函数四则运算微分法则
微分概念及其运算
微分概念及其运算§2微分概念及其运算设y=f(x)在x点可导,即下面的极限存在:∆yf(x+∆x)-f(x)f'(x)=li=lim∆x→0∆x→0∆x∆x因此∆y=f'(x)+α,其中α→0(∆x→0),∆x)x+α∆x=f'(x∆)x+o(∆x)∆x→0于是∆y=f'(x∆,(函数的增量∆y=(∆x的线性函数)+o(∆x))物理意义:如果把y=f(x)视作时间x时所走到的路程,∆x时间内所走到的路程∆y=以匀速f'(x)运动所走过的路程f'(x)∆x+因为加速度的促进作用而产生的额外路程o(∆x)定义4.2设y=f(x)在(a,b)有定义,如果对给定的x∈(a,b),有∆y=f(x+∆x)-f(x)=a∆x+o(∆x),(∆x→0)其中a与∆x无关,则称f(x)在x点可微,并称a∆x为函数f(x)在x点的微分,记为dy=a∆x或df(x)=a∆x由前面的讨论得微分具备两小关键特征:2)微分是自变量的增量的线性函数;微分与函数增量∆y之差∆y-dy,是比∆x高阶的无穷小量.因此,称微分dy为增量∆y的线性主要部分。
事实上当dy≠0时o(∆x)∆ydy+o(∆x))=1=lim=lim(1+∆x→0∆x→0∆x→0dya∆xdylim即为∆y与dy就是等价无穷小量。
注1系数a是依赖于x的,它是x的函数,备注2微分dy既与x有关,又与∆x有关,而x和∆x就是两个互相单一制的变量,但它对∆x的依赖是线性的.基准1自由落体运动中,s(t)=12gt211g(t+∆t)2-gt222∆s=s(t+∆t)-s(t)===11g(2t+(∆t2))=gt∆t+g(∆t)222即∆s可表为∆t的线性函数和∆t的高阶无穷小量之和,由微分定义知,s(t)在t点可微,且微分ds=gt∆t它等于以匀速s'(t)=gt运动,在∆t时间内走过的路程.基准2圆面积y=πr2,∆y=π(r+∆r)2一πr2=2πr∆r+π(∆r)2.∆y可以则表示为∆r的线性函数与∆r的高阶无穷小之和,故函数在r连续函数,且微分dy=2πr∆r从几何来看,微分可以这样认知:2πr是圆周长,当半径r变大即圆面积膨胀时,设想圆周长保持不变,半径增大∆r 所引起的圆面积变化就是2πr∆r。
导数的基本公式和四则运算法则
导数的基本公式和四则运算法则导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
导数的基本公式和四则运算法则是学习导数的基础,也是解决导数相关问题的重要工具。
首先,我们来看导数的基本公式。
对于函数f(x),它在点x处的导数可以用以下公式表示:f'(x) = lim(h->0) [f(x+h) f(x)] / h.这个公式描述了函数在点x处的变化率,也就是函数曲线在该点的切线斜率。
通过这个公式,我们可以求得函数在任意点的导数值,从而描绘出函数的变化规律。
接下来,我们来看四则运算法则在导数中的应用。
四则运算法则包括加法、减法、乘法和除法。
在导数的计算中,我们可以利用这些法则简化复杂函数的导数计算。
对于两个函数f(x)和g(x),它们的和、差、积和商的导数计算规则如下:1. 和的导数,(f+g)'(x) = f'(x) + g'(x)。
2. 差的导数,(f-g)'(x) = f'(x) g'(x)。
3. 积的导数,(fg)'(x) = f'(x)g(x) + f(x)g'(x)。
4. 商的导数,(f/g)'(x) = (f'(x)g(x) f(x)g'(x)) / g(x)^2。
利用四则运算法则,我们可以将复杂函数的导数计算转化为简单函数的导数计算,从而更方便地求得函数的导数值。
在实际问题中,导数的基本公式和四则运算法则是非常有用的工具。
它们可以帮助我们分析函数的变化规律,解决最优化问题,以及研究曲线的性质。
因此,掌握导数的基本公式和四则运算法则对于理解微积分的重要性不言而喻。
希望通过本文的介绍,读者对导数的基本概念有了更清晰的认识,也能够更加灵活地运用导数的基本公式和四则运算法则解决实际问题。
函数的微分
dy f ( x)dx. ——微分计算公式 dy 此时, 定理可重述为: dy f ( x)dx f ( x). dx
10
dy dy dx. 故导数也称为“微商”. dx 导数的这种定义在某些场合下应用会很方便 .
求函数导数或微分的方法也称为“微分法”. 可微、可导、连续的关系
2
第五节
函数的微分
一、微分的定义 设有函数 y f ( x) , 当 x 在 x0 处有增量 x 时, 函数 y 有对应的增量 y f ( x0 x) f ( x0 ) .
当函数 f ( x ) 较为复杂时, y 的计算就比较麻烦.
例如 y arctan x , 在 x0 1 处有增量 x 0.02 , 求 y .
(保留3位小数)
y arctan1.02 arctan1 计算困难
任务: 为 y 寻求一个既简单(容易计算)又满足一定精度 要求的近似表达式.
3
实例:正方形金属薄片受热后面积的改变量.
设边长由 x0变到x0 x,
x0
x
( x ) 2
x
正方形面积 A x ,
2 0
2 A ( x0 x)2 x0
y f ( x0 ) , (2) 充分性 设 函数f ( x)在点x0可导, 则 lim x 0 x y f ( x 0 ) x lim 0 , 于是 y f ( x0 )x o(x) , x 0 x
即 y Ax o(x ) , 函数 f ( x )在点x0可微 .
3
求函数的改变量 y .
3 y ( x 0 x ) 3 x 0 2 3 x0 x 3 x 0 ( x ) 2 ( x ) 3 .
函数导数四则运算法则
函数导数四则运算法则
函数导数的四则运算法则是指当对函数的四则运算时,其导数的运算规则。
函数导数四则运算法则是微积分中的一个重要概念,在进行函数的计算时,以及在实际应用中,都有着重要的作用。
函数导数四则运算法则一共有四条,分别是:
1、加法法则:如果f(x)和g(x)是两个函数,那么它们的
和的导数是:f'(x)+g'(x)。
2、减法法则:如果f(x)和g(x)是两个函数,那么它们的
差的导数是:f'(x)-g'(x)。
3、乘法法则:如果f(x)和g(x)是两个函数,那么它们的
积的导数是:f(x)g'(x)+g(x)f'(x)。
4、除法法则:如果f(x)和g(x)是两个函数,那么它们的
商的导数是:[f'(x)g(x)-f(x)g'(x)]/[g(x)]^
2。
这四条函数导数四则运算法则也就是所谓的求导法则,是在函数求导中常用到的,它们分别表示了当函数进行加减乘除运算时,其导数的计算方法。
这些法则可以帮助我们更加简便、快速地求出函数的导数,从而解决函数求导中的问题。
函数导数的四则运算法则在实际应用中也有着重要的作用,比如在机器研究中,梯度下降法就使用了这些法则,它可以用来求解机器研究的复杂优化问题;此外,它还可以应用于统计学中的概率论,例如统计推断中的梯度下降法也使用了函数导数四则运算法则。
总之,函数导数四则运算法则是微积分中的一个重要概念,在数学计算、实际应用等方面都有着重要的作用,因此,研究这些法则也是十分重要的。
06 第六节 函数的微分
第五节 函数的微分在理论研究和实际应用中,常常会遇到这样的问题:当自变量x 有微小变化时,求函数)(x f y =的微小改变量)()(x f x x f y -∆+=∆. 这个问题初看起来似乎只要做减法运算就可以了,然而,对于较复杂的函数)(x f ,差值)()(x f x x f -∆+却是一个更复杂的表达式,不易求出其值. 一个想法是:我们设法将y ∆表示成x ∆的线性函数,即线性化,从而把复杂问题化为简单问题. 微分就是实现这种线性化的一种数学模型.分布图示★ 引言★ 问题的提出 ★ 微分的定义 ★ 可微的条件 ★ 例1-2 ★ 基本微分公式 ★ 微分四则运算法则 ★ 例3★ 例4 ★ 微分的几何意义★ 复合函数的微分法★ 例5 ★ 例6 ★ 例7 ★ 例8★ 例9★ 例10★ 微分近似计算公式 ★ 例11 ★ 例12★ 例13 ★ 例14★ 常用函数的近似计算公式★ 例15 ★ 例16★ 误差计算 ★ 例17 ★ 内容小结 ★ 课堂练习 ★ 习题 2- 6内容要点:一、 微分的定义:定义1 设函数)(x f y =在某区间内有定义, 0x 及x x ∆+0在这区间内, 如果函数的增量)()(00x f x x f y -∆+=∆可表示为)(x o x A y ∆+∆⋅=∆ (5.1)其中A 是与x ∆无关的常数, 则称函数)(x f y =在点0x 可微, 并且称x A ∆⋅为函数)(x f y =在点0x 处相应于自变量改变量x ∆的微分, 记作dy , 即x A dy ∆⋅= (5.2)二、函数可微的条件dx x f dy )('= (5.8))(x f dxdy '= (5.9)即,函数的导数等于函数的微分与自变量的微分的商. 因此,导数又称为“微商”.三、 微分的几何意义四、基本初等函数的微分公式与微分运算法则 五、 微分形式不变性:无论u 是自变量还是复合函数的中间变量, 函数)(u f y =的微分形式总是可以按微分定义的形式来写,即有du u f dy )('=这一性质称为微分形式的不变性. 利用这一特性,可以简化微分的有关运算. 六、利用微分进行近似计算: 近似值的计算 误差计算dy y ≈∆. (5.10)例题选讲:微分的定义例1(E01)求函数2x y =当x 由1改变到1.01的微分.解 因为,2xdx dy =由题设条件知 ,1=x 01.0101.1=-=∆=x dx 所以 .02.001.012=⨯⨯=dy例2(E02)求函数3x y =在2=x 处的微分. 解 函数3x y =在2=x 处的微分为 dx x dy x 2'3)(==.12dx =基本初等函数的微分公式与微分运算法则的应用例3(E03)求函数x e x y 23=的微分. 解 因为'23')(xex y =xxex ex 232223+=)23(22x ex x+=所以 dx x e x dx y dy x )23(22'+== 或利用微分形式不变性)()(2332xxed x x d edy +=dx ex dx x e xx232223⋅+⋅=.)23(22dx x ex x+=例4(E04)求函数xx y sin =的微分.解因为''sin ⎪⎭⎫⎝⎛=x x y 2sin cos x x x x -=所以 dx y dy '=.s i n c o s 2dx xxx x -=微分形式的不变性例5(E05)设),12sin(+=x y 求dy . 解 设,sin u y =,12+=x u 则)(sin u d dy =udu cos =)12()12cos(++=x d x dx x 2)12cos(⋅+=.)12cos(2dx x +=注: 与复合函数求导类似, 求复合函数的微分也可不写出中间变量, 这样更加直接和方便.例6 设),1ln(2x e y += 求.dy解 )1l n (2xe d dy +=)1(1122xxed e++=)(11222x d eexx+=x d x eexx2122+=.1222dx exe xx+=例7(E06)设,2sinxe y =求.dy解 应用微分形式不变性, 有 .2sin cos sin 2sin sin 2sin2222sin sinsin2sindx xexdxx ex xd ex d edy xxxx=⋅=⋅==例8(E07)已知,22xey x = 求dy .解 222222)()()(x x d eed x dy xx-=422222xxdxedx ex xx⋅-⋅=.)1(232dx xx ex-=例9(E08)在下列等式的括号中填入适当的函数, 使等式成立.(1) ;cos )(tdt d ω= (2) ).()()(sin 2x d x d = 解 ,cos )(sin tdt t d ωωω= ∴)(s i n 1c o s td t d t ωωω=);sin 1(t d ωω=一般地,有.cos sin 1tdt C t d ωωω=⎪⎭⎫⎝⎛+例10(E09)求由方程32y x e xy +=所确定的隐函数)(x f y =的微分dy . 利用微分进行近似计算解 对方程两边求微分, 得 ),2()(3y x d e d xy +=),()2()(3y d x d xy d exy+= ,32)(2dy y dx xdy ydx e xy +=+于是 .322dx yxeye dy xyxy --=例11(E09) 求x )x (f +=1在0=x 与3=x 处的线性化.解 首先不难求得xx f +='121)( ,则413(21)0(23(1)0(='='==),,),f f f f ,于是,根据上面线性化定义知)(x f 在0=x 处的线性化121)0)(0()0()(+=-'+=x x f f x L ,在3=x 处的线性化为4541)3)(3()3()(+=-'+=x x f f x L))(()()(000x x x f x f x L -'+=示意图见右,故x x 2111+≈+(在x=0处), 45411+≈+x x (在x=3处).例12(E11) 求)x ln()x (f +=1在0=x 的线性化. 解 首先求得)(x f 'x+=11,得1)0(='f ,又0)0(=f ,于是)(x f 在x=0处的线性化x x f f x L =-'+=)0)(0()0()(例13(E12)半径10厘米的金属圆片加热后, 半径伸长了0.05厘米, 问面积增大了多少?解 设,2r A π=10=r (厘米), 05.0=∆r (厘米).∴dA A ≈∆r r ∆⋅=π205.0102⨯⨯=ππ=(厘米2).例14(E13)计算0360cos ' 的近似值.解 设x x f cos )(=⇒,sin )('x x f -=x (为弧度),取,30π=x 360π=∆x⇒,21)3(=πf .23)3('-=πf所以 ⎪⎭⎫⎝⎛+=3603cos 3060cos 'ππ 3603s i n 3c o s πππ⋅-=3602321π⋅-=.4924.0≈例15计算下列各数的近似值.(1) (E14)35.998的近似值. (2) .03.0-e解 (1)335.110005.998-=310005.111000⎪⎭⎫ ⎝⎛-=30015.0110-=⎪⎭⎫ ⎝⎛⨯-=0015.031110.995.9=(2) 03.0103.0-≈-e .97.0=例16(E15) 最后我们来看一个线性近似在质能转换关系中的应用. 我们知道,牛顿的第二运动定律αm F =(α为加速度)中的质量m 是被假定为常数的,但严格说来这是不对的,因为物体的质量随其速度的增长而增长. 在爱因斯坦修正后的公式中,质量为2201c/v m m -=,当v 和c 相比很小时,22c /v 接近于零,从而有⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+≈-=22002202201212111c v m m c v m c/v m m 即 ⎪⎭⎫ ⎝⎛+≈2200121c v m m m , 注意到上式中K v m =2021是物体的动能,整理得)K (m v m v m c )m m (∆=-=≈-202020200212121,或 )K (c )m (∆∆≈2. (1)换言之,物体从速度0到速度v 的动能的变化)K (∆近似等于2c )m (∆. 因为8103⨯=c 米/秒,代入式(1)中,得≈)K (∆90 000 000 000 000 000m ∆焦耳,由此可知,小的质量变化可以创造出大的能量变化.例如,1克质量转换成的能量就相当于爆炸一颗2万吨级的原子弹释放的能量.例17 正方形边长为005.041.2±米, 求出它的面积, 并估计绝对误差与相对误差. 解 设正方形的边长为x ,面积为y ,则.2x y = 当41.2=x 时,).(8081.5)41.2(22m y ==.82.4241.241.2'====x x xy边长的绝对误差为,005.0=x δ ∴面积的绝对误差为).(0241.0005.082.42m x =⨯=δ ∴面积的相对误差为%.4.08081.50241.0≈=yy δ课堂练习1.求函数x x y -=的微分dy .2.因为一元函数)(x f y =在0x 的可微性与可导性是等价的, 所以有人说“微分就是导数, 导数就是微分”,判断这种说法对吗?3.设,0>A 且n A B <||, 证明1-+≈+n n n nAB A B A (A , B 为常数), 并计算101000的近似值.。
微分公式和运算法则
(cos x)sin x
d(cos x)sin xdx
(tan x)sec2 x
d(tan x)sec2xdx
(cot x)csc2x
d(cot x)csc2xdx
(sec x)sec x tan x
d(sec x)sec x tan xdx
(csc x)csc x cot x
d(csc x)csc x cot xdx
§ 2.2.1 微分概念
一、微分的定义
引例: 一块正方形金属薄片受温度变化的影响, 其
边长由 变到
问此薄片面积改变了多少?
设薄片边长为 x , 面积为 A , 则
当x在 取
得增量 时, 面积的增量为
关于△x 的
时为
线性主部 高阶无穷小
故
称为函数在 的微分
1
定义1: 若函数
在点 的增量可表示为
( A 为不依赖于△x 的常数)
解: 已知球体体积为
镀铜体积为 V 在
时体积的增量
因此每只球需用铜约为 (g)
17
2.误差估计 某量的精确值为 A , 其近似值为 a , 称为a 的绝对误差 称为a 的相对误差 若 称为测量 A 的绝对误差限 称为测量 A 的相对误差限
18
误差传递公式 :
若直接测量某量得 x , 已知测量误差限为
12
§ 2.2.3 高阶微分
1、二阶微分:一阶微分的微分称为二阶微分。记作
且有
(1)
2、n 阶微分:n-1阶微分的微分称为n阶微分,记作
且有
(2)
3、高阶微分:二阶以及二阶以上的微分统称为高阶微分。
例设
(2)求
解由
得
依公式(1)得 类似地,依公式(2)得
大一高等数学教材第一章
大一高等数学教材第一章高等数学是大一学生必修的数学课程,其内容涵盖了微积分、数学分析、线性代数等多个领域。
本篇文章将着重介绍大一高等数学教材的第一章内容,主要包括函数及其基本性质、极限及其运算法则以及导数和微分。
一、函数及其基本性质函数是一种数学工具,用于描述变量之间的依赖关系。
在高等数学中,函数被用来研究数学模型,解决实际问题。
函数的基本性质包括定义域、值域、奇偶性、单调性、周期性等。
其中,定义域是指函数的输入集合,值域是指函数的输出集合。
奇偶性是指函数关于原点的对称性质,单调性是指函数在定义域内的增减性质,周期性是指函数具有重复性质。
二、极限及其运算法则极限是一种数学概念,用于描述函数在某一点附近的变化趋势。
在大一高等数学中,极限的计算是重要的基础知识。
极限的运算法则包括四则运算法则、复合函数的极限法则、三角函数的极限法则等。
四则运算法则指的是对于加减乘除四种基本运算,函数极限的性质。
复合函数的极限法则用于求解复合函数在某一点的极限,三角函数的极限法则用于求解三角函数在特定角度下的极限。
三、导数和微分导数是函数在某一点的变化率,用于描述函数在给定点的瞬时变化情况。
微分是导数的一种特殊形式,可以看作是函数在给定点的线性近似。
导数和微分在大一高等数学中占据重要地位,广泛应用于物理、经济、工程等实际问题的求解。
导数的计算包括基本导数公式、求导法则和高阶导数。
微分的计算包括微分法则和微分方程等内容。
总结:大一高等数学教材的第一章主要介绍了函数及其基本性质、极限及其运算法则以及导数和微分。
函数是数学中重要的工具,用于研究数学模型和解决实际问题。
极限的计算是数学分析的基础,对于化学、物理等学科也有重要应用。
导数和微分是函数变化率的描述方法,可以应用于求解实际问题。
通过学习第一章内容,学生将建立起基本的数学思维模式和分析问题的能力,为后续学习铺垫了坚实的基础。
以上就是大一高等数学教材第一章的主要内容介绍。
02-3微分法二阶导数和二阶微分(1)讲解
[ f i ( x )] f i( x );广到任意有限个函数的情形
( uvw ) uvw uvw uvw
[ f i ( x )] f1( x ) f 2 ( x ) f n ( x )
i 1 n
f1 ( x ) f 2 ( x ) f n( x ) f i( x ) f k ( x );
f ( x )在x处可导.
(1)即是和、差的导数等于导数的和、差 注 ① (2)即是乘积的导数等于第一个因子的导数乘以 第二个因子再加上第一个因子乘以第二个 因子的导数 (3)即是商的导数等于分子的导数乘以分母减去分 子乘以分母的导数,再除以分母的平方 ② (1)可推广到任意有限个可导函数的情形
§2-3
微分法 二阶导数和二阶微分
一、四则运算法则
定理 如果函数u( x ), v ( x )在点 x处可导, 则它 们的和、差、积、商(分母不为零)在点 x处也 可导, 并且
(1) [u( x ) v ( x )] u( x ) v ( x ); ( 2) [u( x ) v ( x )] u( x )v ( x ) u( x )v ( x ); u( x ) u( x )v ( x ) u( x )v ( x ) ( 3) [ ] (v ( x ) 0). 2 v( x ) v ( x)
(sin x ) cos x sin x(cos x ) cos 2 x
1 cos 2 x sin2 x 2 sec x 2 2 cos x cos x
即
(tan x ) sec 2 x .
同理可得
(cot x ) csc 2 x .
例3 解
求 y sec x 的导数 .
函数的四则运算的微分法则
(csc x) csc x cot x
(a x ) a x ln a
(e x ) e x
(log
x a
)
1 x ln
a
(ln x) 1 x
(arcsin x) 1 1 x2
d(sec x) sec x tan xdx
d(csc x) csc x cot xdx
y e与t ln x复合而成,
dy
et
e ln x
dx
x
x
x x 1 .
x
验证了第一节的例二.
由上例可见,初等函数的求导必须熟悉. (a)基本初等函数的导数公式; (b)复合函数的分解; (c)复合函数的求导公式.
复合函数的分解过程熟悉后,可以不写 中间变量,而直接写出结果.
d (a x ) a x ln adx
d (e x ) e xdx
d
(log
x a
)
1 x ln a
dx
d(ln x) 1 dx x
d(arcsin x) 1 dx 1 x2
(arccos x) 1 1 x2
d(arccos x) dx 1 x2
(arctan x) 1 1 x2
于是有
y x
1 x
, 因为
f
( x)连续,
y
所以当x 0时,必有y 0
故f ( x) lim y x0 x
lim 1 y0 x
1
( y)
( ( y) 0)
即 f ( x) 1 . y
( y)
例5.求 y arcsin x 的导数.
四则运算与复合函数求导法则
四则运算与复合函数求导法则在微积分中,求导是一个重要的概念和工具。
通过求导,我们可以计算函数在某一点上的斜率,进而研究函数的性质和变化规律。
本文将介绍四则运算和复合函数求导法则,帮助读者理解和应用这些常用的求导规则。
一、四则运算求导法则四则运算是指加法、减法、乘法和除法。
求导的四则运算法则可总结如下:1. 加减法:对于两个函数的和或差,求导后的结果等于各自函数的导数之和或差。
即如果函数f(x)和g(x)可导,则有:(f(x) ± g(x))' = f'(x) ± g'(x)2. 乘法:对于两个函数的乘积,求导后的结果等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。
即如果函数f(x)和g(x)可导,则有:(f(x) * g(x))' = f'(x) * g(x) + g'(x) * f(x)3. 除法:对于两个函数的商,求导后的结果等于第一个函数乘以第二个函数的导数减去第二个函数乘以第一个函数的导数,再除以第二个函数的平方。
即如果函数f(x)和g(x)可导,并且g(x)≠0,则有: (f(x) / g(x))' = (f'(x) * g(x) - g'(x) * f(x)) / (g(x))^2二、复合函数求导法则复合函数是由两个或多个函数构成的复合形式,求导的复合函数法则可总结如下:1. 外函数求导后不变,内函数求导后乘上外函数对内函数的导数:若y = f(u),u = g(x),则y对x的导数为:dy/dx = dy/du * du/dx = f'(u) * g'(x)2. 链式法则:对于一个复合函数,可以将其表示为一系列简单的函数的复合形式,利用链式法则求导,即将求导过程分解为多个简单函数的求导过程。
若y = f(u),u = g(v),v = h(x),则有:dy/dx = dy/du * du/dv * dv/dx = f'(u) * g'(v) * h'(x)综上所述,四则运算和复合函数求导法则是微积分中常用的工具。
一、微分的定义二、微分的基本公式三、微分的四则运算法则
dy | x x0 , 或df | x x0 , 即 dy | x x0 A x.
定理3.7 y=f(x)可微的充分必要条件是y=f(x)可导,且 有 dy f ( x)dx .
dy 由于 f ( x) ,即函数的导数等于函数的微 dx 分与自变量微分之比,因此导数也称微商.
证
d(u v) (u v)dx (u v)dx
udx vdx du dv.
d(uv) (uv)dx (uv uv)dx
v udx u vdx vdu udv.
u 定理3.9 设u=u(x),v=v(x)可微,且 v 0 ,则 可微, v u vdu udv 且有 d ( ) . 2 v v
(a 0,a 1).
d tan x sec2 xdx.
d cot x csc xdx.
2
d sec x sec x tan xdx. d csc x csc x cot xdx.
1 d arsin x dx. 2 1 x 1 d arccos x dx. 2 1 x
当立方体的边长从 x0 变到 x0 x 时,相应的体 积增量
3 2 2 V ( x0 x) 3 x0 3 x0 x (3x0 (x) 2 (x) 3 ).
函数增量 V 分成两部分,一部分是 x 的线性部分
2 3x0 x, 一部分是关于 x 的高阶无穷小
1 d arctan x dx . 2 1 x 1 d arccot x dx . 2 1 x
三、微分的四则运算法则
定理3.8 设u=u(x),v=v(x)可微 ,则 u v , u , v可微, 且有
大一高数考试必背知识点
大一高数考试必背知识点
在大一高数考试中,准备充分且掌握重要的知识点非常重要。
下面是一些大一高数考试必背的知识点,希望对你有所帮助。
一、函数与极限
1. 函数的定义和性质
2. 极限的定义和性质
3. 极限运算法则
4. 无穷小与无穷大
5. 函数的连续性和间断点
6. 函数的导数和微分
二、导数与微分
1. 导数的定义和性质
2. 导数的四则运算与求导法则
3. 高阶导数和隐函数求导
4. 微分的定义和性质
5. 微分中值定理和罗尔定理
三、积分
1. 不定积分和定积分的概念
2. 基本积分表和常用积分公式
3. 定积分的性质和基本定理
4. 反常积分的概念和判定
5. 曲线的面积与弧长
四、微分方程
1. 微分方程的概念和基本形式
2. 一阶微分方程的解法
3. 高阶线性微分方程及其特解
4. 变量分离法和齐次方程
5. 常系数线性齐次方程
五、多元函数与偏导数
1. 多元函数的定义和性质
2. 偏导数的定义和计算
3. 隐函数的偏导数
4. 方向导数和梯度
5. 极值和最大值最小值
六、空间解析几何
1. 点、直线和平面的方程
2. 空间曲线的参数方程
3. 空间曲面的方程和性质
4. 直线与曲面的位置关系
5. 空间向量的运算和坐标表示
以上是大一高数考试必背的知识点,通过充分理解这些知识点并进行适当的练习和应用,相信你将能够在考试中取得好成绩。
祝你顺利通过考试!。
第二章第五节 函数的微分
高等数学
二、微分的几何意义
当x从x0变到x0+∆x时, ∆y是曲线上点的纵坐 标的增量; dy是过点(x0, f(x0))的切 线上点的纵坐标的增量. 当|∆x|很小时, |∆y−dy|比|∆x|小得多. 因此, 在点M的邻近, 我们可以用切线段来近似代 替曲线段. 记 自变量的微分, ∆y = ∆x = dx 称∆x为 自变量的微分 记作 dx dy = f ′(x) 导数也叫作微商 则有 dy = f ′(x) dx 从而 dx
高等数学
§2.5函数的微分 函数的微分
一、微分的概念 二、微分的几何意义 三、微分的运算法则 四、微分在近似计算中的应用
高等数学
一、微分的概念 引例: 引例 一块正方形金属薄片受温度变化的影响, 其 边长由 x0 变到 x0 + ∆x , 问此薄片面积改变了多少? 设薄片边长为 x , 面积为 A , 则 A= x2 , 当 x 在 x0 取 得增量 ∆x 时, 面积的增量为 (∆x)2 x0∆x ∆x 关于△x 的 ∆x →0时为 线性主部 高阶无穷小 故 称为函数在 x0 的微分
高等数学
2、 微分的四则运算法则 、 设 u(x) , v(x) 均可微 , 则
= du ± dv = vdu + udv
3. 复合函数的微分 分别可微 , 则复合函数 的微分为
(C 为常数)
= f ′(u) ϕ′(x) dx dy = f ′(u) du
du
微分形式不变
高等数学
若y=f(u), u=j(x), 则dy=f ′(u)du. 例3 y=sin(2x+1), 求dy. 解 把2x+1看成中间变量u, 则 dy=d(sin u) =cos udu =cos(2x+1)d(2x+1) =cos(2x+1)⋅2dx =2cos(2x+1)dx. 在求复合函数的导数时, 可以不写出中间变量. 例4. y =ln(1+ex2 ) , 求 dy. 解 dy =d ln(1+ex2 ) = 1 2 d(1+ex2 ) 1+ex 1 ⋅ex2d(x2) = 1 ⋅ex2 ⋅2xdx = 2xex2 dx = . x2 x2 x2 1+e 1+e 1+e
导数与微分导数的基本公式与运算法则
第2讲的基本公导数的定义提供了求导数的方法.但对于一些比较复杂的函数,求导数时不仅烦琐,而且需要相当的技巧.本节将给出所有基本初等函数的求导公式和导数的四则运算法则及复合函数的求导法则,借助于这些法则和公式,就能比较方便地求出常见函数的导数.01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系常见函数都是由基本初等函数生成的,因此首先考虑基本初等函数的导数。
利用导数的定义,可以比较容易的得到它们的求导公式。
先回顾一下导数的定义通过上一节的例题,我们知道ꢀ例1ꢀ注ꢀ例2证明根据定义,ꢀ例3证明ꢀ例4思路对于分段函数的导数,在各区段内直接求导即可;在分界点处需要通过单侧导数确定导数的存在性。
数的导数解01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系初等函数是由基本初等函数经过有限次四则运算和复合运算得到的,前面已经求得基本初等函数的导数,如果能够建立起导数的运算与函数运算之间的关系,则会使计算简化很多。
下面推导几个主要的求导法则,借助这些法则以及上节得到的导数公式,可以求出一系列函数的导数公式,并在此基础上解决初等函数的求导问题.ꢀ定理2.3并不像极限的四则运算法则那么美好证明(1)根据导数的定义,(2)可导必连续(3)(1)和(差)的求导法则可以推广至有限个可导函数的情形,即(2)乘积的求导法则中注意:每次只对一个因子求导!这一求导法则也可以推广至有限个可导函数的连乘积,例如ꢀ例5解根据定理2.3,有练习ꢀ例6解ꢀ例7解=sec2ꢀ.ꢀ例8解01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系ꢀ定理2.4(反函数求导法则)需改写!即:反函数的导数等于直接函数导数的倒数。
ꢀ例9证明ꢀ例10证明常见基本初等函数的导数表01基本初等函数的导数02求导法则03反函数的导数04可导与连续的关系在研究函数的变化率时,经常需要对复合函数进行求导。
为此有证明或由定理可知,复合函数对自变量的导数等于函数对中间变量的导数乘以中间变量对自变量的导数.此法则又称为复合函数的链式求导法则.因此,在对复合函数求导时,首先需要熟练引入中间变量,把复合函数分解成一串简单的函数,再用链式法则求导,最后把中间变量用自变量的函数代替.ꢀ例11求下列函数的导数:解熟练掌握链式法则后,可以不必写出中间变量和中间过程。
导数的四则运算法则
导数的四则运算法则导数的四则运算法则是微积分中非常重要的一个内容,它们是利用导数的性质进行四则运算的基本规则。
本质上,这些规则是微分操作与代数运算之间的对应关系,它们使得我们能够灵活、高效地应用导数概念解决各种实际问题。
1. 常数倍法则:设k是常数,对于任意可导函数f(x),有d/dx (k·f(x)) = k·(d/dx) f(x)。
它表示常数倍的函数导数等于常数倍的函数原函数的导数。
2. 常数法则:对于常数c,有d/dx(c) = 0。
它表示常数的导数等于0,因为常数在任意两点之间没有变化。
3.基本变换法则:设f(x)和g(x)是可导函数,对于任意实数a和b,有:a. d/dx (f(x) ± g(x)) = (d/dx)f(x) ± (d/dx)g(x),它表示函数的加减运算在取导数时可以分别取导。
b. d/dx (a·f(x) ± b·g(x)) = a·(d/dx)f(x) ±b·(d/dx)g(x),它表示常数倍的函数的加减运算在取导数时可以先取导再进行加减运算。
4.乘积法则:设u(x)和v(x)是可导函数,对于任意实数a和b,有:d/dx (u(x)·v(x)) = u(x)·(d/dx)v(x) + v(x)·(d/dx)u(x),它表示两个函数乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。
特别地,若其中一个函数是常数函数,则该法则简化为常数倍法则。
5.商法则:设u(x)和v(x)是可导函数,对于任意实数a和b(b≠0),有:d/dx (u(x)/v(x)) = (v(x)·(d/dx)u(x) -u(x)·(d/dx)v(x))/v^2(x),它表示两个函数商的导数等于分子函数乘以分母函数的导数再减去分母函数乘以分子函数的导数,最后除以分母函数的平方。
高阶无穷小的四则运算公式(一)
高阶无穷小的四则运算公式(一)高阶无穷小的四则运算公式在微积分中,高阶无穷小是指当一个变量趋向于无穷大或无穷小时变得比其他无穷小更加快速的函数。
四则运算是数学中最基本的运算,而高阶无穷小的四则运算公式则是在处理微积分问题时经常用到的。
加法运算两个高阶无穷小的和仍然是一个高阶无穷小。
公式如下:lim x→a (f (x )+g (x ))=lim x→a f (x )+lim x→ag (x ) 其中,a 是趋向的点。
举个例子:lim x→0(2x 2+3x 3)=lim x→02x 2+lim x→03x 3=0+0=0 减法运算两个高阶无穷小的差仍然是一个高阶无穷小。
公式如下:lim x→a (f (x )−g (x ))=lim x→a f (x )−lim x→ag (x ) 同样可以举个例子来说明:lim x→0(2x 2−3x 3)=lim x→02x 2−lim x→03x 3=0−0=0乘法运算一个高阶无穷小与一个常数相乘仍然是一个高阶无穷小。
公式如下:lim x→a (c ⋅f (x ))=c ⋅lim x→af (x ) 其中,c 为常数。
例如:lim x→0(2x 2)=2⋅lim x→0x 2=2⋅0=0 除法运算一个高阶无穷小除以一个趋于零的数仍然是一个高阶无穷小。
公式如下:lim x→a (f (x )g (x ))=lim x→af (x )lim x→ag (x ) 这里需要注意的是,g (x )不能趋于零。
举个例子:lim x→0(2x 23x 3)=lim x→02x 2lim x→03x 3=00=undefined 以上就是高阶无穷小的四则运算公式及对应的例子。
在进行微积分中的计算时,可以根据这些公式来处理高阶无穷小,使得计算更加简便和准确。
极限运用法则
极限运用法则
极限运用法则是微积分中的一个重要概念,用于求解复杂函数的极限。
它包括以下几个法则:
1. 四则运算法则:对于函数和常数的加、减、乘、除运算,可以分别对函数和常数求极限,然后进行相应的运算。
2. 乘积法则:若两个函数在某一点的极限存在,则它们的乘积在该点的极限也存在,且等于各自的极限之积。
3. 商法则:若两个函数在某一点的极限存在,并且除数的极限不为零,则它们的商在该点的极限也存在,且等于被除数的极限除以除数的极限。
4. 链式法则:若函数y=f(g(x))是由两个函数的复合所构成,其中g(x)是x的函数,f(y)是y的函数,当x趋于某一点a时,
g(x)趋于某一点b,且f(y)在b处连续,那么复合函数y=f(g(x))在a点的极限存在,并等于f(y)在b点的极限。
5. 反函数法则:若函数y=f(x)在某一点a处的极限存在且不为零,则它的反函数x=f^(-1)(y)在f(a)处的极限也存在,并等于f(x)在a点的极限的倒数。
以上就是极限运用法则的主要内容,它们为求解复杂函数的极限提供了一定的方便和快捷的方法。