反比例函数面积问题模型

合集下载

反比例函数19种模型

反比例函数19种模型

反比例函数19种模型反比例函数是数学中常见的函数类型之一,用来表示两个变量之间的反比关系。

以下是反比例函数的一些常见模型:1.直线模型:y = k/x,其中k为常数。

2.比例关系模型:y = (kx)/(ax + b),其中k、a、b为常数。

3.反比例关系模型:y = (k/x) + a,其中k、a为常数。

4.工作时间模型:y = k/t,其中k为常数,t表示时间。

5.人口密度模型:y = k/A,其中k为常数,A表示面积。

6.速度和时间模型:y = k/t,其中k为常数,t表示时间。

7.飞行时间和飞行距离模型:y = k/(x^2),其中k为常数,x表示距离。

8.投资收益模型:y = k/(x+a),其中k和a为常数,x表示投资金额。

9.流量与管道直径模型:y = k/(x^2),其中k为常数,x表示管道直径。

10.压力和体积模型:y = k/x,其中k为常数,x表示体积。

11.购买力和价格模型:y = k/x,其中k为常数,x表示价格。

12.照明强度和距离模型:y = k/(x^2),其中k为常数,x表示距离。

13.土地价格和面积模型:y = k/A,其中k为常数,A表示面积。

14.音量和距离模型:y = k/(x^2),其中k为常数,x表示距离。

15.饼干消耗和人数模型:y = k/n,其中k为常数,n表示人数。

16.温度和容器大小模型:y = k/V,其中k为常数,V表示容器大小。

17.实验结果和样本数量模型:y = k/n,其中k为常数,n表示样本数量。

18.电阻和电流模型:y = k/I,其中k为常数,I表示电流。

19.体积和浓度模型:y = k/C,其中k为常数,C表示浓度。

这些模型仅是反比例函数在不同应用领域中的一些示例。

实际上,反比例函数可以描述的反比关系很多,取决于具体应用的背景和需求。

对于不同的问题和场景,可以选择适合的反比例模型来建模和分析。

中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)

反比例函数中的面积问题(共26张PPT)

反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”

反比例函数中k的几何意义常见7大模型

反比例函数中k的几何意义常见7大模型

反比例函数中k的几何意义常见7大模型摘要:一、反比例函数的基本概念和性质二、反比例函数k的几何意义1.矩形面积模型2.三角形面积模型3.梯形面积模型4.平行四边形面积模型5.菱形面积模型6.圆面积模型7.椭圆面积模型三、总结与实践应用正文:反比例函数是数学中一种重要的函数类型,其一般形式为y = k/x,其中k 为常数,x是自变量,y是自变量x的函数。

在反比例函数中,k的几何意义尤为重要。

首先,我们来回顾一下反比例函数的基本性质。

当k>0时,函数图像位于第一、第三象限;当k<0时,函数图像位于第二、第四象限。

此外,反比例函数的图像具有对称性,即关于原点对称。

接下来,我们来探讨反比例函数k的几何意义。

1.矩形面积模型:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N,则矩形PMON的面积为SPM·PNy·xxyk。

因此,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数,从而有k的绝对值。

2.三角形面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个三角形。

根据三角形的面积公式,可得到三角形面积与k的关系。

3.梯形面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个梯形。

根据梯形的面积公式,可得到梯形面积与k的关系。

4.平行四边形面积模型:在反比例函数的图像中,任取一点P,作x轴、y 轴的垂线PM、PN,连接PM、PN与原点O,构成一个平行四边形。

根据平行四边形的面积公式,可得到平行四边形面积与k的关系。

5.菱形面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个菱形。

根据菱形的面积公式,可得到菱形面积与k的关系。

6.圆面积模型:在反比例函数的图像中,任取一点P,作x轴、y轴的垂线PM、PN,连接PM、PN与原点O,构成一个圆。

中考数学复习指导:反比例函数图象中的面积问题

中考数学复习指导:反比例函数图象中的面积问题

1反比例函数图象中的面积问题在最近几年中考中,我们经常遇到一类与双曲线有关的面积问题.要解决这类问题,应掌握以下几个方面的基础知识:设反比例函数式为y =k x. (1)如图1,由双曲线上一点向两条坐标 轴作垂线段,由这两条垂线段与两坐标轴围 成的矩形的面积为:S 四边形OMPN =k .(2)如图2,由双曲线上一点向其中一条坐标轴的作垂线段,并连结这一点与原点的线段,由这两条线段与坐标轴围成的三角形的面积为:S △POM =S △PON =12k . (3)理解点的坐标的几何意义:点P 的坐标为(m ,n),则m 表示P 到y 轴的距离;n 表示P 到x 轴的距离.(4)双曲线关于原点O 对称,因此双曲线1k y x =与过原点O 的正比例函数y =k 2x 的交点关于原点O 对称.(5)点P 在双曲线y =k x的图象上,设P 点的横坐标为m ,则P 点的坐标可表示为(m ,k m). (6)利用割补法求面积.尤其要注意有时需先利用坐标轴构造出特殊图形(如矩形、梯形、直角三角形等).一、利用双曲线的对称性例1 如图3,A ,B 是函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )(A)S =2 (B)S =4(C)2<S<4 (D)S>4考点 反比例函数系数k 的几何意义.2分析 设点A 的坐标为(x ,y),则B (-x ,-y ),xy =2,∴AC =2y ,BC =2x , ∴S △ABC 的面积=2x ×2y ÷2=2xy =4.故选B .例2 如图4,点A 是双曲线y =k x在第二象限分支上的任意一点.点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点,若四边形ABCD 的面积是8,则k 的值为( )(A)-1 (B)1 (C)2 (D)-2考点 反比例函数系数k 的几何意义,关于原点对称、x 轴、y 轴对称的点的坐标,矩形的判定和性质.分析 因为点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点,所以四边形ABCD 是矩形.由四边形ABCD 的面积是8,得 4×k −=8,解得k =2.又∵双曲线位于第二、四象限,∴k<0,k =-2.故选D .二、利用点的坐标的几何意义例3 如图5,点A 是反比例函数y =2x (x>0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S △BCD 为( )(A)2 (B)3 (C)4 (D)5考点 反比例函数综合题,曲线上点的坐标与方程的关系,平行四边形的性质. 分析 设A 的纵坐标是a ,则B 的纵坐标也是a .3例4 如图6.,双曲线y =k x.经过Rt △OMN 斜边上的点A ,与直角边MN 相交于点B ,已知OA =2AN ,△OAB 的面积为5,则k 的值是_______.考点 反比例函数综合题.4三、利用分类讨论思想例3 如图7,正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =k x (k>0,x>0)的图象上,点P(m 、n)是函数y =k x上任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 中和正方形OABC 不重合部分的面积为S .(1)求点B 的坐标和k 值;(2)当S =92时,求P点的坐标.四、利用“割补法”例4 如图8,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABDC 为矩形,则它的面积为_______.考点 反比例函数系数k 的几何意义,分析 如图8,过A 点作AE ⊥y 轴,垂足为E .∵点A 在双曲线y =1x. ∴四边形AEOD的面积为1.∵点B在双曲线y=3x上,且AB∥x轴,∴四边形BEOC的面积为3.∴四边形ABCD为矩形,则它的面积为3-1=2.五、构造辅助图形例5 如图9,矩形ABCD中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为( )(A)2 (B)4 (C)8 (D)16考点反比例函数系数k的几何意义,三角形中位线定理.分析如图9,分别过点A、点C作OB的垂线,垂足分别为点M、点N.∵点C为AB的中点,∴CE为△AMB的中位线,故可设MN=NB=a,CN=b,AM=2b.又∵OM·AM=ON·CN,∴OM=a,∴△OAB的面积=3a.2b÷2=3ab=6.∴ab=2,∴k=a-2b=2ab=4.故选B.例8 如图10,已知正比例函数和反比例函数的图像都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP的面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由解(1)设正比例函数的关系式为y=kx,将点M(-2,-1)坐标代入,得k=12.∴正比例函数的关系式为y=12x.同理可得反比例函数的关系式为y=2x.(2)存在,当点Q在直线MO上运动时,设点Q的坐标为(m,12 m).5。

反比例函数中及面积有关的问题

反比例函数中及面积有关的问题

反比例函数中与面积有关的问题知识点回忆由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进展考察。

这种考察方式既能考察函数、反比例函数本身的根底知识内容,又能充分表达数形结合的思想方法,考察的题型广泛,考察方法灵活,可以较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题的几种类型归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,那么两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k故S=|k|从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k| 对于以下三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|类型之一k与三角形的面积k〔k>0〕经过直角三角形OAB斜边OB的中点D,与直※1、如图,双曲线y=x角边AB相交于点C.假设△OBC的面积为6,那么k=______.最正确答案过D点作DE⊥x轴,垂足为E,1k,由双曲线上点的性质,得S△AOC=S△DOE=2∵DE⊥x轴,AB⊥x轴,∴DE∥AB,∴△OAB∽△OED,又∵OB=2OD,∴S△OAB=4S△DOE=2k,由S△OAB-S△OAC=S△OBC,得2k-21k=6,解得:k=4.故答案为:4.2、如图1-ZT-1,分别过反比例函数y=x2018(x>0)的图象上任意两点A、B作x 轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S 1、S2,,比拟它们的大小,可得A.S1>S2B.S1=S2C.S1<S2D.S1、S2大小不确定。

反比例函数中的面积问题

反比例函数中的面积问题
而 由四边形OEBF的面积为2得
解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵

反比例函数背景下的应用题(面积问题)

反比例函数背景下的应用题(面积问题)

反比例函数背景下的应用题(面积问题)
反比例函数背景下与面积相关的问题往往围绕着以下三个结论展开:①反比例函数上任意一点与坐标轴围成的矩形面积;②反比例函数上任意一点与坐标轴围成的三角形面积;③反比例函数上任意两点与原点围成的三角形面积.
解法分析:对于平面直角坐标系中三角形面积的求法问题有如下的解法策略:①当三角形的一边在坐标轴上或平行于坐标轴上时,可以直接求三角形面积;②当三角形中的任意一边不在坐标轴或不平行于坐标轴时,利用割补法(补成/分割成规则图形)面积进行求解。

本题中的△ABC的一边AC//x轴,则可以直接求解,需要注意的是当用点表示线段长度时,要加上绝对值。

解法分析:本题可以直接求三角形的面积,△MPQ的底PQ是可求的定值,而高是点M和点P横坐标差的绝对值,要注意M点可能在第二象限,也可能在第四象限,加上绝对值后就可以避免漏解了。

解法分析:本题首先需要联立正比例函数和反比例函数的解析式求出A、B两点的坐标,然后过A、B两点作x轴垂线构造梯形,求梯形面积即可。

解法分析:本题可以用代数法或几何法解决。

综合利用直角三角形的性质,三角形的面积比解决。

同时还要能够利用点的坐标表示线段的长度,灵活运用。

解法分析:本题主要考察了反比例函数上的点与坐标轴围成的矩形面积。

对于第2、3问,需要分类讨论,即P在B左侧或P在B右侧,进行计算。

解法分析:本题是反比例函数和正方形背景下的问题。

△BCE的面积可以直接求解,主要表示出E的坐标,再求出B'E的长度,即可求出△BCE的面积。

人教版初中数学中考考点系统复习 方法技巧微专题(二) 反比例函数中的面积问题模型

人教版初中数学中考考点系统复习 方法技巧微专题(二) 反比例函数中的面积问题模型
第10题 图
1
第11题 图
-12
对点训练
-8
第3题 图
8
第4题 图
模型3 两点一垂线 模型展示
S△ABM=|k|
S△
模型解读 过正比例函数与反比例函数的一个交点作坐标轴的垂
线,两交点与垂足构成的三角形的面积等于|k|.
对点训练
D
A.k
B.k2
C.2
D.3
第5题 图
C A.k1=-6 B.k1=-3 C.k2=-6 D.k2=-12
第一轮 中考考点系统复习
第三章 函数及其图象 方法技巧微专题(二) 反比例函数中的
面积问题模型
模型1 一点.3
B.2
D.1
第1题 图
3
第2题 图
模型2 一点两垂线 模型展示
S四边形
模型解读 过反比例函数图象上一点作两条坐标轴的垂线,垂线与
坐标轴所围成的矩形面积等于|k|.
点)所构成的三角形面积,若两交点在同一支上,用减法; 若两交点分别在两支上,用加法.
对点训练
A.-12
C
B.-8
C.-6
D.-4
第8题 图
第9题 图
模型6 两曲一平行
模型解读 两条双曲线上的两点的连线与一条坐标轴平行,求这两
点与原点或坐标轴围成的图形面积,结合k的几何意义求解.
对点训练 13
第6题 图
模型4 两点两垂线 模型展示
S△APP'=2|k|
S▱
模型解读 过反比例函数与正比例函数的交点作两条坐标轴的垂
线,两交点与两垂足(或两垂线的交点)连线围成的图形面 积等于2|k|.
对点训练 8
模型5 两点和一点 S△AOB=S△COD-S△AOC-S△BOD

专题:反比例函数中的面积问题

专题:反比例函数中的面积问题

微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE

BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB

1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO

1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作

反比例函数中的面积问题

反比例函数中的面积问题

反比例函数中的面积问题一、以反比例函数图像上的点和过这点作坐标轴的垂线所得的垂足所围成的图形面积例1 反比例函数y=的图像如图1所示,点M是该函数图像上一点,MN 垂直于x轴,垂足是点N,如果S=2,则k的值为.△MON变式1:如图2,已知点P在函数y=(x>0)的图像上,PA⊥x轴、PB ⊥y轴,垂足分别为A、B,则矩形OAPB的面积为.二、以反比例函数图像与正比例函数图像的交点和坐标平面上的一些特殊点所围成的图形面积例2 如图3,反比例函数y=的图像与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于个面积单位.分析Rt△ABC的两个顶点是反比例函数图像与正比例函数图像的交点,分别在反比例函数图像的两个分支上,且知道反比例函数图像上的A、B两点关于=|2x×2y|=2|xy|=10.原点成中心对称,∴S△ABC变式1. 如图4,直线y=mx与双曲线y=交于点A、B. 过点A作AM⊥x 轴,垂足为点M连接BM. 若S=1,则k的值是().△ABMA.1 B. m-1C.2 D. m分析图形变为反比例函数图像上的A、B两点和其中一点与坐标轴的交点所围成的△AMB,底为|y|,高为|2x|,则S=|y×2x|=|xy|=|k|=1,得k=±1△ABM(根据图形知k>0),所以k=1.变式2. 如图5,直线y=mx与双曲线y=交于点A、B过点A、B分别作AM⊥x轴、BN⊥x轴,垂足分别为M、N,连接BM、AN. 若S AMBN=1,则k 的值是.分析图形变成AMBN,它的面积实际上就是△ABM面积的2倍,则S=2|xy|=2|k|=1,结合图像可知k=.AMBN三、以反比例函数图像与一次函数图像的交点和坐标原点所围成的图形面积例3 如图6,在直角坐标系xOy 中,一次函数y=k 1x+b 的图像与反比例函数y=的图像交于A (1,4)、B (3、m )两点.(1)求一次函数的解析式; (2)求△AOB 的面积. 分析 (1)略;(2)△AOB 是以反比例函数图像与一次函数图像的交点和坐标原点所围成的图形,△AOB 面积直接比较难求,可看作S △COD - S △COA - S △BOD . 先求出一次函数的解析式,然后求出一次函数y=k 1x+6的图像与x 轴和y 轴的交点坐标,就可求出S △COD 、S △COA 、S △BOD ,即可求出S △AOB =4××-×1×-4××=.变式1. 如图7,一次函数y=kx+b 的图像与反比例函数y=的图像交于A(-2,1),B (1,n )两点.(1)试确定上述反比例函数和一次函数的解析式; (2)求△AOB 的面积. 分析 (1)略:(2)△AOB 也是以反比例函数图像与一次函数图像的交点和坐标原点所围成的图形,只是把△AOB 的面积看作S △COD + S △COA + S △BOD ,即可求得S △AOB =1×1×+1×1×+1×1×=.四、以反比例函数图像与其它图形的交点和坐标原点所围成的图形面积例4 如图8,已知双曲线y=(x>0)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k= .分析这是以反比例函数图像与矩形的交点和坐标原点所围成的图形面积.四边形OEBF的面积可看作S矩形OABC - S△COE- S△AOF,设F点的坐标为(x, y),则E点的坐标为(x, 2y),S矩形OABC =x×2y=2xy=2k, S△COE=x×2y×=xy=k,S△AOF=xy=k,所以S四边形OEBF=k=2.五、以反比例函数图像上的点与坐标轴围成的图形及一次函数图像与坐标轴围成的图形和面积例5 如图9,D是反比例函数y=(k<0)的图像上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=-x+m与y=-x+2的图像都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,求k的值.分析先求出C(0,2),D(,2)和m=2,再求出A(2,0),得S矩形OCDE =-k,S△COA=2,所以-k+2=4,得k=-2.(2012湖北荆州3分)如图,点A 是反比例函数2y=x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数3y=x-的图象于点B ,以AB 为边作▱ABCD ,其中C 、D 在x 轴上,则S □ABCD 为【 】A . 2B . 3C . 4D . 5 【答案】D 。

人教版反比例函数图象中的面积问题

人教版反比例函数图象中的面积问题
则 S矩O 形AP B OAAP |m|•|n||k|(如 图)所 .
思考
图中的这些矩形面积相等吗?
结论:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
y k x
O
x
如图,已知点P(m,n)在函数y= k (k>0)
x
的图像上,PB⊥y轴,垂足为B,O’A在x轴
反比例函数图象中的面积问题
y
y
0
x
0
x
探究1 反比例函数与矩形的面积
k 已的象足知图(上 分2点像)点过 的 别上PPP 一是((分 m,点点m,那n,A,过)、么别 在n点x)Bm函轴 P,是分n,数作 则y反=别轴 yS比y向2矩=形例xO的 轴函kAxP、B数.,=垂 y_垂 轴y_|_作k_kx|_足 垂(线 _k_≠线_0.),分 垂图A,B,别
B P(m,n)
(或y轴)的垂线,所得直 O’ O
x
角三角形的面积S为定值,
即S=
1 2
|k|
.
探究3
任意正比例函数与反比例函数 图象交于A、B两点,那么
y k (k 0) x
△ABC的面积为多少呢?
y
A
C
D
图7
x
B
反比例函数与正比例函数围成的图形面积
变式:任意正比例函数与反比例函数 y= k 图像相交,
则a-b的值是多少?(中考题)
⊿AOB的面积。
图中面积相等的图形有哪些?
y
y k x
O
x
学会寻找图像中的基本构图、寻找单位面积 矩形或三角形、寻找变化中的不变量
拓展.如图,已知点A,C在反比例函数 y 的图象上,点B,D在反比例函数 y b(b

反比例函数求面积

反比例函数求面积

反比例函数求面积反比例函数是数学中一种常见的函数形式,其表达式为y =k/x,其中k为常数。

反比例函数具有一定的特点,其中最常见的应用就是求解面积相关问题。

在几何学中,很多问题可以通过反比例函数来求解面积,以下将介绍几个常见的例子。

1. 矩形的面积:可以将矩形的长记为x,宽记为y,则矩形的面积为S = xy。

如果已知矩形的面积S和宽y,可以通过反比例函数求解矩形的长x。

我们知道xy = S,对上式两边同时取倒数,得到yx = 1/S,可以看到yx符合反比例函数的形式,因此可以通过反比例函数求解矩形的长。

2. 圆的面积:圆的面积公式为S = πr²,其中r为圆的半径。

如果已知圆的面积S,可以通过反比例函数求解圆的半径r。

我们知道S = πr²,对这个式子两边同时取倒数,得到1/S = 1/(πr²),可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解圆的半径。

3. 三角形的面积:三角形的面积公式为S = 1/2bh,其中b为底边的长度,h为高的长度。

如果已知三角形的面积S和底边长度b,可以通过反比例函数求解高h。

我们知道S = 1/2bh,对这个式子两边同时取倒数,得到1/S = 2/bh,可以看到1/S符合反比例函数的形式,因此可以通过反比例函数求解三角形的高。

在实际问题中,反比例函数也有着广泛的应用。

例如,汽车行驶的时间和速度之间就存在着反比例关系。

假设一辆汽车行驶的距离为d,速度为v,行驶的时间为t。

根据定义,速度等于距离除以时间,即v = d/t。

如果我们已知汽车行驶的距离d和行驶的时间t,可以通过反比例函数求解汽车的速度v。

在数学教育中,反比例函数也是一个重要的概念,它可以帮助学生理解函数的性质和图像的变化。

学生可以通过绘制函数图像、计算函数的值等方式来探究反比例函数的特点,并且可以通过实际应用问题来加深对反比例函数的理解。

综上所述,反比例函数是求解面积问题常用的数学工具之一。

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题万能解题模型(一):反比例函数中的面积问题类型1:单支双曲线上一点一垂直形成的三角形的面积设单支双曲线方程为 $y=\frac{k}{x}$,点$A(x_1,y_1)$ 为单支双曲线上的一点,点 $P(x_1,0)$ 为$A$ 点向 $x$ 轴作垂线段的底部交点,则 $\triangle AOP$ 的面积为 $S=\frac{1}{2}x_1y_1$,同时 $\triangle ABC$ 的面积为 $S=\frac{1}{2}x_1\cdot\frac{k}{x_1}=\frac{1}{2}k$,因此$\triangle AOP$ 和 $\triangle ABC$ 面积的比值为$\frac{S_{\triangle AOP}}{S_{\triangleABC}}=\frac{\frac{1}{2}x_1y_1}{\frac{1}{2}k}=\frac{y_1}{k} $,即 $S_{\triangle AOP}=|k|\cdot S_{\triangle ABC}$。

类型2:单支双曲线上一点两垂直形成的矩形面积设单支双曲线方程为 $y=\frac{k}{x}$,点$P(x_1,y_1)$ 为单支双曲线上的一点,$AC$ 和 $DE$ 分别为$P$ 点向 $x$ 轴和 $y$ 轴作垂线段的线段,$B$ 点为 $AC$ 和$DE$ 的交点,则四边形 $PMON$ 的面积为 $S=|x_1y_1|$,同时四边形 $ACDE$ 的面积为$S=\frac{1}{2}|x_1|\cdot|y_1|=\frac{1}{2}S_{\square PMON}$,因此四边形 $PMON$ 和四边形 $ACDE$ 面积的比值为$\frac{S_{\square PMON}}{S_{\squareACDE}}=\frac{2S}{|x_1|\cdot|y_1|}=2|k|$,即 $S_{\square PMON}=|k|\cdot S_{\square ACDE}$。

反比例函数k值与面积模型

反比例函数k值与面积模型

反比例函数k值与面积模型
反比例函数是一种特殊的函数形式,其数学表达式为y = k/x,其中k为比例常数。

这种函数关系常常在实际问题中出现,例如面
积模型中的问题。

在面积模型中,我们常常遇到一种情况,即当一个物体的某一
属性(比如长度、宽度等)增大时,另一属性(比如面积)会减小,反之亦然。

这种情况可以用反比例函数来描述,其中k值则表示了
两个属性之间的关系。

举个例子,假设我们有一个长方形的面积为A,长度为l,宽度
为w。

根据长方形的面积公式A = l w,我们可以得到面积A与长
度l、宽度w之间的关系。

如果我们固定面积A不变,增大长度l,
那么宽度w就会减小,它们之间的关系可以用反比例函数来表示,A = k / l,其中k为比例常数。

这里的k值就表示了长度和宽度之间
的关系,k值越大,长度和宽度的变化越小,反之亦然。

另外一个例子是水桶的装水问题。

假设我们有一个容积为V的桶,水龙头的流量为q。

当我们打开水龙头让水流入桶中时,水桶
中的水的高度h随时间t的变化可以用反比例函数来描述,h = k /
t。

这里k值表示了水的高度h和时间t之间的关系,k值越大,水的高度变化越小,反之亦然。

总之,反比例函数的k值在面积模型中的应用可以帮助我们理解不同属性之间的变化关系,从而更好地解决实际问题。

希望这些例子能够帮助你更好地理解反比例函数与面积模型之间的关系。

69 反比例函数中的有关面积问题

69 反比例函数中的有关面积问题

反比例函数中的有关面积问题一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。

如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x =(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。

但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。

【针对训练】1、如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y =(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为.解:设A 点坐标为(a ,b ),∵△ABC 和△BOD 都是等腰直角三角形,∴BC =AC ,OD =BD∵S △BOD ﹣S △ABC =3,OD 2﹣AC 2=3,OD 2﹣AC 2=6,∴(OD +AC )(OD ﹣AC )=6,∴a •b =6,∴k =6.故答案为6.2、如图,△OAC 和△BAD 都是等腰直角三角,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=8.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×8=4.故答案为:4.3、如图,一次函数y=x﹣3的图象与反比例函数y═kx(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【答案】(1)y=4x;(2)点P的坐标为(5,45)或(1,4)或(2,2).【解析】解:(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═kx(k≠0)中得:k=4∴反比例函数的表达式为y=4x;(2)如图:设点P的坐标为(m,4m)(m>0),则C(m,m﹣3)∴PC=|4m﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=12m×|4m﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,45)或(1,4)或(2,2).4、如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y 1、y 2的表达式;(2)过A 作AM ⊥y 轴,过B 作BN ⊥x 轴,试问在线段AB 上是否存在点P ,使S △PAM =3S △PBN ?若存在,请求出P 点坐标;若不存在,请说明理由.【详解】解:(1)∵A 、B 两点在函数(x <0)的图象上,∴3(a ﹣2)=﹣3a =m ,∴a =1,m =﹣3,∴A (﹣1,3),B (﹣3,1),∵函数y 1=kx+b 的图象过A 、B 点,∴,解得k =1,b =4∴y 1=x+4,y 2=;(2)由(1)知A (﹣1,3),B (﹣3,1),∴AM =BN =1,∵P 点在线段AB 上,∴设P 点坐标为(x ,x+4),其中﹣1≤x≤﹣3,则P 到AM 的距离为h A =3﹣(x+4)=﹣x ﹣1,P 到BN 的距离为h B =3+x ,∴S △PBN =BN•h B =×1×(3+x )=(x+3),S △PAM =AM•h A =×1×(﹣x ﹣1)=﹣(x+1),=3S△PBN,∵S△PAM∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P点坐标分别表示出△PBN和△PAM的面积是解题的关键.5、如图,直线y1=k1x+b与双曲线y2=在第一象限内交于A、B两点,已知A(1,m),B(2,1).(1)k1=,k2=,b=.(2)直接写出不等式y2>y1的解集;(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S 的最大值.解:(1)∵A(1,m),B(2,1)在双曲线y2=上,∴k2=m=2×1=2,∴A(1,2),则,解得:,∴k1=﹣1,k2=2,b=3;故答案为:﹣1,2,3;(2)由图象得:不等式y2>y1的解集是:0<x<1或x>2;(3)设点P(x,﹣x+3),且1≤x≤2,∵PD=﹣x+3,OD=x,则,∵,∴当时,S有最大值,最大值为.6、如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)根据图象,直接写出当x<0时不等式>﹣x+5的解集;(3)求△AOD的面积.解:(1)y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,=15,∵S△AOC∴=15,解得:AM=6,即A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=得:k=﹣6;(2)当x<0时不等式>﹣x+5的解集是﹣1<x<0;=15,(3)∵CD:AC=2:3,S△AOC==5.∴△AOD的面积=S△AOC7、如图,反比例函数y=经过点D,且点D的坐标为(﹣,2).(1)求反比例函数的解析式;(2)如图,直线AB交x轴于点B,交y轴于点A,交反比例函数图象于另一点C,若3OA=4OB,求△BOC的面积.解:(1)∵反比例函数y=经过点D(﹣,2).∴k=﹣=﹣1,∴反比例函数的解析式为y=﹣;(2)设直线AB的解析式为y=ax+b,∴A(0,b),B(﹣,0),∴OA=b,OB=,∵3OA=4OB,∴3b=,∴a=,∴y=x+b,∵直线AB经过D(﹣,2),∴2=×(﹣)+b,∴b=,∴y=x+,B(﹣2,0),解得或,∴C(﹣,),=2×=.∴S△BOC8、如图,在平面直角坐标系中,反比例函数y=的图象过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC、AO.(1)求反比例函数解析式;(2)若四边形ACBO的面积为3,求点A的坐标.解:(1)作BD⊥OC于D,如图,∵△BOC为等边三角形,∴OD=CD=OC=1,∴BD=OD=,∴B(﹣1,﹣),把B(﹣1,﹣)代入y=得k=﹣1×(﹣)=,∴反比例函数解析式为y=;(2)设A(t,),∵四边形ACBO的面积为3,∴×2×+×2×=3,解得t=,∴A点坐标为(,2).9、如图,△AOB在平面直角坐标xOy中,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,作直线x=1分别交y1,y2于C,D两点,已知A(2,3),B(3,1).(1)求反比例函数y1,y2的解析式;(2)求△COD的面积.解:(1)∵反比例函数y1=的图象经过点A(2,3),反比例函数y2=的图象经过点B(3,1),∴k1=2×3=6,k2=3×1=3,∴y1=,y2=.(2)由(1)可知两条曲线与直线x=1的交点为C(1,6),D(1,3),∴CD=6﹣3=3,=1=.∴S△COD10、正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.解:(1)∵点A(1,1),点C(3,3),∴点D(1,3),将点D的坐标代入反比例函数表达式得:k=3,故反比例函数表达式为:y=;(2)平移后点A′、B′、C′、D′的坐标分别为:(1,0)、(3,0),(3,2)、(1,2),则平移后点E纵坐标为3,则点E(3,1),同理点F(,2),﹣S△A′B′E﹣S△A′D′F﹣S△EFC′=2×2×2×﹣2×1﹣××1=;△A'EF的面积=S正方形A′B′C′D′(3)点E、F的坐标分别为:(3,1)、(,2),设点P(m,0),则EF2=(3﹣)2+(2﹣1)2=,EP2=(m﹣3)2+1,PF2=(m﹣)2+4,当EF=EP时,即=(m﹣3)2+1,解得:m=或;当EF=PF时,同理可得:m=(舍去负值);当EP=PF时,同理可得:m=,故点P的坐标为(,0)或(,0)或(,0)或(,0).11、如图,单位长度为1的网格坐标系中,一次函数y=kx+b与坐标轴交于A、B两点,反比例函数y=(x>0)经过一次函数上一点C(2,a).(1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图象;(2)依据图象直接写出当x>0时不等式kx+b>的解集;(3)若反比例函数y=与一次函数y=kx+b交于C、D两点,使用直尺与2B铅笔构造以C、D为顶点的矩形,且使得矩形的面积为10.解:(1)∵一次函数y=kx+b过点A(0,4),点B(8,0),∴,∴,∴一次函数解析式为:y=﹣x+4;∵点C在一次函数图象上,∴a=﹣×2+4=3,∵反比例函数y=(x>0)经过点C(2,3),∴m=6,∴反比例函数解析式为:y=,图象如图所示:(2)∵反比例函数y=与一次函数y=﹣x+4交于C、D两点,∴=﹣x+4,∴x1=2,x2=6,∴点D(6,1),由图象可得:当2<x<6时,y=kx+b的图象在y=图象的上方,∴不等式kx+b>的解集为2<x<6;(3)如图,若以CD为边,则矩形ABDC,矩形A'B'DC为所求,若以CD为对角线,则矩形DEDF为所求.12、如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数,∴k=1×2=2;∴反比例函数的表达式为;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,=|3﹣x|×2=5,∴S△APC∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);(3)存在,理由如下:联立,解得:或,∴B点坐标为(2,1),∵点P在y轴上,∴设P(0,m),∴AB==,AP=,PB=,若BP为斜边,∴BP2=AB2+AP2,即=2+,解得:m=1,∴P(0,1);若AP为斜边,∴AP2=PB2+AB2,即=+2,解得:m=﹣1,∴P(0,﹣1);综上所述:P(0,1)或P(0,﹣1).13、如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S △AEO =S △ACE =,∵AD =2DE ,∴AE =DE ,∴S △AOD =2S △AOE =3;(3)作EF ⊥x 轴于F ,作AH ⊥x 轴于H ,则EF ∥AH ,∵AD =2DE ,∴DE =EA ,∵EF ∥AH ,∴==1,∴DF =FH ,∴EF 是△DHA 的中位线,∴EF =AH ,∵S △OEF =S △OAH =﹣,∴OF •EF =OH •HA ,∴OH =OF ,∴OH =HF ,∴DF =FH =HO =DO ,∴S △OAH =S △ADO =3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题反比例函数是一种特殊的函数形式,具有以下的一般形式: y =k/x (其中k为常数,x不等于0)。

反比例函数经常在数学和科学领域中出现,特别是在描述多种关系和量之间的相互影响时。

在这篇文章中,我们将探讨反比例函数面积问题。

面积问题是在求解几何形体的面积时经常遇到的一类问题。

反比例函数面积问题就是基于反比例函数的特性来解决与面积相关的问题。

让我们从一个具体的实例开始,以更好地理解反比例函数在面积问题中的应用。

假设有一个矩形,其长度为x,宽度为y。

我们知道,矩形的面积可以通过计算长度乘以宽度来得到。

我们将根据反比例函数的定义来描述此问题。

根据反比例函数的定义,我们有y = k/x。

将x和y分别替换为矩形的长度和宽度,我们得到y = k/x = l*w (其中l表示矩形的长度,w表示矩形的宽度)。

我们可以看到,在这个例子中,矩形的面积与其长度和宽度之间存在反比例关系。

当长度增加时,宽度会减小,以保持面积不变;反之亦然。

现在让我们来尝试解决一个具体的反比例函数面积问题。

问题:假设有一个矩形,其长度为8 cm,面积为24 cm²。

当长度增加到10 cm时,矩形的面积是多少?解法:我们可以使用反比例函数来解决这个问题。

根据反比例函数的定义,我们有y = k/x。

这里,y表示矩形的面积,x表示矩形的长度。

根据题目中给出的条件,我们可以将面积和长度表示为y = 24/x。

我们将已知的长度和面积带入公式,得到24 = 8/x。

现在我们可以解这个方程,求得反比例函数的常数k的值。

通过求解方程,我们得到k = 24*8 = 192。

现在我们可以使用得到的常数k来求解问题中给出的具体情况。

根据反比例函数的形式y = k/x,我们有y = 192/10 = 19.2 cm²。

所以,当长度增加到10 cm时,矩形的面积为19.2 cm²。

通过这个具体的例子,我们可以看到反比例函数如何在解决面积问题中发挥作用。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题
反比例函数面积问题通常是指与反比例函数相关的图形面积的计算
问题。

例如,给定反比例函数y=k/x的图像与坐标轴所围成的区域,要求该区域的面积。

解决这类问题通常需要应用积分学知识,因为反比例函数的图像通常是一个双曲线,与坐标轴围成的区域是一个不规则图形。

通过积分,我们可以求出这个不规则图形的面积。

具体地,如果要求反比例函数y=k/x在第一象限内与x轴、y轴所围成的区域面积,可以先求出该函数在第一象限内的图像与x轴之间的面积,然后再乘以2(因为反比例函数在第一、三象限内是对称的)。

这个面积可以通过定积分来计算,积分区间是从0到正无穷大,被积函数是y=k/x。

需要注意的是,由于反比例函数的图像在x轴和y轴上都趋于无穷大,
因此所求得的面积也是无穷大的。

但是,在某些特定情况下,例如给定一个特定的矩形区域,我们可以通过计算该矩形区域内反比例函数图像的面积来得到一个有限的数值。

总之,反比例函数面积问题需要根据具体情况进行具体分析,通常需要应用积分学知识和几何知识来解决。

以上是对于反比例函数面积问题5的回答,希望对你有所帮助。

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一)反比例函数中的面积问题类型1单支双曲线上一点一垂直形成的三角形的面积S△AOP=12|k| S△ABC=12|k| S△ABC=12|k|1.(2019·枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上.若AB=1,则k的值为(A)A.1B.2 2C. 2D.2类型2单支双曲线上一点两垂直形成的矩形面积S四边形PMON=|k|S四边形ACDE=S四边形EFGB2.如图,A,B两点在双曲线y=4x上,分别经过A,B两点向x轴、y轴作垂线段,已知S阴影=1,则S1+S2=(D)A.3 B.4 C.5 D.6类型3双曲线上不在同一象限上两点一垂线形成的三角形的面积S△ABM=|k| S△ABM=|k|S△CDE=S△ACD+S△ADE=12AD·|y C-y E| S△ABC=S△BCD+S△ACD=12CD·|x B-x A|3.(2019·黄冈)如图,一直线经过原点O,且与反比例函数y=kx(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.类型4双曲线上不在同一象限上两点两垂线形成的三角形或四边形的面积S△APP′=2|k|S▱AMBN=2|k|4.如图,A,B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)A.S=2 B.S=4C.2<S<4 D.S>45.(2019·郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为8.类型5双曲线上在同一象限上任意两点与原点形成的三角形的面积作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,S △OAM =S 四边形MEFB ,S △AOB =S 直角梯形AEFB .6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB=4.类型6 两条双曲线与一条平行于坐标轴的直线所形成的几何图形的面积S 矩形ABCD =|k 1-k 2| S ▱ABCD =|k 1-k 1| S △AOB =12|k 1-k 2| S △ABC =S △AOB =12|k 1|+12|k 2|7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x 上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是(C) A.32 B.52 C .4 D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1,S2,S3,则(B)A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=3,反比例函数y=kx(x>0)的图象经过点B,则k的值为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档