分别标号1,2,3,4,5,随机地摸出一个小球后放回,再随机地摸出一个小球,用列表法求下列事件的概率两次取的小球的标号相同;两次取的小球的标号的和等于5.有字母C 、D 和E ;丙口袋中2个相同的球,它们分别写有字母H 和I 。
从三个口袋中各随机地取出1个球。
取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?巩固练习经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。
三辆汽车经过这个十字路口,求下列事件的概率:①三辆车全部继续前行;②两辆车向右转,一辆车向左转;③至少有两辆车向左转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师
大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应
内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
用列举法求概率
课题:25.2 用列举法求概率(2)序号
学习目标:
1、知识和技能:
会用列举法求简单随机事件的概率。
2、过程和方法:通过对简单随机事件的模拟实验,体会当随机事件的试验结果比较少时,用列举法求解的简洁性。
3、情感、态度、价值观:通过应用列表法解决实际问题,提高自我解决问题的能力,发展应用意识。
学习重点:用列举法求概率。
学习难点:用列举法求概率时,列举结果不重不漏。
导学过程
一、课前预习:
①掷一枚质地均匀的硬币,有几种可能的结果?②先后掷两枚硬币,又有几种可能的结果呢?结果是由几个因素确定的?③“先后掷两枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗?
二、课堂导学:
1、导入:
刚学完概率的定义,小明和小军在解答:求掷俩玫硬币,全部正面朝上的概率,意见出现了分歧,你能帮他们做出判断吗?
出示任务、自主学习:
会用列举法求简单随机事件的概率。
3、合作探究:
阅读教材P134,回答下列问题:
(1)为什么列举掷俩枚硬币出现的结果有四种呢?
(2)正反”与“反正”为什么是两种不同的结果?
(3)“两枚硬币至少有一枚正面朝上”的概率是多少?为什么?
(4)上述问题中影响事件发生可能性的因素有几个?每个因素可能出现的结果有几个?
(5)用什么样的办法才能不重不漏的列举出所有可能出现的结果?
三、展示反馈
1,完成教材134页练习2.
2.完成《问题与导学》122——123“自主测评”1——3,“基础反思”1、2.
四、学习小结:
1.本节课你学到了什么?有什么收获?
2.你有什么疑惑的地方吗?
五、达标检测:
完成《问题与导学》122——123“展题设计”1、2.“能力提升”3、4.
课后作业: .必做题: 138页2、4
板书设计:
25.2用列举法求概率(2)
例2
小结
课后反思:
教学反思
1 、要主动学习、虚心请教,不得偷懒。
老老实实做“徒弟”,认认真真学经验,扎扎实实搞教研。
2 、要勤于记录,善于总结、扬长避短。
记录的过程是个学习积累的过程,总结的过程就是一个自我提高的过程。
通过总结,要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善。
3 、要突破创新、富有个性,倾心投入。
要多听课、多思考、多改进,要正确处理好模仿与发展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的基础上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格,弘扬工匠精神,努力追求自身教学的高品位。