第10章电磁感应

合集下载

《大学物理》第10章 电磁感应清华

《大学物理》第10章 电磁感应清华

(C)安培/米2; (D)安培·米2 。 18
21 在感应电场中电磁感应定律可写成
L
Ek

dl


d dt

式中 Ek为感应电场的电场强度。此式表明: [ D]
(A)闭合曲线 l 上
E
处处相等
k

(B)感应电场是保守力场 ;
(C)感应电场的电力线不是闭合曲线 ;
(D)在感应电场中不能像对静电场那样引入电势的概
)
2

[
B
]
(C)
1 2
(
2a 0 I
)2;
(D)
1
20
( 0 I
2a
)2。
解:距导线垂直距离为a的空间某点处的磁感强度为:
B

0 I 2a
则该点处的磁能密度为 :
wm

1
20
B2
1
20
(
0 I 2a
)
2

20((AP)15库0)仑电/米位2移;矢量(的B)时库间仑变/化秒率;ddDt 的单位是: [ C]
da

NL
0 I 2
(
1 d

d
1
a
)

1
103

0.2

2

4

107
2

5.0
(
1 0.1

0.1
1
0.1)
2 103 (V)
4
10.4 上题中若线圈不动,而长导线中通有交电流
i = 5sin100πt A,线圈内的感生电动势将为多大?
解:通 过N线圈的N磁链B为 ds s

人教版高中物理第十章-电磁感应 第二课时 法拉第电磁感应定律——感应电动势的大小

人教版高中物理第十章-电磁感应 第二课时 法拉第电磁感应定律——感应电动势的大小
1.平动切割 E Blv
2.转动切割 E 1 Bl2
2
例1:关于感应电动势的大小,下列几种说法正确的是 A.线圈中磁通量越大,产生感应电动势一定越大 B.线圈中磁通量变化越大,产生的感应电动势一定
越大 C.线圈放在磁场越强的位置,产生的感应电动势一
定越大 D.线圈中磁通量变化越快,产生的感应电动势一定
a O R1
R2
ω b
a O R1
R2
金属棒上距离O点为R2处的b点的线速度大小为: vb=ωR2
金属棒产生的电动势大小为:
E
B(R2
解得
E
R1)v B(R2 R1)
1 2
B(R22
R12
)
v2
2
v1
正确的选项为:D
课堂练习1.关于电磁感应中感应电动势的大小,下列 说法正确的是( )
A.穿过线框的磁通量为零时,该线框中的感应电动 势一定为零
A.线圈匀速进入磁场和匀速穿出磁场过程中 B.线圈完全进入磁场后,在磁场中匀速运动过程 C.线圈完全进入磁场后,在磁场中加速运动过程 D.线圈完全进入磁场后,在磁场中减速运动过程
B
答案:A
课堂练习5.如图所示,有界匀强磁场的宽度为L,使
一长为2L的矩形导线框以速度v匀速地通过磁场区域,
线框中产生感应电流的时间为( )
知识回顾
电磁感应现象
1.磁通量——垂直穿过某一面积的磁感线的条数。 Φ=BS
单位:韦伯。符号,Wb 磁通量有正、负,但磁通量是标量。
2.产生感应电流的条件 (1)闭合电路; (2)穿过闭合电路的磁通量发生变化
既然电路中有感应电流,电路中应该有电动势。 在电磁感应现象中产生的电动势叫感应电动势。

2020版高考一轮复习:第10章 第3节 电磁感应定律的综合应用

2020版高考一轮复习:第10章 第3节 电磁感应定律的综合应用



A
B
C
D
B [对棒受力分析,棒受的静摩擦力 Ff=F 安=BIL,电动势 E=ΔΔBt S,感应 电流 I=ER=ΔΔBt ·RS,0~1 s 和 3~4 s 内的感应电流大小和方向相同,电流从下向 上通过导体棒,安培力向左,静摩擦力向右,为正;1~2 s 和 4~5 s 内,感应 电流为零,导体棒不受安培力,也不受静摩擦力;2~3 s 和 5~6 s 内,电流从 上向下流过导体棒,安培力向右,静摩擦力向左,为负,大小和 0~1 s 内相同, 所以 B 正确。]
A
B
C
D
A [由 E=BLv 可知,导体棒由 b 运动到 ac 过程中,切割磁感线有效长度 L 均匀增大,感应电动势 E 均匀增大,由欧姆定律可知,感应电流 I 均匀增大。 由右手定则可知,感应电流方向由 M 到 N,由左手定则可知,导体棒所受安培 力水平向左,大小不断增大,故只有选项 A 正确。]
2.(多选)在如图甲所示的电路中,螺线管匝数 n=1 500 匝,横截面积 S= 20 cm2。螺线管导线电阻 r=1 Ω,R1=4 Ω,R2=5 Ω,C=30 μF。在一段时间内, 穿过螺线管的磁场的磁感应强度 B 按如图乙所示的规律变化,则下列说法中正 确的是( )


A.螺线管中产生的感应电动势为 1.2 V B.闭合 S,电路中的电流稳定后电容器上极板带正电 C.电路中的电流稳定后,电阻 R1 的电功率为 5×10-2 W D.S 断开后,通过 R2 的电荷量为 1.8×10-5 C
[考法指导] 电磁感应中确定电源的方法 1判断产生电磁感应现象的那一部分导体电源。 2动生问题棒切割磁感线产生的电动势 E=Blv,方向由右手定则判断。 3感生问题磁感应强度的变化的电动势 E=nΔΔBt·S,方向由楞次定律判断。 而电流方向都是等效电源内部负极流向正极的方向。

2025年高考物理总复习配套课件第十章电磁感应第2讲法拉第电磁感应定律自感和涡流

2025年高考物理总复习配套课件第十章电磁感应第2讲法拉第电磁感应定律自感和涡流
[答案] A
考法(二) 倾斜切割情形
[例 2] 如图所示,abcd 为水平放置的平行光滑金属导轨,间距
为 l。导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为 B,
导轨电阻不计。已知金属杆 MN 倾斜放置,与导轨成 θ 角,单位长
度的电阻为 r。保持金属杆以速度 v 沿平行于 cd 的方向滑动(金属杆滑动过程中与导
()
解析:在 t=T4时,交流电图线斜率为 0,即磁场变化率为 0,由 E=ΔΔΦt =ΔΔBt S 知,E =0,故 A 正确。在 t=T2和 t=T 时,图线斜率最大,在 t=T2和 t=T 时感应电动势最大。 在T4到T2之间,电流由 Q 向 P 减弱,导线在 R 处产生垂直纸面向里的磁场,且磁场减弱, 由楞次定律知,R 产生的感应电流的磁场方向也垂直纸面向里,则 R 中感应电动势沿 顺时针方向,同理可判断在T2到34T 时,R 中电动势也为顺时针方向,在34T 到54T 时,R 中电动势为逆时针方向,C 正确,B、D 错误。
2.涡流 (1)定义:块状金属放在变化磁场中,或在磁场中有相对运动时,金属块内产生的
旋涡状感应电流。
(2)产生原因:金属块内_磁__通___量__变化→感应电动势→感应电流。
情境创设 1.如图甲所示,线圈两端a、b与一电阻R相连,线圈内有垂直于线圈平面向里的
磁场,t=0时刻起,穿过线圈的磁通量按图乙所示的规律变化。
D.金属棒运动过程中,外力F做功的功率恒定
[解析] 经过时间 t,金属棒切割磁感线的有效长度 L=2vttan θ,金属棒 切割磁感线产生的感应电动势 E=BLv=2Bv2ttan θ,则电容器极板上的电荷量 Q=CE=2BCv2ttan θ,则通过金属棒中的电流 I=ΔΔQt =2BCv2tan θ,A 正确; 当金属棒到达 x=x0时,即 vt=x0时,电容器极板上的电荷量 Q0=2BCvx0tan θ, B 错误;根据楞次定律可知,感应电流沿逆时针方向(从上往下看),则电容器 的上极板带正电,C 错误;因为金属棒做匀速运动,所以外力 F=F 安=BIL, 外力做功的功率 P=Fv=4B2Cv4ttan2 θ,是变化的,D 错误。

高三新高考练习题及答案解析 第十章 第1讲 电磁感应现象 楞次定律

高三新高考练习题及答案解析  第十章 第1讲 电磁感应现象 楞次定律

第十章电磁感应第1讲电磁感应现象楞次定律选择题(本题共15小题,1~10题为单选,11~15题为多选)1.(2021·北京高三一模)用图中三套实验装置探究感应电流产生的条件,下列选项中能产生感应电流的操作是(B)A.甲图中,使导体棒AB顺着磁感线方向运动,且保持穿过ABCD中的磁感线条数不变B.乙图中,使条形磁铁匀速穿过线圈C.丙图中,开关S闭合后,A、B螺线管相对静止一起竖直向上运动D.丙图中,开关S保持闭合,使小螺线管A在大螺线管B中保持不动[解析]甲图中,使导体棒AB顺着磁感线方向运动,AB不切割磁感线,故不能产生感应电流,另外也可以从保持穿过ABCD中的磁感线条数不变的角度看,磁通量没变化,故也不产生感应电流,A错误;乙图中,使条形磁铁匀速穿过线圈,在磁铁从上向下穿过时,穿过线圈的磁通量会变化,故产生感应电流,B正确;丙图中,开关S闭合后,A、B螺线管相对静止一起竖直向上运动,两线圈没有相对运动,B中的磁通量没变化,故不产生感应电流,C错误;丙图中,开关S保持闭合,使小螺线管A在大螺线管B中保持不动时也不会使B中的磁通量变化,故也不能产生感应电流,D错误。

2.(2021·浙江高三一模)如图是漏电保护器的部分电路图,由金属环,线圈,控制器组成,其工作原理是控制器探测到线圈中有电流时会把入户线断开,即称电路跳闸,下列有关漏电保护器的说法正确的是(C)A.当接负载的电线中电流均匀变化时,绕在铁芯上的线圈中有稳定的电流B.当接负载的电线短路或电流超过额定值时,漏电保护器会发出信号使电路跳闸C.只有当接负载的电线漏电时,绕在铁芯上的线圈中才会有电流通过D.当接负载的电线中电流不稳定时,漏电保护器会发出信号使电路跳闸[解析]漏电保护器的工作原理是控制器探测到线圈中有电流时会把入户线断开,线圈的磁通量是由流入负载的导线中的电流和流出负载的导线中的电流在线圈中产生的磁通量的叠加,由于一般情况下,流入负载导线中的电流和流出负载导线中的电流等大反向,故线圈中的磁通量为零,无电流产生。

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。

3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。

(2)v ∥B 时,E =0。

二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。

(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。

②表达式:E =L ΔIΔt。

(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。

②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。

2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。

授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。

(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。

2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。

(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。

(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。

八年级物理10章知识点

八年级物理10章知识点

八年级物理10章知识点
物理学是研究物质运动规律的科学,是自然科学中的一门基础学科。

八年级的物理上,我们将学习第10章“电磁感应”。

下面,让我们来了解一下这一章的知识点。

一、电磁感应基础知识
电磁感应是指导体内自由电子在磁场作用下运动时所产生的感应电动势现象。

电磁感应的产生条件是有磁场的变化或者导体与磁场发生相对运动。

电磁感应的重要应用包括发电机、变压器、电动机等。

二、法拉第电磁感应定律
法拉第电磁感应定律是电磁感应的一个重要规律,它表明了磁通量对感应电动势的影响。

法拉第电磁感应定律的表达式为“感应电动势的大小与磁通量的变化率成正比”。

三、洛伦兹力定律
洛伦兹力定律是指一个静止的带电粒子被放在外加磁场中时,
它将会受到一个力的作用,这个力被称为洛伦兹力。

洛伦兹力定
律的表达式为“洛伦兹力等于电荷数乘以电磁场的矢量积”。

四、美国物理学家迈克尔•法拉第
迈克尔•法拉第是一位英国物理学家,他于1831年提出了法拉
第电磁感应定律。

法拉第还发现了许多关于电磁感应现象的规律,并为现代电磁学的发展做出了杰出的贡献。

五、日本物理学家名古屋直纪
名古屋直纪是一位日本物理学家,他于1961年提出了名古屋
线圈实验,证明了洛伦兹力定律的正确性。

这一实验得到了广泛
认可,并且是日本现代物理学的基础。

以上便是八年级物理10章的知识点,我们要学习掌握电磁感
应的基础知识和定律,并且了解法拉第和名古屋的重要贡献。


一章的知识将会在以后的学习中有广泛的应用,所以一定要认真
学习哦!。

新版高考物理 第十章 电磁感应 10-4-3 电磁感应问题的综合应用课件.ppt

新版高考物理 第十章 电磁感应 10-4-3 电磁感应问题的综合应用课件.ppt
电磁感应问题的综合应用
01 课堂互动 02 题组剖析 03 规范解答 04
课堂互动
应用动力学知识和功能关系解决力、电综合问题与 解决纯力学问题的分析方法相似,动力学中的物理规 律在电磁学中同样适用,分析受力时只是多了个安培 力或电场力或洛伦兹力。
题组剖析
典例 (20分) (2016·渝中区二模)如图,电阻不计的相同的光滑弯折金 属轨道MON与M′O′N′均固定在竖直面内,二者平行且正对,间距为L=1 m, 构成的斜面NOO′N′与MOO′M′跟水平面夹角均为α=30°,两边斜面均处于垂 直于斜面的匀强磁场中,磁感应强度大小均为B=0.1 T。t=0时,将长度也 为L,电阻R=0.1 Ω的金属杆ab在轨道上无初速度释放。金属杆与轨道接触 良好,轨道足够长。(g取10 m/s2,不计空气阻力,轨道与地面绝缘)求:
题组剖析
2.再读题―→过程分析―→选取规律
过程 分析 ab杆由静止释放,ab杆做匀加速直线运动t=2 s 时释放金属杆 cd,cd 由于受力
平衡,处于静止状态,ab 杆受力平衡,开始匀速下滑
选取 对cd杆,平衡条件:mgsin α=BIL 对 ab 杆
规律
牛顿第二定律:mgsin α=ma 运动学公式:v=at 法拉第电磁感应定律:E=BLv
(1)t时刻杆ab产生的感应电动势的大小E; (2)在t=2 s时将与ab完全相同的金属杆cd放在MOO′M′上,发现cd恰能 静止,求ab 杆的质量m以及放上杆cd后ab杆每下滑位移s=1 m回路产1.读题―→抓关键点―→提取信息 (1)“光滑弯折金属轨道”―隐―含→不计杆与轨道间摩擦力 (2)“与 ab 完全相同的金属杆 cd”―隐―含→杆 ab、cd 的电阻、质量均相同 (3)“cd 恰能静止”―隐―含→cd 受力平衡,那么 ab 杆受力也平衡

高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。

初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。

2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。

当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。

如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。

选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。

选项D正确。

3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。

当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。

物理必修三第十章知识点总结

物理必修三第十章知识点总结

物理必修三第十章知识点总结第十章:电磁感应与电磁波电磁感应是指当导体中有磁通量的变化时,导体内产生感应电动势,并产生感应电流的现象。

电磁感应现象是电磁学中的重要基础,也是电磁场理论的重要组成部分。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的定律之一,它表明当磁通量的变化率发生变化时,感应电动势的大小与磁通量的变化率成正比。

即感应电动势E等于磁通量变化率dΦ/dt乘以一个常数负号,该常数称为电磁感应系数,通常用负号表示。

2. 楞次定律楞次定律是描述电磁感应现象的另一个定律,它表明当感应电流产生时,其磁场会产生一个方向,使得磁场的变化趋势减弱或抵消感应电流产生的原因。

楞次定律是能量守恒定律的一个推论,它保证了感应电流产生时系统的能量不会凭空消失。

3. 磁通量磁通量是描述磁场穿过一个给定面积的量度,它是磁感应强度B与该面积A的乘积。

磁通量是一个标量,单位是韦伯(Wb)。

当磁场垂直于给定面积时,磁通量的大小等于磁感应强度的大小乘以该面积。

4. 电磁感应的应用电磁感应现象在现实生活中有着广泛的应用。

例如,电磁感应技术广泛应用于电力工业中的发电、变压器、电动机等设备中。

此外,电磁感应还常被应用于磁悬浮列车、电磁炉、感应加热器等领域。

5. 自感与互感自感是指导体中产生感应电流时,该导体本身产生的感应电动势。

互感是指在多个线圈之间产生的感应电动势。

自感和互感是电磁感应中的两个重要概念,它们在电路设计和电磁设备中起着重要的作用。

6. 电磁波的产生与传播当电场和磁场相互作用时,就会产生电磁波。

电磁波是一种能够在真空中传播的波动现象,其传播速度等于光速。

电磁波包括可见光、无线电波、微波等。

电磁波的传播是通过电场和磁场的相互作用不断地传递能量。

7. 电磁波的特性电磁波具有波长、频率、振幅等特性。

波长是指电磁波在垂直于传播方向的一个完整周期的长度,单位是米。

频率是指单位时间内经过一个点的电磁波的周期数,单位是赫兹。

第十章 法拉第电磁感应定律

第十章 法拉第电磁感应定律

第10章法拉第电磁感应定律10.1 法拉第电磁感应定律 (2)10.1.1磁通量 (2)10.1.2 楞次定律 (4)10.2 动生电动势 (6)10.3 感生电场 (8)10.4 发电机 (10)10.5 涡电流 (11)10.6 总结 (12)10.7 附录:感生电动势与参照系 (12)10.8 解题技巧:法拉第定律和楞次定律 (13)10.9 解题 (14)10.9.1 导线附近的矩形线圈 (14)10.9.2 面积变化的线圈 (15)10.9.3 滑动的棒 (15)10.9.4 运动的棒 (16)10.9.5 时变磁场 (17)10.9.6 运动线圈 (18)10.10 概念题 (19)10.11 附加题 (20)10.11.1 滑动棒 (20)10.11.2 斜劈上的滑动棒 (20)10.11.3 磁场中的RC电路 (21)10.11.4 滑动棒 (21)10.11.5 转动棒 (22)10.11.6 通过磁场的矩形线圈 (22)10.11.7 磁棒穿过线圈 (22)10.11.8 交流发电机 (23)10.11.9 时变磁场的电动势 (23)10.11.10 正方形线圈通过磁场 (24)10.11.11 下落的线圈 (24)法拉第电磁感应定律10.1 法拉第电磁感应定律到目前为止,我们研究的电场和磁场分别是由静电荷和运动电荷(电流)产生的。

在导体内置入电场将引起电流,它反过来又会产生磁场。

人们不禁要问,磁场能不能产生电场呢?1831年,法拉第(Michael Faraday)发现,随时间变化的磁场会产生电场。

这种现象称为电磁感应。

图10.1.1展示了法拉第的实验。

图10.1.1 电磁感应法拉第证明了,当磁铁相对于线圈静止时,电流计里没有电流。

但只要磁铁与线圈之间存在相对运动,线圈中就会感应出电流。

具体地说,当磁铁靠近线圈时,电流计指针偏向一个方向,当磁铁远离线圈时,电流计指针偏向相反方向。

大学物理电磁学第十章电磁感应PPT课件

大学物理电磁学第十章电磁感应PPT课件
d Idq n2Rd 2 R R dR
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I

v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的

第十章第1讲电磁感应现象和楞次定律-2025年高考物理一轮复习PPT课件

第十章第1讲电磁感应现象和楞次定律-2025年高考物理一轮复习PPT课件

解析
高考一轮总复习•物理
第25页
1.[“三则一律”的应用](多选)如图所示,金属导轨上的导体棒 ab 在匀强磁场中沿 导轨做下列哪种运动时,铜制线圈 c 中将有感应电流产生且被螺线管吸引( )
A.向右做匀速运动 B.向左做减速运动 C.向右做减速运动 D.向右做加速运动
答案
高考一轮总复习•物理
第26页
高考一轮总复习•物理
第9页
2.如图所示,两个单匝线圈 a、b 的半径分别为 r 和 2r.圆形匀强磁场 B 的边缘恰好 与 a 线圈重合,则穿过 a、b 两线圈的磁通量之比为 ( )
A.1∶1 C.1∶4
B.1∶2 D.4∶1
答案
高考一轮总复习•物理
3.如图所示的各图所描述的物理情境中,没有产生感应电流的是( )
第22页
2.“三则一律”的应用技巧 (1)应用楞次定律,一般要用到安培定则. (2)研究感应电流受到的安培力时,一般先用右手定则确定电流方向,再用左手定则确 定安培力的方向,有时也可以直接用楞次定律的推广应用确定.
高考一轮总复习•物理
第23页
典例 2 (2024·山西太原模拟)(多选)如图所示装置中,ab、cd 杆垂直放置在导轨上,与 导轨接触良好,杆与导轨之间的摩擦力不计.原来 ab、cd 杆均静止,当 ab 杆做如下哪些运 动时,cd 杆将向左移动( )
解析
高考一轮总复习•物理
第12页
重难考点 全线突破
高考一轮总复习•物理
考点 感应电流方向的判断
1.楞次定律中“阻碍”的含义
第13页
高考一轮总复习•物理
2.应用楞次定律的思路
第14页
高考一轮总复习•物理
第15页
典例 1 如图所示,两匀强磁场的磁感应强度 B1 和 B2 大小相等、方向相反.金属圆环 的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是( )

第10章电磁感应补充习题

第10章电磁感应补充习题

第十章 电磁感应与电磁场补充习题一、填空题1. 半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,螺线管导线中通过交变电流t I i ωsin 0=,则围在管外的同轴圆形回路(半径为r )上的感生电动势为 。

2. 感应电场是由 产生的,它的电场线是 。

3. 引起动生电动势的非静电力是 力,引起感生电动势的非 静电力是 力。

4. 一根长为l 的直螺线管,截面积为S ,线圈匝数为N ,管内充满磁导率为μ的均匀磁介质,则该螺线管的自感系数L = 。

5. 一自感系数为0.25H 的线圈,当线圈中的电流在0.01s 内由2A 均匀地减小到零。

线圈中的自感电动势的大小为 。

6. 电场能量密度表达式 ,磁场能量密度表达式 。

7. 长为L 的铜棒在均匀磁场B 中以角速度ω绕棒的一端做匀速转动,则棒中感应电势的大小是 。

二、选择题1. 如图所示,两个圆环形导体a 、b 互相垂直地放置,且圆心重合,当它们的电流I 1、和I 2同时发生变化时,则 ( )(A) a 导体产生自感电流,b 导体产生互感电流;(B) b 导体产生自感电流,a 导体产生互感电流;(C) 两导体同时产生自感电流和互感电流;(D) 两导体只产生自感电流,不产生互感电流。

2. 长为l 的单层密绕螺线管,共绕有N 匝导线,螺线管的自感系数为L ,下列哪种说法是错误的? ( )(A) 将螺线管的半径增大一倍,自感为原来的四倍;(B) 换用直径比原来导线直径大一倍的导线密绕,自感为原来的四分之一;(C) 在原来密绕的情况下,用同样直径的导线再顺序密绕一层,自感为原来的二倍;(D) 在原来密绕的情况下,用同样直径的导线再反方向密绕一层,自感为零。

3. 有一长为l 截面积为A 的载流长螺线管绕有N 匝线圈,设电流为I ,则螺线管内的磁场能量近似为 ( )(A)2220/l N AI μ; (B) )2/(2220l N AI μ;(C) 220/l AIN μ; (D) )2/(220l N AI μ4. 下列关于螺线管性质的描述中错误的是 ( )(A )管内磁场为nI B μ= (B )自感系数V n L 2μ=,V 是管体积 (C )贮存的能量2/LB W 2= (D )通交流电时,管内外均有感生电场。

大学物理授课教案第十章电磁感应

大学物理授课教案第十章电磁感应

第十章 电磁感应§10-1法拉第电磁感应定律一、电磁感应现象,感应电动势电磁感应现象可通过两类实验来说明: 1.实验1〕磁场不变而线圈运动 2〕磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何〔如:线圈运动,变;或不变线圈运动〕,回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。

3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰•=lK l d K :非静电力ε 〔10-1〕说明:〔1〕由于非静电力只存在电源内部,电源电动势又可表示为⎰•=正极负极l d Kε说明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。

〔2〕闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰•=lK l d K :非静电力ε〔3〕电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。

二法拉第电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。

数学表达式:dtd k i Φ-=ε 在SI 制中,1=k ,〔S t V Wb :;:;:εΦ〕,有dt d i Φ-=ε 〔10-2〕 上式中“-〞号说明方向。

2、i ε方向确实定为确定i ε,首先在回路上取一个绕行方向。

规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。

在此根底上求出通过回路上所围面积的磁通量,根据dt d i Φ-=ε计算i ε。

,0>Φ00<⇒>Φi dt d ε ,0>Φ00>⇒<Φi dt d ε 沿回路绕行反方向沿回路绕行方向:0:0<>i ε 此外,感应电动势的方向也可用楞次定律来判断。

楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。

高考物理二轮复习考点第十章电磁感应专题电磁感应中的能量问题

高考物理二轮复习考点第十章电磁感应专题电磁感应中的能量问题

专题10.6 电磁感应中的能量问题一.选择题1.(2020·山东德州二模)(多选)如图所示,在水平面上有两条光滑的长直平行金属导轨MN 、PQ ,电阻忽略不计,导轨间距离为L ,磁感应强度为B 的匀强磁场垂直于导轨所在平面。

质量均为m 的两根金属a 、b 放置在导轨上,a 、b 接入电路的电阻均为R 。

轻质弹簧的左端与b 杆连接,右端固定。

开始时a 杆以初速度v 0向静止的b 杆运动,当a 杆向右的速度为v 时,b 杆向右的速度达到最大值v m ,此过程中a 杆产生的焦耳热为Q ,两杆始终垂直于导轨并与导轨接触良好,则b 杆达到最大速度时( )A .b 杆受到弹簧的弹力为B 2L 2(v -v m )2RB .a 杆受到的安培力为B 2L 2(v -v m )RC .a 、b 杆与弹簧组成的系统机械能减少量为QD .弹簧具有的弹性势能为12mv 20-12mv 2-12mv 2m -2Q【参考答案】AD2.(2020·河南八校联考)(多选)如图所示,正方形金属线圈abcd 平放在粗糙水平传送带上,被电动机带动一起以速度v 匀速运动,线圈边长为L ,电阻为R ,质量为m ,有一边界长度为2L 的正方形磁场垂直于传送带,磁感应强度为B ,线圈穿过磁场区域的过程中速度不变,下列说法中正确的是( )A .线圈穿出磁场时感应电流的方向沿abcdaB .线圈进入磁场区域时受到水平向左的静摩擦力,穿出区域时受到水平向右的静摩擦力C.线圈经过磁场区域的过程中始终受到水平向右的静摩擦力D.线圈经过磁场区域的过程中,电动机多消耗的电能为2B2L3vR【参考答案】AD3.(2020河南开封一模)如右图所示,足够长的光滑导轨倾斜放置,导轨宽度为L,其下端与电阻R连接;导体棒ab电阻为r,导轨和导线电阻不计,匀强磁场竖直向上。

若导体棒ab以一定初速度v下滑,则关于ab棒下列说法中正确的为 ( )A.所受安培力方向水平向右B.可能以速度v匀速下滑C.刚下滑的瞬间ab棒产生的电动势为BLvD.减少的重力势能等于电阻R上产生的内能【参考答案】AB【考点】本题考查了电磁感应、安培力、法拉第电磁感应定律、平衡条件、能量守恒定律及其相关的知识点。

第十章电磁感应与电磁波

第十章电磁感应与电磁波

第⼗章电磁感应与电磁波第⼗章电磁感应与电磁波⼀、基本要求1.掌握法拉利电磁感应定律、动⽣电动势、感⽣电动势、⾃感和互感、磁场的能量。

2.理解感⽣电场、位移电流、麦克斯韦⽅程组。

3.了解电磁振荡、电磁波、电磁波谱。

4.了解⽣物电阻抗。

⼆、本章内容提要1.法拉第电磁感应定律2.动⽣电动势和感⽣电动势(1)动⽣电动势(2)感⽣电动势(3)全电场的环路定理:⼀般地,空间中静电场和感⽣电场并存,总电场(也称全电场)是⼆者的⽮量叠加,式是静电场的环路定理在⾮稳恒磁场下的推⼴。

3.⾃感和互感(1)⾃感电动势为线圈的⾃感系数,简称⾃感。

(2)互感电动势为两线圈的互感系数,简称互感。

(3)通电线圈的⾃感磁能4.磁场中的能量能量密度磁场能量5.位移电流6.麦克斯韦⽅程组(1)有介质存在时静电场的⾼斯定理(2)磁场中的⾼斯定理(3)全电场的环路定理(4)磁场中的安培环路定理(5)各向同性介质的补充关系7.电磁波的性质(1)电磁波的频率与波源的振荡频率相同;(2)电磁波在真空中以光速传播;电磁波在介质中的速度为;(3)电磁波为横被。

三、典型例题例10-1⼀根条形磁铁在空中⾃由下落,中途穿过⼀闭合⾦属环,则它在环的上⽅、下⽅的加速度的值⼤于还是⼩于重⼒加速度?答:当条形磁铁下落、还在⾦属环上⽅时,引起穿过⾦属环中磁通量增⼤变化,根据楞次定律,从⽽在环中产⽣逆时针(从上⾯往下看)流的感⽣电流,此感⽣电流产⽣的磁场总是要反抗磁通量的变化,使条形磁铁在⾦属环中磁通量增⼤变化的速度减慢,故使磁铁下落的加速度减⼩,则有。

当条形磁铁下落到⾦属环下⽅时,则引起穿过⾦属环中磁通量减⼩变化,根据楞次定律,从⽽在环中产⽣顺时针(从上⾯往下看)流的感⽣电流,此感⽣电流产⽣的磁场总是要反抗磁通量的变化,使条形磁铁在⾦属环中磁通量减⼩变化的速度减慢,故使磁铁下落的加速度减⼩,则也有。

例10-2如图,长为b、宽为a的矩形线圈ABCD与⽆限长直载流导线共⾯,且线圈的长边平⾏于长直导线,线圈以速度v向右平移,t时刻其AD边距离长直导线为x;且长直导线中的电流按规律随时间变化,如图所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的磁场来阻止或补偿引起感应电流的磁通量的变化.
8
产生 磁通量变化
阻碍 产生 导线运动 阻碍
感应电流 感应电流
f
a
b
楞次定律是能量守恒定律在电磁感应现象上的 具体体现。
感应电动势方向约定:
①选定回路的绕行(积分)方向(正方向) ②回路的绕行(积分)方向与回路为边界的面积法向 成右手螺旋.
电磁感应定律的发现,进一步揭示了电与磁之 间的相互联系及转化规律.
麦克斯韦提出了“感生电场”和“位移电流” 两个假说,从而建立了完整的电磁场理论体系—— 麦克斯韦方程组
本章主要研究电场和磁场相互激发的规律
2
Michael Faraday
3
§10-1 电磁感应定律 一、法拉第电磁感应定律
1.实验现象
=-dm
d(B
S)
(S
dB
B
dS
)
dt
dt
dt
dt
感应电动势 回路变动引起的→动生电动势 磁场变化引起的→感生电动势
一、 动生电动势
1.动生电动势的非静电力—洛仑兹力
b
取导线长dl,
载流子速度为
b
Fk Ek
f Fk e
e B
B
f
a
a
16
d动 Ek dl ( B) d l
4
共性:线圈中磁通量发生改变
闭合回路Φm变化,回路产生感应电流,这种现 象称电磁感应现象。其电动势叫感应电动势。
2. 法拉第电磁感应定律
导体回路中感应电动势的大小,与穿过导体回
路的磁通量的变化率成正比.
K dm
m
dt
①SI制中 K=1 ②式中的负号反映了楞次定律
③若N匝线圈串联: ,则
i
d ( dt
而产生的。
洛仑兹力究竟作不作功呢?
b
如图示,载流子实际运动速
度应为
u
f e( u) B
f2
f
u
fa1
u

率:
P
f
(
u)
0
总的洛仑兹力 不对电子作功
从分力看:
f e B eu B f1 f2
19
f1 e B
非静电力
做正( B) u B 安培力
第10章 电 磁 感 应
§10-1 电磁感应定律 §10-2 动生电动势 感生电动势 §10-3 电子感应加速器 涡电流 §10-4 自感与互感 §10-5 磁场能量
1
1820年,奥斯特发现: 电流磁效应
电流 产生 产 ?生
磁场
对称性 → 磁的电效应?
法拉第 经过十年不懈的探索, 1831年, 发现了 电磁感应现象
0
选顺时针方向为线框回路正方向
b
r2 r1
x
a x

BdS 0I r1b a d x r1b a d x
2π r1 x
r1 x r1 r2
0Ia ln( r1 b r2 b )
2
r1
r2
12
dΦ 0a ln[ (r1 b)( r2 b)] dI
d t 2
r1r2
17
例如,设导线ab长 l, 假定l, ,B三者互相垂直,如图
d动 ( B)dl
a
b
动 a ( B) dl
G
b
a Bdl
f
Bl
0
b
x
动方向:b→a
验证: m Blx
dm Bl dx Bl
dt
dt
动方向:b→a
18
2. 能量关系
动生电动势是洛仑兹力沿导线方向移动电子
dt
0I0a ln[ (r1 b)( r2 b)]cos t
2
r1r2
13
例: 用简单例子说明:楞次定律是能量守恒的必然结 果.换句话说,如果电磁感应的规律正好与楞次定 律相反,则能量守恒定律便不成立.
答:
磁棒靠近线圈时,线圈中产生感 v
N
S
应电流,按楞次定律,线圈电流(方 S N
向应如图所示)阻碍磁棒靠近,使磁
6
设回路有N 匝线圈
m NSB
(1) 当线圈中磁场由0→B时, 不考虑Q的正负,则
Q 1 NSB R
B R Q NS
(2) 若将开关倒向,B -B,次级回路中。
Q 1 (NSB NSB) R
B R Q 2NS
G
7
二.楞次定律
1833年,楞次总结出: 闭合回路中感应电流的方向,总是使得它所激发
9
③当计算得ε>0表明其方向与绕行方向相同。 ε<0表明其方向与绕行方向相反。
n
m 0
dm 0 dt
绕行方向
dm 0
dt
n
m 0
dm 0 dt
绕行方向
dm 0
dt
10
n
绕行方向
m 0
dm 0 dt
dm 0
dt
n
绕行方向
m 0
dm 0 dt
dm 0
dt
答:铜管可以看成是由无数平行的铜圈叠 合构成,当磁铁下落而穿过它时,产生感
S
应电流.
N
该电流产生的磁场对磁铁产生向上的
阻力,阻碍磁铁下落.当磁铁速度增加时,
阻力也增大,使磁铁的加速度越来越小,
最后当磁铁下落速度足够大,使磁力与重
力相平衡时,磁铁匀速下降.
15
§10.2 动生电动势与感生电动势
感应电动势的非静电力是什么力呢?
j
mj )
d dt
m
m mj 磁通链
j
5
3.感应电流
如果闭合回路为纯电阻R回路时,则
Ii
i
R
1 R
dm dt
i
t1 ~ t2 时间内通过导线上任一截面 的电量
Q
t2 t1
Iidt
1 R
dt t2
t1 i
1 m2 dm dt R m1 dt
1 R
(m2
m1 )
• 测Q 可以得到m这就是磁通计的原理。
使用 dm 意味着约定!
dt
11
例:如图所示,两条平行长直导线和一个矩形导线
框共面.已知两导线中电流都为I=I0sin t ,r1, r2 ,
I0, 为常数,t为时间.导线框长为a宽为b,求导线 框中的感应电动势.
解:在如图坐标x处的磁场为
B 0I ( 1 1 )
2 x x r1 r2
EK dl ( B) dl
a→b为积分方向(正方向),则 b
ab a ( B) dl
b
b
B
dl
a
a
电动势方向: 首先确定积分方向(正方向)
dl
若 >0, 则方向与积分方向一致
若 <0, 则方向与积分方向相反
整个线圈L中所产生的动生电动势为
L ( B) dl
棒的动能转化为线圈的磁场能和线
圈中因有电流而生的热.
如果与楞次定律相反,线圈中感应电流的磁场
将吸引磁棒,使磁棒加速,动能增加.这增加的 动能、磁场能和线圈中生的热都系无中生有,显 然违反能量守恒定律.
14
例: 让一根磁铁棒顺着一根竖直放置的铜管在管内空 间下落,设铜管足够长.试说明即使空气的阻力可以 忽略不计,磁铁棒最终也将达到一个恒定速率下降.
相关文档
最新文档