两角和与差及二倍角的三角函数公式
5.两角和与差、二倍角公式
5.两角和与差、二倍角公式一、相关概念及知识点 1.两角和与差的三角函数()βαβαβαsin cos cos sin sin +=+ ()βαβαβαs in c o sc o s s in s in -=- ()cos cos cos sin sin αβαβαβ+=- ()βαβαβαs in s in c o s c o s c o s+=- 2.二倍角公式: αααcos sin 22sin =22222cos sin12sin 2cos 11tan cos22tan tan2αααααααα-=-=--==以下公式不作要求 3. 半角公式2cos 12sin αα-±=2c o s 12c o s αα+±=t a n 2α=ααααs in c o s 1c o s 1s in -=+4. 万能公式:22tan 2sin 1tan 2ααα=+ 221t a n 2c o s 1t a n 2ααα-=+22t a n 2t a n 1t a n 2ααα=-5. 积化和差:()()[]βαβαβα-++=sin sin 21c o s sin ()()[]βαβαβα--+=s in s in 21s in c o s ()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=c o s c o s 21s in s in 6. 和差化积:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2c o s 2s in 2s in s in y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-2s in 2c o s 2s in s in y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2cos 2cos 2cos cos y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=-2s in 2s in 2c o s c o s y x y x y x重要结论:1.sin α±cos α)4πα±.sin()2.tan tan tan()(1tan tan )cos cos αβαβαβαβαβ±±=±=3.a sin α+b cos α(α+φ(α-φ1),. 4.tan α+cot α=sec α·csc α=2sin 2α. 5.tan α-cot α=-2ctg2α.6.cot α±cot β=sin()sin sin βααβ±. 7.(sin α±cos α)2=1±sin2α.8.21cos sin 22αα-=. 9.21cos cos 22αα+= .10.αααααcos3cos 43cos ,sin 4sin 33sin 33-=-= 11.1tan tan().1tan 4απαα±=± 二、重点难点两角和与差、二倍角公式三、课前预习1、下列各式中,值为12的是 ( ) A 、1515sin cosB 、221212cossin ππ- C 、22251225tan .tan .-D2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 3、若02πβα<<<且45513cos(),sin()αβαβ+=-=,那么2cos α的值是( ) A 、6365 B 、6365- C 、3365 D 、5665或1365-4、已知,αβ为锐角且cos αβ==,则αβ+的值等于____。
三角函数专题2:两角和与差的正弦、余弦和正切公式
两角和与差的正弦、余弦和正切公式考点要求(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式. (2)二倍角的三角函数公式①能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.②利用两角和的公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 一 两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β. (2)cos(α±β)=cos_αcos_β∓sin_αsin_β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.公式的变形 公式T (α±β)的变形:(1)tan α+tan β=tan(α+β)(1-tan_αtan_β). (2)tan α-tan β=tan(α-β)(1+tan_αtan_β). 3.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin_αcos_α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α. 4.公式C 2α的变形(1)sin 2α=12(1-cos 2α).(2)cos 2α=12(1+cos 2α).5.公式的逆用(1)1±sin 2α=(sin α±cos α)2. (2)sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.题型一 给角求值1.(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .-32B.32 C .-12 D.12解析:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=12.答案:D 2.2cos 10°sin 70°-tan 20°=( )A. 3B.3-12 C .1 D.32解析:利用三角函数公式求解.2cos 10°sin 70°-tan 20°=2cos 10°cos 20°-sin 20°cos 20°=2cos 30°-20°-sin 20°cos 20°=2⎝ ⎛⎭⎪⎫32cos 20°+12sin 20°-sin 20°cos 20°=3,故选A.答案:A题型二 给值求值问题1. (1)(2015·高考重庆卷)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57D.56[解析] tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.[答案] A2.(2016·贵阳一模)已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( )A.79B.13 C .-13 D .-79[解析] 法一:∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=79,∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79.法二:∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3+α=13, ∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=29-1=-79.[答案] D3.已知sin 2α=13,则cos 2⎝⎛⎭⎪⎫α-π4=( )A .-13B .-23 C.13 D.23解析:∵cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎪⎫α-π4=23.答案:D4.已知α为第二象限角,cos α=-35,则tan 2α的值为( )A.2425 B.247 C .-247 D .-2425解析:因为α为第二象限角, 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, 所以tan α=sin αcos α=-43,tan 2α=2tan α1-tan 2α=2·⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.题型三 三角函数式的化简1.化简(0<θ<π).【解析】因为0<θ<π,所以0<θ2<π2,所以原式===-cos θ.【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin2θ2-cos2θ2=-cos θ. 2.化简2cos4x -2cos2x +122tan(π4-x)sin2(π4+x).θθθθθ cos 22)2cos 2 )(sin cos sin 1(+-++2cos 2)2cos 2 )(sin 2 cos 22 cos 2 sin 2(22θθθθθθ-+2cos 2)2cos 2 (sin 2 sin 222θθθθ-【解析】原式=12(2cos2x -1)22tan(π4-x)cos2(π4-x)=cos22x 4cos(π4-x)sin(π4-x)=cos22x 2sin(π2-2x)=12cos 2x.3. 三角函数式的求值【例2】已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos 2x2cos(π4+x)sin x的值.【解析】(1)由sin x 2-2cos x 2=0⇒tan x2=2,所以tan x ==2×21-22=-43.(2)原式=cos2x -sin2x 2(22cos x -22sin x)sin x [=(cos x -sin x)(cos x +sin x)(cos x -sin x)sin x =cos x +sin x sin x =1tan x +1=(-34)+1=14.【变式训练2】2cos 5°-sin 25°sin 65°= .【解析】原式=2cos(30°-25°)-sin 25°cos 25°=3cos 25°cos 25°= 3.4.已知f(x)=1-x ,θ∈(3π4,π),则f(sin 2θ)+f(-sin 2θ)= .【解析】f(sin 2θ)+f(-si n 2θ)=1-sin 2θ+1+sin 2θ=(sin θ-cos θ)2+(sin θ+cos θ)2=|sin θ-co s θ|+|sin θ+cos θ|.因为θ∈(3π4,π),所以sin θ-cos θ>0,sin θ+cos θ<0.所以|sin θ-cos θ|+|sin θ+cos θ|=sin θ-cos θ-sin θ-cos θ=-2cos θ.题型四 三角函数式的简单应用问题1.】已知-π2<x <0且sin x +cos x =15,求:(1)sin x -cos x 的值;(2)sin3(π2-x)+cos3(π2+x)的值.【解析】(1)由已知得2sin xcos x =-2425,且sin x <0<cos x ,所以sin x -cos x =-(sin x -cos x)2=-1-2sin xcos x =-1+2425=-75. (2)sin3(π2-x)+cos3(π2+x )=cos3x -sin3x =(cos x -sin x)(cos2x +cos xsin x +s in2x)2tan 12tan 22xx=75×(1-1225)=91125. 【点拨】求形如sin x ±cos x 的值,一般先平方后利用基本关系式,再求sin x ±cos x 取值符号. 2.化简1-cos4α-sin4α1-cos6α-sin6α.【解析】原式=1-[(cos2α+sin2α)2-2sin2αcos2α]1-[(cos2α+sin2α)(cos4α+sin4α-sin2αcos2α)]=2sin2αcos2α1-[(cos2α+sin2α)2-3sin2αcos2α]=23.总结提高1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具. (1)它能够解答三类基本题型:求值题,化简题,证明题; (2)对公式会“正用”、“逆用”、“变形使用”;(3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.题组 基础能力提升1、已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin(π+α)=( ) A .-1-k 2B .1-k 2C .±1-k 2D .-k【答案】A【解析】由cos α=k ,α∈⎝⎛⎭⎪⎫π2,π得sin α=1-k 2,∴sin(π+α)=-sin α=-1-k 2.故选A.2、已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B .3715 C.3720D .1315【答案】D【解析】.∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.故选D.3、已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ=( )A .-π6B .-π3C .π6D .π3【答案】D【解析】∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3. ∵|θ|<π2,∴θ=π3.4、已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43 D .-43【答案】B【解析】因为x ∈⎝ ⎛⎭⎪⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B.5、已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α=( )A.2 23B .-223C .13D .-13【答案】D【解析】∵cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝ ⎛⎭⎪⎫α-π4=-13. 6、若sin ⎝ ⎛⎭⎪⎫π2+θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】B【解析】∵sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以θ是第二象限角,故选B.7、已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300° D .60°【答案】C【解析】因为sin 150°=12>0,cos 150°=-32<0,所以角α终边上一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以该点在第四象限,由三角函数的定义得sin α=-32,又0°≤α<360°,所以角α的值是300°,故选C. 8、已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15B .-35C .15D .35【答案】B9.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43 B.34 C .-34D .±34解析:因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35,显然α在第三象限,所以cos α=-45,故tan α=34.答案:B10.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377C.31010D.13解析:由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.答案:C11.(2015·枣庄模拟)已知cos α=15,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫π2+αtan α+πcos -αtan α的值为( )A .2 6B .-2 6C .-612D.612解析:cos ⎝ ⎛⎭⎪⎫π2+αtan α+πcos -αtan α=-sin αtan αsin α=-cos αsin α,∵cos α=15,-π2<α<0,∴sin α=-265,原式=612.答案:D12.已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:由2tan α·sin α=3,得2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32.答案:B13.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限14、现有如下命题:①若点P (a ,2a )(a ≠0)为角α终边上一点,则sin α=255;②同时满足sin α=12,cos α=32的角有且仅有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ在第一象限. 则其中正确的命题是________.(将正确命题的序号填在横线上) 【答案】③【解析】①中,当α在第三象限时,sin α=-255,故①错误;②中,同时满足sin α=12,cos α=32的角为α=2k π+π6(k ∈Z),有无数个,故②错误;③正确;④θ可能在第一象限或第四象限,故④错误.综上选③.15、已知sin x +3cos x 3cos x -sin x =5,则sin x cos x +cos 2x =________.【答案】35.【解析】由已知,得tan x +33-tan x=5,解得tan x =2,所以sin x cos x +cos 2x =sin x cos x +cos 2x sin 2x +cos 2x =tan x +1tan 2x +1=2+122+1=35. 16、已知在△ABC 中,tan A =-512,则cos A =________.【答案】-1213【解析】∵在△ABC 中,tan A =-512,∴A 为钝角,cos A <0.由sin A cos A =-512,sin 2A +cos 2A =1,可得cos A=-1213.17、若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 【答案】1- 5【解析】由题意知:sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得:m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 18、若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin αcos α的值等于________.【答案】-25【解析】由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,则tan α=-2,所以sin α cos α=tan α1+tan 2α=-25. 19.(2015·高考广东卷)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α-1-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.20、已知f (α)=sin π-αcos 2π-αtan ⎝⎛⎭⎪⎫-α+3π2tan ⎝ ⎛⎭⎪⎫π2+α·sin -π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值.【答案】(1) -cos α (2)265【解析】(1)f (α)=sin α·cos α·tan ⎝ ⎛⎭⎪⎫-α+3π2-2πtan ⎝ ⎛⎭⎪⎫π2+α·sin α=sin α·cos α·⎣⎢⎡⎦⎥⎤-tan ⎝ ⎛⎭⎪⎫π2+αtan ⎝ ⎛⎭⎪⎫π2+α·sin α=-cosα.(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15,∴sin α=-15,又α是第三象限角,∴cos α=-1-sin 2α=-2 65.故f (α)=265.。
5.4 两角和与差、二倍角的三角函数公式
高考总复习数学 高考总复习 数学
�
高考总复习数学 高考总复习 数学
1 + cos 2 x 1 + sin 2 x 解: f ( x) = 2 2
2 2 2 1 = ( sin 2 x + cos 2 x) + 2 2 2 2 2 π 1 = sin(2 x + ) + 2 4 2
3π 2 1 1 (I) f ( ) = sin π + = 8 2 2 2
(Ⅰ)求 f ( x) 的定义域; (Ⅱ)若角a在第一象限且
3 cos α = 5
,求 f (α )
高考总复习数学 高考总复习 数学
π sin x + ≠ 0 解:(Ⅰ) 由 2 π x ≠ kπ ( k ∈ Z ) 即
π 得 x ≠ + kπ , 2
2
π 故 f ( x) 的定义域为 x ∈ R | x ≠ kπ ,k ∈ Z 2
1 + cos 2α + sin 2α 2 cos 2 α + 2sin α cos α = = cos α cos α
14 = 2(cos α + sin α ) = 5
高考总复习数学 高考总复习 数学 【点评与感悟 点评与感悟】求值,化简,证明是三角函数中最常见的题型, 点评与感悟 其解题一般思路为 "五遇六想"即:遇到切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值; 想消元,引辅角. "五遇六想"作为解题经验的总结和概括,操 作简便,十分有效.其中蕴含了一个变换思想(找差异,抓联 系,促进转化),两种数学思想(转化思想和方程思想),三 个追求目标(化为特殊角的三角函数值,使之出现相消项或相 约项),三种变换方法(切化弦法,消元降次法,辅助元素法).
两角和与差及二倍角三角函数公式
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质
高考数学两角和与差及二倍角的三角函数公式课件
-23×12+ 35× 23=
15-2 6.
故选 D. 答案:D
(2)4sin 80°-csoins 1100°°=(
A. 3
B.- 3
) C. 2
D.2 3-3
解析:因
4sin
80°-csoins
1100°°=4sin
80°sin10 °-cos sin 10°
10°=
2sin
20°-cos sin 10°
10°=2sin30°-sin101°0°-cos
【规律方法】三角函数的给角求值,关键是把待求角用已 知角表示:
①已知角为两个时,待求角一般表示为已知角的和或差; ②已知角为一个时,待求角一般与已知角成“倍的关系” 或“互余、互补”的关系.
考点 2 给值求值问题 例 2:(1)(2016 年新课标Ⅰ)已知 θ 是第四象限角,且 sinθ+π4=35,则 tanθ-π4=________.
1.两角和与差的三角函数
三角函数
两角和
正弦
sin(α+β)=sin αcos β+cos αsin β
余弦
cos(α+β)=_c_o_s_α__co_s__β_-__s_in__α_si_n__β_
正切
tan(α+β)=1t-antαan+αttaannββ
简写形式 Sα+β Cα+β
Tα+β
(续表) 三角函数 正弦 余弦
考点 3 给值求角问题
例 3:已知 A,B 均为钝角,且 sin A= 55,sin B= 1100,求 A+B 的值.
解:∵A,B 均为钝角,且 sin A= 55,sin B= 1100,
∴cos A=-
1-sin2A=-
2 =-2 5
两角和与差及二倍角公式
cos2α-sin2α=cos2α, 2tan =tan2α, 2 1 tan
1±sin2α=sin2α+cos2α±2sinαcosα =(sinα±cosα)2,
1+cos2α=2cos2α,
1-cos2α=2sin2α.
考点陪练
1.sin15°cos75°+cos15°sin105°等于(
第十八讲
两角和与差及二倍角公式
回归课本
1.C(α-β)∶cos(α-β)=cosαcosβ+sinαsinβ C(α+β)∶cos(α+β)=cosαcosβ-sinαsinβ
S(α+β)∶sin(α+β)=sinαcosβ+cosαsinβ
S(α-β)∶sin(α-β)=sinαcosβ-cosαsinβ
答案:B
则sin 等于 33 A. 65 33 C. 65
3 5 5.已知cos( ) , sin , 且 0, , , 0 , 5 13 2 2
63 B. 65 63 D. 65
解析 :由于 0, , , 0 ,因此 (0, ). 2 2 3 又由于cos( ) 0,因此 0, . 5 2 4 12 sin( ) 且cos , sin sin 5 13 sin cos cos sin 4 12 3 5 33 .因此选A. 5 13 5 13 65
3.余弦二倍角公式有三种形式,即cos2α=cos2αsin2α=2cos2α-1=1-2sin2α,由此可得变形公式sin2α= 1 cos 2 1 cos 2 2 ,cos α= ,它的双向应用分别起到缩角
015两角和与差的三角函数及二倍角公式
页眉内容两角和与差的三角函数及二倍角公式、三角恒等式证明1.两角和的余弦公式的推导方法:2.基本公式sin(α±β)=sinα cosβ±cosα sinβcos(α±β)= ;tan(α±β)= .3.公式的变式tanα+tanβ=tan (α+β)(1-tanα tanβ)1-tanα tanβ=)tan(tan tan βαβα++ 4.常见的角的变换:2α=(α+β)+(α-β);α=2βα++2βα- α=(α+β)-β =(α-β)+β2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π 5.二倍角公式sin2α= ;cos2α= = = ;tan2α= .6.公式的变用:1+cos2α= ;1-cos2α= .7.三角函数式的化简的一般要求:① 函数名称尽可能少;② 项数尽可能少;③ 尽可能不含根式;④ 次数尽可能低、尽可能求出值.8.常用的基本变换方法有:异角化同角、异名化同名、异次化同次.9.求值问题的基本类型及方法① “给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解.② “给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③ “给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角.基础过关10.三角恒等式的证明实质是通过恒等变形,消除三角恒等式两端结构上的差异(如角的差异、函数名称的差异等).11.证三角恒等式的基本思路是“消去差异,促成同一”,即通过观察、分析,找出等式两边在角、名称、结构上的差异,再选用适当的公式,消去差异,促进同一.12.证明三角恒等式的基本方法有:⑴ 化繁为简;⑵ 左右归一;⑶ 变更问题.13.三角条件等式的证明就是逐步将条件等价转化为结论等式的过程,须注意转化过程确保充分性成立.14.三角条件等式的证明,关键在于仔细地找出所附加的条件和所要证明的结论之间的内在联系,其常用的方法有:⑴ 代入法:就是将结论变形后将条件代入,从而转化为恒等式的证明.⑵ 综合法:从条件出发逐步变形推出结论的方法.⑶ 消去法:当已知条件中含有某些参数,而结论中不含这些参数,通过消去条件中这些参数达到证明等式的方法.⑷ 分析法:从结论出发,逐步追溯到条件的证明方法,常在难于找到证题途径时用之.例1.求[2sin50°+sin10°(1+3tan10°)]· 80sin 22的值.变式训练1:(1)已知α∈(2π,π),sin α=53,则tan(4πα+)等于( ) A.71 B.7 C.- 71 D.-7 (2) sin163°sin223°+sin253°sin313°等于 ( )A.-21B.21 C.-23 D.23 例2. 已知α∈(4π,43π),β∈(0,4π),cos (α-4π)=53,sin(43π+β)=135,求sin(α+β)的值.典型例题变式训练2:设cos (α-2β)=-91,sin (2α-β)=32,且2π<α<π,0<β<2π, 求cos (α+β).例3. 若sinA=55,sinB=1010,且A,B 均为钝角,求A+B 的值.例4.化简sin 2α·sin 2β+cos 2αcos 2β-21cos2α·cos2β.变式训练4:化简:(1)2sin ⎪⎭⎫ ⎝⎛-x 4π+6cos ⎪⎭⎫ ⎝⎛-x 4π; (2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--απαπα4sin 4tan 21cos 222.1.三角函数式的化简、求值、证明等是三角变形常见的题型,三角函数式变形的过程就是分析矛盾、发现差异,进而消除差异的过程。
两角和与差及二倍角公式
(2)对公式会“正用”,“逆用”,“变形使 用”。
(3)掌握“角的演变”规律,如
2 ,
我的课件,讲义,多媒体教程
5
一、公式的直接应用
我的课件,讲义,多媒体教程
6
例1、求值:
1 sin 300
2已知α∈(0,π),sinα= 3,
2
5
求 tan(α+π)的值
4
我的课件,讲义,多媒体教程
7
例2
设
cos
2
1 9
,
sin
2
2 ,
3
,0 ,
2
2
求cos .
我的课件,讲义,多媒体教程
8
二、公式逆用
我的课件,讲义,多媒体教程
9
例3 求 cos15-sin15 的值
cos 15+sin 15
我的课件,讲义,多媒体教程
10
例4
已知
tan tan tan tan tan
“给值求角”:(4)“给式求值”:
三角函数式常用化简方法:切割化弦、高次化
低次
注意点:①灵活角的变形和公式的变形②重视
角的范围对三角函数值的影响,对角的范围要
讨论
我的课件,讲义,多媒体教程
18
四、作业:成才之路 124-125页 7,8,9
我的课件,讲义,多媒体教程
19
练习:已知 sin( ) 1 ,sin( ) 1
求tanα:tanβ的值。 2
3
我的课件,讲义,多媒体教程
17
三、课堂小结 1、在运用公式时,要注意公式成立的条件 ,熟练掌握公式的顺用、逆用、变形用,还 要注意各种的做题技巧。
2、三角函数式的求值的类型一般可分为:
【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。
两角和与差的三角函数、二倍角公式
第20讲 两角和与差的三角函数、二倍角公式考试要求 1.两角和与差的正弦、余弦、正切公式的推导及联系(C 级要求);二倍角的正弦、余弦、正切公式(B 级要求);2.运用两角和与差的正弦、余弦、正切公式进行简单的三角恒等变换(C 级要求).诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( ) (4)存在实数α,使tan 2α=2tan α.( )解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π,k ∈Z . 答案 (1)√ (2)√ (3)× (4)√2.(2017·山东卷改编)已知cos x =34,则cos 2x =________. 解析 由cos x =34得cos 2x =2cos 2x -1=2×⎝ ⎛⎭⎪⎫342-1=18.答案 183.(2017·江苏卷)若tan(α-π4)=16,则tan α=________. 解析 tan α=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4 =tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝ ⎛⎭⎪⎫α-π4tan π4=16+11-16=75.答案7 54.(2018·苏、锡、常、镇调研)已知α是第二象限角,且sin α=310,tan(α+β)=-2,则tan β=________.解析由α是第二象限角,且sin α=310,得cos α=-110,tan α=-3,所以tan β=tan(α+β-α)=tan(α+β)-tan α1+tan(α+β)tan α=-2+31+6=17.答案1 75.(必修4P109习题4改编)sin 347°cos 148°+sin 77°·cos 58°=________. 解析sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22.答案22知识梳理1.两角和与差的三角函数公式sin(α±β)=sin__αcos__β±cos__αsin__β. cos(α∓β)=cos__αcos__β±sin__αsin__β.tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角公式sin 2α=2sin__αcos__α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan α.注意:①在二倍角的正切公式中,角α是有限制条件的,即α≠k π+π2,且α≠k π2+π4(k ∈Z ).②“倍角”的意义是相对的,如4α是2α的二倍角,α是α2的二倍角. 3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan__αtan__β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b .考点一 公式的正向、逆向使用【例1】 (1)(一题多解)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________.(2)(2016·四川卷)cos 2π8-sin 2π8=________. 解析 (1)法一 ∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.法二 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=1+147-2=3.(2)由二倍角公式得cos 2π8-sin 2π8=cos π4=22.答案 (1)3 (2)22规律方法 两角和与差的三角函数公式、二倍角公式的正向使用(从左往右使用)、逆向使用(从右往左使用)是本节的基础,要从角度联系、结构特征发现问题中隐含的公式特征,选择使用公式解决问题;特别要注意“尽量用已知角表示未知角”的思想方法的应用.【训练1】 (1)(2017·课标全国Ⅰ卷)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4=________.(2)(2015·全国Ⅰ卷改编)sin 20°cos 10°-cos 160°sin 10°=________. 解析 (1)因为α∈⎝ ⎛⎭⎪⎫0,π2,且tan α=sin αcos α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=255,cos α=55,则cos ⎝⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=55×22+255×22=31010. (2)sin 20°cos 10°-cos 160°sin 10°= sin 20°cos 10°+cos 20°sin 10°=sin 30°=12. 答案 (1)31010 (2)12考点二 公式的变形、灵活使用【例2】 (1)(2017·广州调研)已知sin α+cos α=13,则sin 2⎝ ⎛⎭⎪⎫π4-α=________.(2)(2017·江苏四校联考)已知tan(α+β)=2,tan(α-β)=3,则sin 2αcos 2β的值为________.(3)(2017·如东中学调研)已知α为锐角,若sin ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝ ⎛⎭⎪⎫2α-π6=________.解析 (1)由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2⎝ ⎛⎭⎪⎫π4-α=1-cos ⎝ ⎛⎭⎪⎫π2-2α2=1-sin 2α2=1+892=1718. (2)sin 2αcos 2β=sin[(α+β)+(α-β)]cos[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)cos (α+β)cos (α-β)+sin (α+β)sin (α-β) =tan (α+β)+tan (α-β)1+tan (α+β)tan (α-β).将tan(α+β)=2,tan(α-β)=3代入,得原式=2+31+2×3=57.(3)由sin ⎝ ⎛⎭⎪⎫α+π6=35,可得cos ⎝ ⎛⎭⎪⎫α+π6=±45,当cos ⎝ ⎛⎭⎪⎫α+π6=-45时,cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=3-4310<0,与α是锐角矛盾,所以cos ⎝⎛⎭⎪⎫α+π6=45,从而cos ⎝ ⎛⎭⎪⎫2α-π6=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π2=2sin ⎝ ⎛⎭⎪⎫α+π6·cos ⎝⎛⎭⎪⎫α+π6=2×35×45=2425.答案 (1)1718 (2)57 (3)2425规律方法 两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;(2)善于拆角、拼角,如α=(α+β)-β,2α=(α+β)+(α-β),2α+β=(α+β)+α等;(3)注意倍角的相对性,如α=2×α2等; (4)要时时注意角的范围;(5)熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等. 【训练2】 (1)(1+tan 17°)(1+tan 28°)的值是________.(2)(2018·四川泸州四诊)已知sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________.解析 (1)原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2.(2)由题意:sin ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6+α=cos ⎝ ⎛⎭⎪⎫π6+α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=cos2⎝ ⎛⎭⎪⎫π6+α=2cos 2⎝ ⎛⎭⎪⎫π6+α-1=-78.答案 (1)2 (2)-78考点三 三角函数式的化简与求值(多维探究) 命题角度1 三角函数式的化简【例3-1】 化简:(1+sin α+cos α)·⎝⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.解析 原式=⎝ ⎛⎭⎪⎫2cos 2α2+2sin α2cos α2·⎝ ⎛⎭⎪⎫cos α2-sin α24cos 2α2=cos α2⎝⎛⎭⎪⎫cos 2α2-sin 2α2⎪⎪⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪⎪⎪cos α2.因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α. 答案 cos α 命题角度2 给值求值【例3-2】 (一题多解)(2017·苏州一模)若2tan α=3tan π8,则 tan ⎝ ⎛⎭⎪⎫α-π8=________.解析 法一 tan ⎝ ⎛⎭⎪⎫α-π8=tan α-tan π81+tan αtan π8=12tan π81+32tan 2π8=sin π8cos π82cos 2π8+3sin 2π8=12sin π41+cos π4+32⎝ ⎛⎭⎪⎫1-cos π4=1+5249.法二 由tan π4=1,解得tan π8=2-1,所以tan ⎝ ⎛⎭⎪⎫α-π8=12tan π81+32tan 2π8=12×(2-1)1+32×(3-22)=1+5249.答案1+5249 命题角度3 给角求值【例3-3】 [2sin 50°+sin 10°(1+3tan 10°)]·2sin 280=________. 解析 原式=⎝ ⎛⎭⎪⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°· 2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)·2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)] =22sin(50°+10°)=22×32= 6.答案6命题角度4 给值求角【例3-4】 (2018·常州一模)满足等式cos 2x -1=3cos x (x ∈[0,π])的x 的值为________.解析 将方程化为2cos 2x -3cos x -2=0,解得cos x =-12或cos x =2(舍去).因为x ∈[0,π],所以x =2π3. 答案 2π3规律方法 1.三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”等. 2.三角函数求值有三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路;①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.【训练3】 (1)化简:2cos 4α-2cos 2α+122tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α=________.(2)(2016·课标Ⅲ卷改编)若tan α=34,则cos 2α+2sin 2α=________.(3)已知cos α=17,cos(α-β)=1314(0<β<α<π2),则tan 2α=________,β=________.解析 (1)原式=12(4cos 4α-4cos 2α+1)2×sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α·cos 2⎝ ⎛⎭⎪⎫π4-α=(2cos 2α-1)24sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=cos 22α2sin ⎝ ⎛⎭⎪⎫π2-2α=cos 22α2cos 2α=12cos 2α.(2)由tan α=34,得⎩⎪⎨⎪⎧sin α=35,cos α=45或⎩⎪⎨⎪⎧sin α=-35,cos α=-45,所以cos 2α+2sin 2α=cos 2α+4sin αcos α=1625+4×1225=6425. (3)∵cos α=17,0<α<π2, ∴sin α=437,tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. ∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12, ∴β=π3.答案 (1)12cos 2α (2)6425 (3)-8347 π3一、必做题1.(2018·苏州暑假测试)已知α∈(0,π),cos α=-45,则tan ⎝ ⎛⎭⎪⎫α+π4=________.解析 由α∈(0,π),cos α=-45,得tan α=-34, 所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-34+11+34=17. 答案 172.(2017·扬州一模)已知cos ⎝ ⎛⎭⎪⎫π3+α=13⎝ ⎛⎭⎪⎫0<α<π2,那么sin(π+α)=________.解析 由cos ⎝ ⎛⎭⎪⎫α+π3=13,0<α<π2,知sin ⎝ ⎛⎭⎪⎫α+π3=223,所以sin(π+α)=-sin α=-sin ⎝ ⎛⎭⎪⎫π3+α-π3=-223×12+13×32=-22+36.答案-22+363.(2018·苏州调研)已知α是第二象限角,且tan α=-13,则sin 2α=________. 解析 因为α是第二象限角,且tan α=-13,所以sin α=1010,cos α=-31010,所以sin 2α=2sin αcos α=2×1010×⎝ ⎛⎭⎪⎫-31010=-35.答案 -354.(2018·苏、锡、常、镇四市调研)若tan α=12,tan(α-β)=-13,则tan(β-2α)=________.解析 tan(β-α)=-tan(α-β)=13,所以tan(β-2α)=tan[(β-α)-α]=tan (β-α)-tan α1+tan (β-α)tan α=13-121+16=-17.答案 -175.(2018·淮阴中学期中)(1+tan 22°)(1+tan 23°)=________. 解析 由tan(22°+23°)=tan 22°+tan 23°1-tan 22°tan 23°=1,得tan 22°+tan 23°+tan 22°tan 23°=1,所以(1+tan 22°)(1+tan 23°)=1+tan 22°+tan 23°+ tan 22°tan 23°=1+1=2. 答案 26.(2017·南京、盐城第二次模拟考试)若sin ⎝ ⎛⎭⎪⎫α-π6=35,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α的值为________.解析 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以α-π6∈⎝ ⎛⎭⎪⎫-π6,π3,又sin ⎝⎛⎭⎪⎫α-π6=35,所以cos ⎝⎛⎭⎪⎫α-π6=45,所以cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6=cos ⎝ ⎛⎭⎪⎫α-π6cos π6-sin ⎝ ⎛⎭⎪⎫α-π6sin π6=45×32-35×12=43-310 答案43-3107.(2018·盐城中学月考)已知α∈⎝ ⎛⎭⎪⎫π4,3π4,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β=-1213,则cos(α+β)=________. 解析 ∵α∈⎝ ⎛⎭⎪⎫π4,3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,则π4-α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin ⎝ ⎛⎭⎪⎫π4-α=-45,∵sin ⎝ ⎛⎭⎪⎫54π+β=-1213,∴sin ⎝ ⎛⎭⎪⎫π4+β=1213,又∵β∈⎝ ⎛⎭⎪⎫0,π4,则π4+β∈⎝ ⎛⎭⎪⎫π4,π2,∴cos ⎝ ⎛⎭⎪⎫π4+β=513,∴cos(α+β)=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=35×513-45×1213=-3365.答案 -33658.(2017·泰州调研)若cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin(2α-π6)的值是________.解析 sin ⎝ ⎛⎭⎪⎫2α-π6=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α-π3+π2=cos 2⎝ ⎛⎭⎪⎫α-π3=2cos 2⎝⎛⎭⎪⎫α-π3-1=2×19-1=-79.答案 -799.(2017·扬州、泰州、南通、淮安、宿迁、徐州六市二模)已知sin ⎝ ⎛⎭⎪⎫α+π4=210,α∈⎝ ⎛⎭⎪⎫π2,π.求:(1)(一题多解)cos α的值; (2)sin ⎝⎛⎭⎪⎫2α-π4的值.解 (1)法一 因为α∈⎝ ⎛⎭⎪⎫π2,π,所以α+π4∈⎝ ⎛⎭⎪⎫3π4,5π4,又sin ⎝ ⎛⎭⎪⎫α+π4=210,所以cos ⎝⎛⎭⎪⎫α+π4=-1-sin 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫2102=-7210. 所以cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=-7210×22+210×22 =-35.法二 由sin ⎝ ⎛⎭⎪⎫α+π4=210得sin αcos π4+cos αsin π4=210,即sin α+cos α=15,结合sin 2α+cos 2α=1, 得cos α=-35或cos α=45. 因为α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-35.(2)因为α∈⎝ ⎛⎭⎪⎫π2,π,cos α=-35,所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45. 所以sin 2α=2sin αcos α=2×45×⎝ ⎛⎭⎪⎫-35=-2425,cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫-352-1=-725.所以sin ⎝⎛⎭⎪⎫2α-π4=sin 2αcos π4-cos 2αsin π4 =⎝ ⎛⎭⎪⎫-2425×22-⎝ ⎛⎭⎪⎫-725×22=-17250. 10.(2018·常州一中期中)已知α,β∈⎝ ⎛⎭⎪⎫0,π2且sin(α+2β)=13.(1)若α+β=2π3,求sin β的值; (2)若sin β=45,求cos α的值.解 (1)因为α,β∈⎝ ⎛⎭⎪⎫0,π2,α+β=2π3,sin(α+2β)=13,所以α+2β∈⎝ ⎛⎭⎪⎫2π3,π,所以cos(α+2β)=-223,所以sin β=sin ⎣⎢⎡⎦⎥⎤(α+2β)-2π3=13×⎝ ⎛⎭⎪⎫-12-⎝ ⎛⎭⎪⎫-223×32=26-16. (2)因为sin β=45且β∈⎝⎛⎭⎪⎫0,π2,所以cos β=35,所以sin 2β=2sin βcos β=2425,cos 2β=2cos 2β-1=-725, 所以2β∈⎝ ⎛⎭⎪⎫π2,π.又因为α,β∈⎝ ⎛⎭⎪⎫0,π2,且sin(α+2β)=13,所以α+2β∈⎝ ⎛⎭⎪⎫π2,π,所以cos(α+2β)=-223.所以cos α=cos(α+2β-2β)=⎝ ⎛⎭⎪⎫-223×⎝ ⎛⎭⎪⎫-725+13×2425=24+14275.二、选做题11.(2017·仪征中学检测)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)=________.解析 由3tan α2+tan 2α2=1,可得tan α=2tan α21-tan 2α2=23,由sin β=3sin(2α+β)得sin[(α+β)-α]=3sin[α+(α+β)],展开得sin(α+β)cos α-cos(α+β)sin α=3sin αcos(α+β)+3cos αsin(α+β), 合并得2sin(α+β)cos α=-4sin αcos(α+β), 所以tan(α+β)=-2tan α, 故tan(α+β)=-2×23=-43. 答案 -4312.(2018·苏、锡、常、镇四市调研)已知sin α=3sin ⎝ ⎛⎭⎪⎫α+π6,则tan ⎝ ⎛⎭⎪⎫α+π12=________.解析 ∵sin α=3sin(α+π6),∴sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π12=3sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12+π12,∴sin ⎝ ⎛⎭⎪⎫α+π12cos π12-cos ⎝ ⎛⎭⎪⎫α+π12sin π12=3sin ⎝ ⎛⎭⎪⎫α+π12cos π12+3cos ⎝⎛⎭⎪⎫α+π12sin π12,∴-2sin ⎝ ⎛⎭⎪⎫α+π12cos π12=4cos ⎝ ⎛⎭⎪⎫α+π12sin π12,∵cos ⎝⎛⎭⎪⎫α+π12≠0,cos π12≠0,∴tan ⎝ ⎛⎭⎪⎫α+π12=sin ⎝⎛⎭⎪⎫α+π12cos ⎝ ⎛⎭⎪⎫α+π12=-2tan π12=-2tan 15°=-2tan(45°-30°)=-2×tan 45°-tan 30°1+tan 45°tan 30°=-2×1-331+33=-2×1-23 3+131-13=-2(2-3)=23-4.答案 23-4。
两角和与差的正弦、余弦和正切公式及二倍角公式
答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .
第十四讲两角和与差的三角函数及二倍角公式
第十四讲:两角和与差的三角函数及二倍角公式考向预览1、熟记两角和与差的三角函数及二倍角公式,掌握公式的特征并能灵活运用,能根据问题情境准确选用公式进行三角函数的简单恒等变形,掌握三角函数求值的基本题型与求解方法。
2、综合运用三角公式进行三角变换,常用的变换:变换角度、变换名称、变换解析式结构。
考点盘清1、两角和与差的三角函数公式:=±)sin(βα。
=±)cos(βα=±)tan(βα2、二倍角公式:=α2sin =α2tan 。
=-=ααα22sin cos 2cos =3、辅助角公式:)sin(cos sin 22ϕααα++=+b a b a ,(其中ϕ角的终边过点P(a,b ),ab =∈ϕππϕtan ]-,,().若点P 在第一象限,则ϕ取锐角;若点P 在第二象限,则ϕ取钝角;若点P 在第三象限,则ϕ取负钝角;若点P 在第四象限,则ϕ取负锐角。
4、三角变换的基本题型——化简、求值、证明(1)化简:三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中: ①所含函数和角的名类或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.依据三角函数式的结构,常采用的三角变换方法有:异名化同名、异次化同次、高次降次、异角化同角。
(2)求值:常见的有给值求角、给角求值、给值求值。
课前演练1.cos(45°-30°)的值为( ) A.22 B.32C.2+34 D.2+642.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( ) A.17 B .7C .-17D .-7 3.(2011·上海卷)函数y =2sin x -cos x 的最大值为 5. 4.已知cos(α-π6)+sin α=435,则sin(α+7π6)的值是( ) ()()3①给角求值的关键是正确地分析角已知角与未知角之间的关系,准确地选用公式,注意转化为特殊值.②给值求值的关键是分析已知式与待求式之间角、名称、结构的差异,有目的地将已知式、待求式的一方或两方加以变换,找出它们之间的联系,最后求待求式的值.③给值求角的关键是求出该角的某一三角函数值,讨论角的范围,求出该角.它包括无条件的恒等式和附加条件恒等式的证明.常用方法:从左推到右;从右推到左证明.;左右互推.A .-235 B.235C .-45D.455.定义运算a ⊕b =a 2-ab -b 2,则sin π6⊕cos π6=( ) A .-12+34 B .-12-34C .1+34D .1-346.(2012·永州模拟)若f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x7.若1+tan x 1-tan x =2013,则1cos2x +tan2x 的值为 2013 . 8.已知tan(α+β)=25,tan(β-π4)=14,那么tan(α+π4)的值是322. 9.已知α∈(π2,π),化简21-sin α+2+2cos α=。
第19讲 两角和与差的三角函数、二倍角公式
( C)
A.
3 3
B.-
3 3
C.5 9 3
D.-
6 9
1.(2023·石家庄模拟)已知 sin α+π4=45,α∈π4,π2,则 cos α=
(Hale Waihona Puke )A.2 10B.3102
C.
2 2
2.已知 cos α+1π2=35,α∈0,π2,则 cos α+π3=
A.3-140 3
B.45
C.-
2 10
D.
2 10
D.7102 ()
3.(2023·邯郸期末)已知 cos x+1π2=45,则 sin 2x+23π=___27_5__.
目标 3 辅助角公式的应用
3 (1)(2023·泰州调研)已知 sin α-π6+cos α=35,则 cos 2α+π3= ( B )
A.-275
B.275
C.-2245
A.79
B.19
C.-19
D.-79
3.(2023·沈阳一模)已知向量 a=(cos α,-2),b=(sin α,1),且 a∥b,则 tan π4-α
=___3__.
4.已知 α,β∈-π2,0,且 tan α+tan β+ 3tan αtan β= 3,则 α+β=________.
目标 2 拆、配角问题
tan 2θ=-2
2
,
π 4
<
θ
<
π 2
,
则
2cos22θ-sinθ-1 2sin θ+π4
=
____________.
1.已知角 θ 的终边过点 A(-1,1),则 sin π6 -θ=
( D)
A.
2+ 4
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。
两角和与差及二倍角公式讲义
女口: sin cos5.公式的使用技巧两角和与差及二倍角公式一. 【复习要求】1. 掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联2. 掌握二倍角的正弦、余弦、正切公式 .2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明二、 【知识回顾】1 .两角和与差的三角函数 sin( ) ;sin( ) cos( ) :cos( ) tan( ) ;tan( )2 .二倍角公式:在 sin( ),cos( ),tan()中令,可得相应的二倍角公式。
sin 2 cos2 tan23 .降幕公式sin 2 cos 2注意:二倍角公式具有“升幕缩角“作用,降幕公式具有“降幕扩角”作用 4.辅助角公式y a si nx bcosxa 2b 2 s in(x ),(其中 a, b 不能同时为 0)sin x ■: 2 2cosx ■. a b (— a ---- s in xa 2b 2 a 2 b 2 (cos sin x sin cosx)a 2b 2 sin(x )ab- =,tan证明:y其中,cos2 2b b ―- —cosx)a b 2 2 2a b在使用时,不必死记结论,而重在这种收缩(合二为一) -且角 a 思想终边过点(a,b )(1)连续应用:sin (sin[( sin ()cos cos( )sin(2) “1 ”的代换:sin 2cos 2 (3)收缩代换:y si nxcosxsin cos1, sin_____ 2 a2 b2sin(x 1,ta n—4 (其中a,b不能同时为0)(4)公式的变形: ,,、 tan tantan()1 tan tantan(如:ta n95otan 35o、、3ta n95ota n35o。
tan 70o tan 50o、、3 tan 70o tan50o。
(5 )角的变换(拆角与配角技巧)2 , ( ), ( 2),1[( )( 2 )],( ),( ),44 4 2 4(6 )二倍角公式的逆用及常见变形 1 -[( 2)( )],二倍角的正用、逆用、变形应用是公式的三种主要使用方法,特别是二倍角的余弦公式, 它在求值、化简、证明中有广泛的应用,解题时应根据不同的需要,灵活选取。