射频电路基础知识

合集下载

实用的射频模拟电路基础知识

实用的射频模拟电路基础知识
第一章 射频电子学基础
1-1 射频模拟电路概述 射频电路不同于其他电路,这是由于在较高的工作频率下,电路工作中的一些现象难于理解, 分布参数在影响着这些电路。分布参数—分布电容与引线电感,既看不见又摸不着。分布电容存 在于二个导体之间、导体与元器件之间、导体与地之间或者元件之间。引线电感,顾名思义是一 种元件间连接导线的电感,有时,也称之为内部构成电感。 这些分布参数的影响在直流和低频时是 不严重的。但是,随着频率的增加,影响越来越大。例如,在 VHF 和 UHF 频段,分布参数会影响接 收机前端调谐电路。因此,在这种调谐电路中,需要可调整的电容。 RF 频段介于集中参数频段与分布参数频段之间,集中参数频段可用 “路”的概念来分析,分布 参数则用“场”的概念来分析。RF 频段是一种相对概念,事实上,他与电路尺寸有关,电路尺寸只 要小于八分之一导波波长( λ g ),就可用路的概念来分析电路。18GHz 是公认的微波频率,但某公 司就完全用集中参数构成了这频段的压控振荡器 ,整个电路尺寸小于 1mm,用放大镜才可看到电 感线圈,这种微波压控振荡器完全可用路的概念来分析。上述分析说明:RF 电路既可用路的概 念分析问题,又可用分布参数概念—长线理论来分析,或者说,用“路”分析时,还要考虑分布参 数的影响。这样,给 RF 电路分析带来了复杂性、双重性。 在 RF 时,趋肤效应的影响很严重。术语“趋肤效应”是指这样一种事实:ac 电流流经导体 时趋向于导体外边部分,而 dc 电流流经整个导体。随着频率的升高,趋肤效应形成了一个较小的 导流带,结果,形成了大于 dc 电阻的 ac 电阻。根据分析,电流密度分布从表面起到导体中 心按 指 数规律迅速减小(图 1-1),定义趋肤深 度 δ 为电流密度降到表面电流密度 1/e=1/2.718=0.368 处的 临界深度。趋肤效应引起的最明显的影响就是引起信号传输途径中的损耗增加。

了解和熟悉射频电路的基础知识

了解和熟悉射频电路的基础知识

射频微带定向耦合器的设计实现了解和熟悉射频电路的基础知识;了解微波网络的相关知识;熟悉两端口网络的S参数、Z 参数等;学习传输线的相关理论知识;掌握微带线定向耦合器的理论和设计方法;学习使用仿真设计软件ADS进行分布式低通滤波器的设计;学习使用PCB印刷电路板进行实际射频电路的制作工艺;学习矢量网络分析仪的使用方法,对设计好的电路进行实际测试及调制。

设计指标:中心频率:2.4GHz,耦合度:15dB,采用1/4波长单级定向耦合器形式。

采用FR4介质板,相对介电常数:εr=4.3,厚度h=2.0 mm。

一种提高RFID系统中耦合器定向性的方法作者:邢自健,黄登山,张萌,王伶来源:21IC-应用发布时间:2011-08-25 10:09 评论:0条阅读:47次发给好友0引言RFID系统在全球的应用已经越来越广泛,被誉为21世纪将会快速发展的新型技术。

RFID系统可以应用于多个频段,不同频段有着不同的特点,UHF频段的RFID系统读取速度较快,识别距离较远,近年来得到了很快的发展。

本文将重点讨论在UHF频段中,RFID 系统中微带定向耦合器设计的改进方案。

在很多RFID系统中,有一些微波多端口器件,放置于reader天线和信号处理模块中间,用以分离输出的reader信号和tag散射的信号,比如环形器,定向耦合器等等。

环形器体积较大,又需要铁氧体材料,制作成本较高,而微带型的定向耦合器通常体积比较小,又很容易加工,因此在这些系统中得到了广泛的应用。

微带耦合器一般是用一段长度为1/4波长的微带耦合线构成,在平行的两段导带两端分别加上两个端口,构成定向耦合器的四端口网络。

但是,因为微带线传输的模式不是严格的TEM波,有少量的纵向场分量,造成了奇偶模式传输相速度不平衡,直接导致了微带耦合器的定向性降低。

如公式(1)所示:在这个公式中,i=e,o。

从上式可以看出,奇偶模相速度是不一样的,这不但会影响到微带耦合器的耦合性能和定向性能,还会使得频带变窄。

射频电路设计基础

射频电路设计基础

射频电路设计基础1、数字电路模块和模拟电路模块之间的干扰如果模拟电路射频和数字电路单独工作,可能各自工作良好。

但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。

这主要是因为数字信号频繁地在地和正电源>3 V之间摆动,而且周期特别短,常常是纳秒级的。

由于较大的振幅和较短的切换时间。

使得这些数字信号包含大量且独立于切换频率的高频成分。

在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于lμV。

因此数字信号与射频信号之间的差别会达到120 dB。

显然.如果不能使数字信号与射频信号很好地分离。

微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。

2、供电电源的噪声干扰射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。

微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用CMOS工艺制造。

因此。

假设一个微控制器以lMHz的内部时钟频率运行,它将以此频率从电源提取电流。

如果不采取合适的电源去耦.的地方必将引起电源线上的电压毛刺。

如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。

3、不合理的地线如果RF电路的地线处理不当,可能产生一些奇怪的现象。

对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。

而在RF频段,即使一根很短的地线也会如电感器一样作用。

粗略地计算,每毫米长度的电感量约为l nH,433 MHz时10 toni PCB线路的感抗约27Ω。

如果不采用地线层,大多数地线将会较长,电路将无法具有设计的特性。

4、天线对其他模拟电路部分的辐射干扰在PCB电路设计中,板上通常还有其他模拟电路。

例如,许多电路上都有模,数转换ADC或数/模转换器DAC。

射频发送器的天线发出的高频信号可能会到达ADC的模拟淙攵恕R蛭魏蔚缏废呗范伎赡苋缣煜咭谎⒊龌蚪邮誖F信号。

如果ADC输入端的处理不合理,RF 信号可能在ADC输入的ESD二极管内自激。

射频电路的重要知识点总结

射频电路的重要知识点总结

射频电路的重要知识点总结一、射频电路的基本概念1. 射频信号射频信号通常指频率在300千赫兹至300千兆赫兹之间的信号,是一种高频信号。

射频信号通常用来进行无线通信、雷达、卫星通信等。

射频信号相对于低频信号来说,具有传输距离远、穿墙能力强、信息容量大等优点。

2. 射频电路射频电路是一种用于处理射频信号的电路,主要包括射频放大器、射频混频器、射频滤波器、射频功率放大器、射频开关、射频调制解调器、射频天线等组成。

3. 射频电路的特点射频电路与常规低频电路相比,具有频率高、传输损耗大、抗干扰能力强、器件参数要求高等特点。

二、射频电路的设计流程1. 确定需求射频电路的设计首先需要明确需求,包括工作频率、输入输出阻抗、幅度和相位平衡要求、抗干扰能力、工作环境等。

2. 选择器件根据需求选择合适的射频器件,如射频放大器、射频混频器、射频滤波器等。

选择器件时需要考虑器件的工作频率范围、增益、线性度、稳定性、耦合度等参数。

3. 电路设计根据需求和选择的器件,进行射频电路的整体设计,包括电路拓扑结构设计、参数计算、仿真验证等。

4. 电路布局和布线射频电路的布局和布线对电路的性能有很大的影响,需要考虑信号的传输路径、防止反射和耦合、尽量减少信号损耗等。

5. 电路调试和优化射频电路设计完成后需要进行调试和优化,对功耗、线性度、稳定性、抗干扰能力等进行测试和改进。

6. 电路验证射频电路设计完成后需要进行电路性能验证,包括工作频率范围测试、输入输出阻抗匹配测试、幅度和相位平衡测试、抗干扰能力测试等。

三、射频电路中的常见器件1. 射频放大器射频放大器是射频电路中的重要器件,用于放大射频信号。

根据工作频率和功率要求可以选择不同的射频放大器,包括晶体管放大器、集成射频放大器、功率放大器等。

2. 射频混频器射频混频器用于将射频信号和局部振荡信号进行混频,产生中频信号。

射频混频器的性能对整个混频系统的性能影响很大。

3. 射频滤波器射频滤波器主要用于滤除非目标频率的信号,保证接收机的选择性和抗干扰能力。

射频电路预备基础知识_0_2_射频传输线

射频电路预备基础知识_0_2_射频传输线
在射频微波的低频段,可以用平行双线来传输微波能量和信号; 而当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会 通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大,因 此在微波的高频段,平行双线不能用来作为传输线。
2. 同轴线 (Co-axial cable TL)
Features: • Electric field is completely contained within both conductors • Perfect shielding of magnetic field • TEM modes up to a certain cut-off frequency
7.圆波导
通常由金属材料(铜、铝等)制成的,圆形截面的、 内部填充空气介质的规则金属波导称之为圆波导。
注意:圆波导中有无穷多个满足边界条件的模式, 但不存在TE00、TEm0、TM00和TMm0模式。它的最 低模式是TE11模。
二、传输线特性分析
传输线有长线和短线之分。所谓长线是指传输线的 几何长度与线上传输电磁波的波长比值(电长度)大于或 接近1,反之称为短线。
V(z) V e kz V ekz
(z)
V V
(z) (z)
• 电压/电流波空间分布特性 V(z) V e kz oV ekz V (ekz oekz )
(I z) I (ekz oekz ) V (ekz oekz ) / Zo
Z(z) V (z) / I (z)
z0
I(z)
k
(V e kz V ekz ) 1 (V e kz V ekz )
(R jL)
Z0
• 传输线上单位长度的R, L, G, C
• 微带线特性阻抗与结构, 材料特性的关系

射频电路基础概念

射频电路基础概念

射频电路基础性概念谐波失真:射频放大器等有源器件产生的基频的整数倍频率处的无用信号。

例如,基频是50MHz ,则100MHz 、150MHz 、200MHz 分别称为二次谐波、三次谐波、四次谐波。

谐波的度量:用单位dBc 表示,即n 次谐波功率低于基频功率的dB 值。

如二次谐波-60dBc ,表示二次谐波功率比基频(或者载波)低60dB 。

互调失真:假如非线性器件的输入信号为,2cos 2cos 21t f B t f A ππ+在输出信号中除了包含1f 和2f 外,还包含了这两种信号的各种组合频率:,21nf mf f +=这些频率的信号称为互调产物。

如果这些频率的信号为无用信号,则称之为互调失真。

例如:对混频器而言,输入本振信号GHz f 3.21=,中频信号GHz f 2.02=,则对m=1,n=-1的情况,输出GHz f 1.2=,这是混频器输出地有用频率。

对于m=1,n=-2的情况,GHz f 9.1=,称之为3阶互调分量(IM3)。

因为IM3经常落在有用信号带内,形成干扰,因此3阶互调分量常常是设计师防范的对象。

杂散:广义角度:有用频率以外的无用信号都称之为杂散。

狭义角度:除了谐波以外的无用信号。

杂散产生的机理:1辐射干扰、传导干扰等方式侵入的无用信号;2由于器件的非线性,导致的无用信号之间、或者无用信号与有用信号之间的互调产物。

杂散的度量:用dBc 表示。

杂散的抑制:1、通过屏蔽、滤波、接地等手段提高系统的电磁兼容性;2、正确设置好器件的静态工作点;3、尽量减小器件之间的阻抗失配;4、带外杂散抑制比较容易,用滤波器或者陷波器滤除即可;5、带内杂散抑制相对比较困难,需要综合考虑诸多因素。

1dB 压缩点:一般在器件的datasheet 中用符号P 1dB 表示,即可用输出信号功率P 1dBout 表示,也可用输入信号功率P 1dBin 表示。

在使用器件时,输入信号功率应该远离其1dB 压缩点。

射频基本知识

射频基本知识

射频基本知识引言在进入射频测试前,让我们回顾一下单相交流电的基本知识。

一、单相交流电的产生在一组线圈中,放一能旋转的磁铁。

当磁铁匀速旋转时,线圈内的磁通一会儿大一会儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。

若磁铁每秒旋转50周,则电压的变化必然也是50周。

每秒的周期数称为频率f,其单位为赫芝Hz。

103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。

b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。

即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。

则单相交流电的表达式可写成:p1EanqFDPwV=Vm=Vm式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。

t为时间<秒),为初相。

二、对相位的理解1、由电压产生的角度来看·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)位置完全相同时,两者发出的电压是同相的。

而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。

相位领先为正,滞后为负。

DXDiT a9E3d ·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差90°),即可形成两相电机。

假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。

两相电机常用于控制系统,三相电机常用于工业系统。

RTCrpUDGiT2、同频信号<电压)之间的叠加当两个电压同相时,两者会相加;而反相时,两者会抵消。

也就是说两者之间为复数运算关系。

若用方位平面来表示,也就是矢量关系。

矢量的模值<幅值)为标量,矢量的角度为相位。

射频电路的基础知识介绍

射频电路的基础知识介绍

射频电路的基础知识介绍描述射频布局和天线调谐需要了解射频特定的概念,并且需要比传统电路布局更多的关注。

本节介绍 RF 设计、传输线路和特性阻抗的基础知识。

需要理解以下概念和术语来设计有效的 RF 布局。

▪传输线▪特性阻抗▪回波损耗▪介入损耗▪阻抗匹配影响射频设计与模拟设计相关的关键因素是射频电路的阻抗。

在低频时,负载阻抗在距离负载走线不同距离处测量时保持不变。

对于大多数应用,也不依赖于迹线宽度或其均匀性。

因此,迹线仅表示为低频节点。

但在高频时,RF 电路的阻抗(Z)会在距负载不同距离处测量时发生变化。

这种变化还取决于所使用的基底和射频迹线的尺寸。

因此,迹线也成为 RF 原理图中的设计元素。

传输线是通过定义的路径传输电磁能量的媒介。

同轴电缆,波导以及 RF 引脚和天线之间的 RF 走线都是传输线。

大多数射频迹线是诸如微带线和共面波导之类的传输线。

传输的关键特性是它的特征阻抗(Z0),它是通过无损传输线传播的波的电压和电流的振幅比。

对于频率为2.45 GHz 的应用,例如BLE,50Ω特性阻抗广泛用于射频迹线。

传输线路的等效模型即使 Z0 是一个实数,它也不是 RF 走线的电阻。

理想的传输由于其特性阻抗不消耗能量或具有任何损耗。

传输线的等效模型如上图所示。

它是表示传输线分布式串联电感与分布式并联电容之比的属性。

其中 L 和 C 分别是沿传输线任意长度的分布电感和分布电容。

特性阻抗(Z0)取决于 PCB 材料,基底厚度,迹线宽度,迹线厚度以及 RF 迹线和接地填充物之间的间隙。

这些参数在传统的布局和设计中经常被忽略,但它们在射频设计中扮演着重要的角色。

阻抗测量设置的表示上图描述了测量 RF 电路阻抗的典型测量设置。

射频走线上给定点的阻抗与走线的特征阻抗,与负载的距离和负载阻抗有关;计算方式如下面的等式:其中 Z 是在距离负载的距离为 l 处测得的阻抗,ZL是在负载(l = 0)处测得的阻抗,Z0是传输线的特性阻抗,β是相位常数。

射频电路

射频电路

第四节射频电路结构和工作原理一、射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。

其主要负责接收信号解调;发射信息调制。

早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。

更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。

RXI-PRXQ-PRXQ-N(射频电路方框图)1、接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。

1、该电路掌握重点:(1)、接收电路结构。

(2)、各元件的功能与作用。

(3)、接收信号流程。

电路分析:(1)、电路结构。

接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。

早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。

(接收电路方框图)(2)、各元件的功能与作用。

1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。

塑料封套螺线管(外置天线)(内置天线)作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。

b)、发射时把功放放大后的交流电流转化为电磁波信号。

2)、天线开关:结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。

900M收收GSM900M收控收控900M发控GSM900M发入GSM(图一)(图二)作用:其主要作用有两个:a )、 完成接收和发射切换;b )、 完成900M/1800M 信号接收切换。

逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN ;DCS- RX-EN ;GSM-TX-EN ;DCS- TX-EN ),令各自通路导通,使接收和发射信号各走其道,互不干扰。

射频电路基础知识RFCircuitBasicKnowledge

射频电路基础知识RFCircuitBasicKnowledge
▪ 考虑两种极限情况:输入端口阻抗为0或为无穷大时,端 口完全无法吸收功率,此时反射功率与入射功率相等,而 端口吸收为0;当端口的输入阻抗与传输线阻抗完全相 同时,输入功率完全被端口吸收,反射功率为0,此时我们 称之为匹配(Match),实际电路中,为了让RF信号沿着 设计的路径通过,所有端口间应尽可能匹配!
(其中A为对数功率,B为线性功率) 1. 线性功率为1W时, 对数功率为30dBm 2. 线性功率为1uW时,对数功率为-30dBm
▪ dBm为绝对功率,dB用来计算相对功率,主要 用来计算功率的改变量,如增益和损耗的单位.
第12页
2.3 RF功率定义和计算
dBi 和dBd dBi和dBd是表示天线功率增益的量,两者都是一个
第26页
3.3 RF衰减器(c)
步进衰减器和电可调衰减器
步进衰减器:如上图电路,将多个不同衰减器串连起来,通过开关有切换可 以得到不同的衰减值,这样的衰减器即为步进衰减器. 电可调衰减器:将上图的电路集成到芯片内部,再利用逻辑电路对和开关 进行控制,即可得到电可调衰减器,其衰减值可在线编程设定.
第27页
Digital Modulation
第17页
2.5 信号调制方法(c)
▪ 模拟调制:被调制信号为模拟信号. 分为: 幅度调制(AM),频率调制(FM)和相 位调制(PM)
▪ 数字调制:被调制信号为数字信号. 分为:振幅键控(ASK),频移键控(FSK),相 移键控(QSK),开关键控调制(OOK)以及 ASK与PSK的组合调制如 (DPSK,QPSK,8PSK等)
ρ =|U|MAX/|U|MIN=(1+ |Γz|)/(1-| Γz|)
▪ 当反射系数为0时,驻波比为1,当反射系数接近1(实际 情况下不可能为1)时,驻波比取值接近无穷大

射频基础知识全解

射频基础知识全解

射频基础知识第一部分与移动通信相关的射频知识简介 (3)1.1 何谓射频 (3)1.2 无线电频段和波段命名 (3)1.3 移动通信系统使用频段 (3)1.4 第一代移动通信系统及其主要特点 (6)1.5 第二代移动通信系统及其主要特点 (6)1.6 第三代移动通信系统及其主要特点 (6)1.7 何谓“双工”方式?何谓“多址”方式 (7)1.8 发信功率及其单位换算 (7)1.9 接收机的热噪声功率电平 (7)1.10 接收机底噪及接收灵敏度 (8)1.11 电场强度、电压及功率电平的换算 (8)1.12 G网的全速率和半速率信道 (9)1.13 G网设计中选用哪个信道的发射功率作为参考功率 (9)1.14 G网的传输时延,时间提前量和最大小区半径的限制 (9)1.15 GPRS的基本概念 (10)1.16 EDGE的基本概念 (10)第二部分电波传播 (10)2.1 陆地移动通信中无线电波传播的主要特点 (10)2.2 快衰落遵循什么分布规律,基本特征和克服方法 (11)2.3 慢衰落遵循什么分布规律,基本特征及对工程设计参数的影响 (12)2.4 什么是自由空间的传播模式 (12)2.5 2G系统的宏小区传播模式 (13)2.6 3G系统的宏小区传播模式 (13)2.7 微小区传播模式 (14)2.8 室内传播模式 (16)2.9 接收灵敏度、最低功率电平和无线覆盖区位置百分比的关系 (17)2.10 全链路平衡和最大允许路径损耗 (19)第三部分电磁干扰 (19)3.1 电磁兼容(EMC)与电磁干扰(EMI) (19)3.2 同频干扰和同频干扰保护比 (20)3.3 邻道干扰和邻道选择性 (21)3.4 发信机的(三阶)互调干扰辐射 (21)3.5 收信机的互调干扰响应 (22)3.6 收信机的杂散响应和强干扰阻塞 (22)3.7 dBc与dBm (22)3.8 宽带噪声电平及归一化噪声功率电平 (23)3.9 关于噪声增量和系统容量 (23)3.10 直放站对基站的噪声增量 (24)3.11 IS-95 CDMA 对 GSM 基站的干扰 (26)3.12 G网与PHS网的相互干扰 (27)3.13 3G系统电磁干扰 (28)3.14 PHS系统与3G系统之间的互干扰 (30)3.15 GSM系统与3G系统之间的互干扰 (31)第一部分与移动通信相关的射频知识简介1.1 何谓射频射频是指该频率的载波功率能通过天线发射出去(反之亦然),以交变的电磁场形式在自由空间以光速传播,碰到不同介质时传播速率发生变化,也会发生电磁波反射、折射、绕射、穿透等,引起各种损耗。

射频基础知识资料(最新整理)

射频基础知识资料(最新整理)

第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。

对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。

无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。

在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。

当不相等时则会产生反射,造成失真和功率损失。

反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。

射频很多接口的驻波系数指标规定小于1.5。

三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。

峰值功率即是指以某种概率出现的尖峰的瞬态功率。

通常概率取为0.1%。

四、功率的dB 表示射频信号的功率常用dBm 、dBW 表示,它与mW 、W 的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W ,利用dBm 表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。

常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。

六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。

理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。

一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。

相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。

例如晶体的相位噪声可以这样描述:噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。

射频基础知识知识讲解

射频基础知识知识讲解

射频基础知识知识讲解第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。

射频电路的重要知识点

射频电路的重要知识点

射频电路的重要知识点射频电路是电子学中的一个重要分支,主要研究高频信号的传输、放大、调制和解调等技术。

射频电路广泛应用于通信领域,包括无线电、卫星通信、雷达系统等。

在本文中,我们将介绍射频电路的一些重要知识点,帮助读者对射频电路有更深入的了解。

1.射频电路的基本概念–射频(Radio Frequency)是指频率范围在3kHz到300GHz之间的电磁波信号。

–射频电路是指处理射频信号的电路,包括信号的放大、滤波、调制和解调等功能。

2.射频电路的特点–射频信号具有高频率和高频率变化速度的特点,因此对电路的稳定性要求较高。

–射频电路的元器件和设计需考虑高频信号的传输特性,如电缆、电感、电容等。

–射频电路的传输和放大会引入噪声,需要采取相应的噪声抑制和增益控制措施。

3.射频电路的基本元器件–高频电阻:用于限制电流流过的路径,常用材料有炭化钨和碳膜电阻。

–电感器:用于储存和释放电能的元件,常用材料有铁氧体和氧化铁等。

–电容器:用于储存和释放电能的元件,常用材料有陶瓷和铝电解电容等。

4.射频电路的滤波器–射频滤波器用于选择特定频率范围内的信号,并削弱或抑制其他频率的信号。

–常见的射频滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

5.射频电路的放大器–射频放大器用于放大射频信号的幅度,以保证信号的传输质量和稳定性。

–常见的射频放大器包括共射放大器、共基放大器和共集放大器等。

6.射频电路的调制和解调–调制是将基带信号转换为射频信号的过程,常见的调制方式有幅度调制、频率调制和相位调制等。

–解调是将射频信号转换为基带信号的过程,常见的解调器有包络检波器、鉴频器和相干解调器等。

7.射频电路的射频封装技术–射频封装技术是射频电路研究中的一个重要环节,用于保护电路元件和提高电路的性能。

–常见的射频封装技术包括微带线封装、贴片封装和球栅阵列封装等。

总结:射频电路作为通信领域的重要组成部分,其理论和应用领域十分广泛。

射频电路基础

射频电路基础

BW f0 1.63GHz QL
2019/10/22
37
不同匹配电路的频率响应
2019/10/22
38
T型和π型匹配网络
采用三元件的匹配电路,可以匹配任何阻抗值, 其分析方法、频率响应与两元件类似。
基本形式有二种T型或π型。
2019/10/22
39
T型和π型匹配网络
2019/10/22
40

z0 In
bn

Vn z0

z0 In
反射系数表示反射波除入射波 b n an
2019/10/22
24
S参数与Z参数的关系
an
1 2 z0
Vn
z0In
Vn z0anbn
bn
1 2 z0
Vn
z0In
In
1 z0
an
bn
P n1 2RV ne In1 2a n2b n2
设发射机输出阻抗和天线输入阻抗为
ZT 150 j75 ZA 75 j15
采用LC匹配网络如图,匹配方法 是当接上ZT时,ZM=ZA
ZMZT1 1jBCjXLZA
ZTRTjXT
1jR B C T R T j X TjX TjX LR AjX A ZARAjXA
35
频率响应
2019/10/22
36
品质因素
有载品质因素: f=1GHz
QL

f0 BW
zL1.6j1.2
RSTRS2RS0L2 125
R TR L//R ST 6.5 2 4
LLNRS2 2L0L2 1.62nH
CT包括了负载电容成分
QLBf0W 0RTCX RT C 0.61

射频电路需要什么知识点

射频电路需要什么知识点

射频电路需要什么知识点在设计和理解射频(Radio Frequency,RF)电路时,需要掌握一系列的知识点。

本文将从基础知识到高级概念逐步介绍射频电路设计所需的知识点。

1.电路基础知识首先,要理解射频电路,需要掌握电路基础知识。

这包括电压、电流、电阻、电感和电容等基本概念。

了解欧姆定律、基本电路分析方法和电路元件的特性对射频电路的设计至关重要。

2.信号与频谱分析了解信号与频谱分析是射频电路设计的关键。

射频信号是高频信号,需要掌握频谱分析的基本原理和方法。

掌握傅里叶变换和频谱分析工具的使用能够帮助我们理解和分析射频信号的特性。

3.射频器件特性了解常用的射频器件特性对射频电路设计非常重要。

例如,掌握二极管和晶体管的特性,了解它们的非线性特性、频率响应和功率特性等。

4.射频放大器设计射频放大器是射频电路中的核心组件之一。

掌握射频放大器的设计原理、放大器级数和匹配网络设计的基本方法。

5.射频滤波器设计射频滤波器用于剔除不需要的频率分量,保留感兴趣的射频信号。

了解射频滤波器的基本原理、滤波器类型和设计方法对射频电路的性能至关重要。

6.射频混频器设计射频混频器用于将一个射频信号与一个局部振荡信号相互作用,产生新的频率组合。

了解射频混频器的工作原理、类型和设计方法是进行频率转换和调制的关键。

7.射频天线设计射频天线用于发送和接收无线电信号。

了解射频天线的基本原理、天线参数和天线设计方法对射频通信系统的性能至关重要。

8.射频布线与阻抗匹配在射频电路设计中,良好的布线和阻抗匹配能够减少信号损耗和反射。

掌握射频布线技巧和阻抗匹配方法对射频电路的性能具有重要影响。

9.射频电路仿真与优化现代工具如电磁场仿真、电路仿真和优化软件等可以帮助设计师验证和优化射频电路设计。

了解射频电路仿真和优化方法可以提高设计效率和性能。

总结起来,射频电路设计需要掌握电路基础知识、信号与频谱分析、射频器件特性、射频放大器设计、射频滤波器设计、射频混频器设计、射频天线设计、射频布线与阻抗匹配以及射频电路仿真与优化等知识点。

射频开发入门基础知识

射频开发入门基础知识

射频开发入门需要掌握一些基础知识,包括以下几个方面:
1.
射频基础知识:了解射频的基本概念、频率、波长、传播特性等。

2.
电磁波传播:了解电磁波在空间中的传播方式,包括反射、折射、衍射等现象。

3.
射频电路基础:了解射频电路的基本组成和原理,包括放大器、滤波器、混频器等。

4.
射频测量技术:了解射频测量的基本原理和方法,包括信号发生器、频谱分析仪、网络分析仪等的使用。

5.
射频系统设计:了解射频系统的基本组成和设计方法,包括天线、功率放大器、频率合成器等的设计。

6.
射频干扰与防护:了解射频干扰的产生和防护方法,包括电磁兼容性设计、屏蔽技术等。

7.
射频应用领域:了解射频在通信、雷达、电子对抗等领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档