三角函数的综合应用

合集下载

12,三角函数的综合应用

12,三角函数的综合应用

实用文档 §4.8三角函数的综合应用 【复习目标】 1. 理解三角函数中自变量的两面性——角与实数,将三角函数问题与几何、代数联系起来; 2. 三角恒等变型与三角函数的图象与性质是综合应用的两个方面。

【课前预习】1. ⊿ABC 的内角满足tan sin 0A A -<,cos sin 0A A +>,则A 的范围是 。

2. 若111cos sin θθ-=,则sin 2θ= 。

3. 由函数52sin 3()66y x x ππ=≤≤与函数2y =的图象围成一个封闭图形,这个封闭图形的面积是 。

4. 已知()f x 是定义在(0,3)上的函数,图象如图所示,那么不等式()cos 0f x x <的解集是( )A .()()0,12,3⋃B .(1,)(,3)22ππ⋃ C .()0,1,32π⎛⎫⋃ ⎪⎝⎭ D .()()0,11,3⋃ 5. 函数|sin |,[,]y x x x ππ=+∈-的大致图象是( )【典型例题】实用文档例1 已知函数2()sin sin f x x x a =-++.(1) 当()0f x =有实数解时,求a 的取值范围;(2) 若x R ∈,有171()4f x ≤≤,求a 的取值范围。

例2 (2003上海卷·22)已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数T ,对任意x ∈R ,有()f x T +=T ·()f x 成立.(1)函数()f x = x 是否属于集合M ?说明理由;(2)设函数()f x =a x (a >0,且a ≠1)的图象与y=x 的图象有公共点,证明:()f x =a x ∈M ;(3)若函数()f x =sin kx ∈M ,求实数k 的取值范围.实用文档【本课小结】【课后作业】1. (2004北京春·16)在∆ABC 中,a ,b ,c 分别是∠∠∠A B C ,,的对边长,已知a ,b ,c 成等比数列,且a c ac bc 22-=-,求∠A 的大小及b Bc sin 的值。

正、余弦定理及三角函数的综合应用

正、余弦定理及三角函数的综合应用
2.解斜三角形的类型
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角,进而求得其他边、角;
(3)已知三边,求三个角;
(4)已知两边和它们的夹角,求第三边和其他两个角.
在△ABC中,已知a、b和A时,解的情况如下:
考点一:利用正、余弦定理解三角形
8.(2010?宝鸡质检一)如右图,为了计算渭河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100 m,AB=140 m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:2=1.414,3=1.732,5=2.236).
针对性练习:
已知△ABC中,sinC=sinA+sinBcosA+cosB,试判断△ABC的形状.考点三:三角形面积公式的应用
典型例题
已知△ABC中,cosA=63,a,b,c分别是角A、B、C的对边.
(1)求tan2A; (2)若sin(π2+B)=223,c=22,求△ABC的面积.知识概括、方法总结与易错点分析
(1)正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理运用,有时还需要交替使用.
(2)条件中出现平方关系多考虑余弦定理,出现一次式,一般要考虑正弦定理.
针对性练习:
1、在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA2=255,AB→?AC→=3.
(1)求△ABC的面积; (2)若b+c=6,求a的值.
(2)若sinB+sinC=1,试判断△BC中,角A,B,C所对的边分别为a,b,c,已知cos2C=-14.

三角函数的综合应用

三角函数的综合应用

三角函数的综合应用()()[]ϕωϕω+=x A y cos +x Asin =y 1.或的图象和性质要熟记。

正弦型函数 ()振幅,周期12||||A T =πω ()若,则为对称轴。

f x A x x 00=±=()()若,则,为对称点,反之也对。

f x x 0000=)。

,,依次作出点(与,求出,,,,依次为)五点作图:令(y x 223202y x x ππππϕω+ (x ,y )作图象。

()根据图象求解析式。

(求、、值)3A ωϕ如图列出ωϕωϕπ()()x x 1202+=+=⎧⎨⎪⎩⎪;解条件组求、值ωϕ (4)求单调区间:()∆正切型函数,y A x T =+=tan ||ωϕπω 2. 熟练掌握同角三角函数关系和诱导公式了吗?4tancos sin 122παα=+=如:===sin cos π20……称为的代换。

1 “·”化为的三角函数——“奇变,偶不变,符号看象限”,k παα2± “奇”、“偶”指k 取奇、偶数。

3. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?理解公式之间的联系:()sin sin cos cos sin sin sin cos αβαβαβαβααα±=±=−→−−−=令22()cos cos cos sin sin cos cos sin αβαβαβαβααα±==−→−−−=- 令222()tan tan tan tan tan αβαβαβ±=±1 · =-=-⇒211222cos sin αα tan tan tan2212ααα=- cos cos sin cos 22122122αααα=+=-二合一公式:()a b a b b asin cos sin tan αααϕϕ+=++=22, sin cos sin αααπ+=+⎛⎝ ⎫⎭⎪24 sin cos sin αααπ+=+⎛⎝ ⎫⎭⎪323 应用以上公式对三角函数式化简。

导数与三角函数综合应用

导数与三角函数综合应用

导数与三角函数综合应用在数学中,导数是一个重要的概念,它描述了函数在某一点上的变化率。

同时,三角函数也是数学中常见的函数类型之一,如正弦函数、余弦函数等。

本文将探讨导数与三角函数的综合应用,包括函数的极值、曲线的切线以及物理问题的模型等。

一、函数的极值在求函数的极值时,导数起到了重要的作用。

对于连续函数,若在某一点处导数为0或不存在,那么这个点可能是函数的极值点。

在三角函数中,我们将以正弦函数为例。

正弦函数sin(x)是周期函数,在一个周期内,其极大值为1,极小值为-1。

通过对正弦函数求导,我们可以确定其极值点的位置。

二、曲线的切线导数还可以用来确定曲线上某一点处的切线方程。

对于一个函数f(x),在点x=a处的切线方程为y=f'(a)(x-a)+f(a)。

在三角函数中,我们将以余弦函数为例。

余弦函数cos(x)的导数为-sin(x),可以利用该导数计算出余弦函数在某一点处的切线方程。

三、物理问题的模型导数与三角函数还可以应用于解决物理问题。

比如,当一个物体在水平方向上做匀速直线运动时,其位置随时间的变化可以用三角函数来表示,接下来我们以简单的运动学模型为例。

假设一个物体以速度v匀速运动,其位移与时间的关系可以表示为x(t) = v * t。

那么,该物体的速度v(t)就是位移对时间的导数,即v(t) =x'(t) = v。

同理,加速度a(t)就是速度对时间的导数,即a(t) = v'(t) = 0。

从导数的角度来看,这个物体的位移函数是线性变化的,速度函数是常数,加速度函数为零。

这是一个简化的模型,但导数与三角函数的应用在更复杂的物理模型中同样有效。

比如,当物体受到外力时,其运动方程可能变得复杂,而导数与三角函数的运用可以帮助我们更好地理解和描述物体的运动规律。

总结:导数与三角函数的综合应用在数学和物理中都有广泛的应用。

通过导数的求取,我们可以确定函数的极值、曲线的切线方程,同时,基于导数和三角函数的模型可以帮助我们解决物理问题。

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用一、考纲要求1.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式; 2.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明; 3.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角;4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.二、基础过关 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( ).A .21 B .2- C .34 D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形; (2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形. 以上正确命题的个数是( ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .8.下列命题正确的有 . (1)若-2π<α<β<2π,则βα-范围为(-π,π);(2)若α在第一象限,则2α在第一、三象限; (3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);(4)2sin θ=53,2cos θ=54-,则θ在第三、四象限.三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2.(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.四、 热身演练 1.已知,那么下列命题成立的是( ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( ).3.函数的反函数是( ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) . ①函数y=-sin(kπ+x)(k∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点(π/12,0)对称;③函数y =sin(2x+π/3)+sin(2x -π/3)的最小正周期是π;④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .9.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.三角函数的综合应用一、考纲要求:1. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式 2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. 3. 会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角.4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题. 二、基础过关: 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( A ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( B ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( D ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( B ).A .21B .2-C .34D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( B ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( C ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .28.下列命题正确的有 .(2)(1)若-2π<α<β<2π,则βα-范围为(-π,π); (2)若α在第一象限,则2α在第一、三象限;(3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);βφαDCBA1.2 m2 m 1 m (4)2sinθ=53,2cosθ=54-,则θ在第三、四象限. 三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.解:由题意可得 ⎪⎩⎪⎨⎧≤-+-+≥-4sin cos 4721sin 2x m xm x m , 即 ⎪⎩⎪⎨⎧+≤-+-≥+-xm x x m m sin 443sin sin 212恒成立对R x ∈,又 21)21(sin 43sin 2sin 2---=-+-x x x ,∴3sin 4≥+x ,∴⎪⎩⎪⎨⎧≤-≥+-32121m m m , ∴⎪⎩⎪⎨⎧≤+≥+32121m m m , ∴21-=m ,或323≤<m例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)解:如图,8.02.12=-=CD ,设x AD =,则x x AD BD 8.18.01tan =+==α, xAD CD 8.1tan ==β, βαβαβαφtan tan 1tan tan )tan(tan +-=-= ,∴4.2144.12144.118.08.118.08.1tan =⋅≤+=⋅+-=xx x x x x x x φ当xx 44.1=,即2.1=x 时, φtan 达到最大值4.21,φ是锐角,φtan 最大时,φ也最大,所以值班人员看表盘最清楚的位置为2.1=AD 米.例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2,(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.解:(1)设b →=(x,y ),则2x+2y=-2,且a →·b →=|b →||c →|cos 43π=22y x +×22×(-22)=-2,解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==1y x , ∴b →=(-1,0) 或b →=(0,-1).(2)∵三角形的三内角A 、B 、C 依次成等差数列,∴b=3π,∵b →⊥t →,∴b →=(0,-1),∴b →+c →=( cosA,22cos 2C -1)=(cosA,cosC),∴|b →+c →|2=C A 22cos cos +=1+21(cos2A+cos2C)=1+cos(A+C)cos(A -C)=1-21cos(A -C),∴-32π<A -C<32π ,∴-21<cos(A -C)≤1,22≤|b →+c →|<25.例4 已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos2CA -, f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°)cos()cos(2cos2cos2cos cos cos cos 21)(C A C A CA C A C A C A x f -++-+=⋅+⋅= 342122122-=-+-=x xx x , ∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1].又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1). (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2.故f (x )的值域为(-∞,-21)∪[2,+∞). 四、热身演练: 1.已知,那么下列命题成立的是( B ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( D ).AB C D3.函数的反函数是( A ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( C ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( D ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( A ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) .①②③④ ①函数y=-sin(k π+x)(k ∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点 (π/12,0)对称;③函数y=sin(2x+π/3)+sin(2x-π/3)的最小正周期是π; ④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .4389.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , RR h R k I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值. 解:(1)∵sinx+3cosx=2(21sinx+23cosx)=2 sin(x+3π),∴方程化为sin(x+3π)=-2a .∵方程sinx+3cosx+a=0在(0, 2π)内有相异二解,∴sin(x+3π)≠sin 3π=23. 又sin(x+3π)≠±1 (∵当等于23和±1时仅有一解),∴|-2a |<1,且-2a≠23, 即|a|<2,且a ≠-3.,∴a 的取值范围是(-2, -3)∪(-3, 2).(2) ∵α、 β是方程的相异解,∴sin α+3cos α+a=0 ① sin β+3cos β+a=0 ②①-②得(sin α- sin β)+3( cos α- cos β)=0, ∴ 2sin 2βα-cos2βα+-23sin 2βα+,sin2βα-=0,又sin2βα+≠0,∴tan2βα+=33, ∴tan(α+β)=2tan 22tan22βαβα+-+=3.11.求20sin 6420cos 120sin 3222+-的值.解:原式=20cos 20sin 20sin 20cos 32222-+64sin 220°=40sin 41)20sin 20cos 3)(20sin 20cos 3(2+-+64sin 220°=40sin 41)2030cos()2030cos(42-++64sin 220°=40sin 80sin 40sin 162+64sin 220°=32cos40°+64(240cos 1-)=32.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.解:要证α、β、γ成等差数列,∵α、β、γ是锐角,只要证:tan β=tan 2γα+.∵tan 2γα+=2tan2tan12tan2tanγαγα-+=2tan2tan12tan 2tan 33γγγγ-+=)2tan 1)(2tan 1()2tan 1(2tan222γγγγ+-+=212tan 12tan22γγ-=21tan γ= tan β.∴α、β、γ成等差数列.。

不等式与三角函数综合应用

不等式与三角函数综合应用

不等式与三角函数综合应用在数学中,不等式和三角函数是两个重要的概念。

不等式是数学中用来描述数之间大小关系的表达式,而三角函数则是用来描述角度和边长之间关系的函数。

本文将探讨不等式与三角函数的综合应用,以及它们在实际问题中的应用。

一、不等式的基本性质和解法不等式是数学中常见的一种关系表达式,它可以描述数之间的大小关系。

常见的不等式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。

解不等式的方法主要有图像法、代数法和递推法等。

下面我们通过一个例子来说明不等式的解法。

例子:解不等式2x + 3 > 5。

解法:我们首先将不等式转化为等价的形式,得到2x > 2。

然后通过除以2的方式得到x > 1。

因此不等式2x + 3 > 5的解集为{x | x > 1}。

二、三角函数的基本性质和公式三角函数是数学中用来描述角度和边长之间关系的函数。

常见的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

三角函数的取值范围一般是[-1, 1],并且它们之间存在一些重要的性质和公式。

下面我们通过一个例子来说明三角函数的应用。

例子:已知一个角的正弦值为0.6,求这个角的余弦值和正切值。

解法:根据正弦函数的定义,可以得到sinθ = 0.6。

由此可以得到θ ≈ 36.87°。

然后根据余弦函数和正切函数的定义,可以得到cosθ ≈ 0.8,tanθ ≈ 0.75。

因此这个角的余弦值为0.8,正切值为0.75。

三、不等式与三角函数的综合应用不等式与三角函数在实际问题中常常需要综合应用,通过建立不等式和利用三角函数的性质来解决实际问题。

下面我们通过一个例子来说明不等式与三角函数的综合应用。

例子:已知一座山峰的斜率为k,角度为θ,山顶距离地面的垂直高度为h。

如果山顶处禁止爬升的角度不超过α度,那么k和h之间的关系是怎样的?解法:我们可以首先利用三角函数的性质,得到tanθ = h / k。

三角函数在生活中的应用

三角函数在生活中的应用

三角函数在生活中的应用
三角函数在生活中的应用非常广泛,以下是一些具体的例子:
1. 导航和测量:在地理学和导航系统中,三角函数被广泛用于确定位置和导航路线。

例如,使用正弦函数可以计算出一个船只或飞机相对于地平线的高度,而使用余弦函数可以帮助计算两地之间的距离和方位角。

2. 音乐学:在音乐学中,三角函数也有重要的应用。

例如,正弦函数可以用来描述声音的波动,音乐中的音调和和弦也可以用三角函数来表示。

3. 光学:在光学中,三角函数被广泛应用于描述和计算光线的传播、折射和反射。

我们可以利用三角函数来计算出反射镜或折射体中光线的角度和路径。

4. 建筑和工程:在建筑和工程中,三角函数常用于测量高度、距离和角度。

例如,工程师可以使用三角函数来计算建筑物的高度、角度和结构的稳定性。

5. 航海和航空:航海员和飞行员使用三角函数来计算船舶或飞机的位置、航向和速度。

三角函数也用于制定航线和导航系统。

6. 电磁学:电磁学中常用交流电,而交流电可以用三角函数(特别是正弦函数和余弦函数)来描述。

此外,复数函数常用正弦函数和余弦函数的复变函数表示。

7. 日常生活:在现实生活中存在大量具有周期性变化的现象,比如农业中筒车中盛水筒距离水面的相对高度与时间的关系、物理中
的简谐运动等。

这些都可以借助三角函数来描述。

总的来说,三角函数在生活中的应用非常广泛,几乎无处不在。

立体几何与三角函数综合应用

立体几何与三角函数综合应用

立体几何与三角函数综合应用立体几何与三角函数是数学中重要的两个分支,它们在现实生活中有着广泛的应用。

本文将介绍立体几何与三角函数的基本概念,并结合实际案例,探讨它们在实际问题中的综合应用。

一、立体几何基础知识在立体几何中,有许多重要的概念,比如点、线、面、体积等。

其中,立体的体积计算是立体几何的核心内容之一。

对于不规则形状的立体,可以通过划分为若干个更简单的几何体,再计算其体积。

而三角函数则是描述角度关系的一组函数,包括正弦、余弦、正切等。

在三角函数中,有着许多常用的三角恒等式和性质。

二、综合应用案例一:建筑设计在建筑设计中,立体几何和三角函数的应用十分重要。

比如,设计师需要计算一个建筑物的体积,可以将其拆解为若干个几何体,如长方体、圆柱体等,再分别计算它们的体积,并求和得到总体积。

此外,设计师还需要使用三角函数计算出建筑物的倾斜度、角度等参数,以便在设计过程中进行合理的调整。

三、综合应用案例二:地理测量在地理测量领域,立体几何和三角函数的应用也非常广泛。

例如,测量一座山峰的高度时,可以利用三角函数的正切函数来计算山顶与视线的夹角,进而通过三角函数的性质,得到山峰的高度。

另外,在地理测量中,也经常需要计算一些不规则地形的面积,这时可以利用立体几何的概念将其划分为更简单的几何体,再进行计算。

四、综合应用案例三:机械设计在机械设计领域,立体几何与三角函数同样发挥着重要作用。

例如,设计师需要计算一台机器的体积时,可以将其划分为若干个几何体,并计算它们的体积。

此外,在机械运动的设计过程中,三角函数常用于计算角度、转速等参数,以确保机器的正常运行。

综上所述,立体几何与三角函数是数学中非常重要的分支,它们在各个领域的实际应用中发挥着重要的作用。

通过对立体几何的体积计算和三角函数的角度计算的综合运用,可以解决许多实际问题,如建筑设计、地理测量和机械设计等。

对于学习者而言,深入理解立体几何和三角函数的概念和性质,能够帮助他们更好地应用于实际问题中,提高解决实际问题的能力。

三角函数的复合与反函数的综合应用

三角函数的复合与反函数的综合应用

三角函数的复合与反函数的综合应用在数学中,三角函数是一个重要的概念,广泛应用于各个领域。

本文将探讨三角函数的复合与反函数的综合应用,旨在帮助读者深入理解并灵活运用三角函数。

一、复合函数的应用复合函数是指将一个函数作为另一个函数的输入,即将一个函数的输出作为另一个函数的自变量。

在三角函数中,复合函数的应用非常广泛。

1. 高度和角度的应用在建筑或地理测量中,我们经常需要根据已知的两条直线和一个夹角来确定两点之间的距离。

这时,我们可以利用正弦函数的复合来计算。

假设已知一条直线的长度为a,另一条直线的长度为b,夹角为θ,则两点之间的距离d可以通过以下公式计算得出:d = √(a² + b² - 2abcosθ)在这个公式中,cosθ就是一个复合函数的应用,它将a、b和θ作为输入,输出为相关的距离。

2. 信号处理中的应用在信号处理中,复合函数也发挥着重要的作用。

例如,在音频压缩中,我们可以利用正切函数的复合来实现对信号的压缩。

具体而言,我们可以使用如下公式:Y = atan(X)在公式中,X代表原始信号,Y代表压缩后的信号。

通过利用正切函数的性质,我们可以实现对信号的有效压缩,减小存储和传输的开销。

二、反函数的应用反函数是指将一个函数的输入和输出进行交换后得到的新函数。

在三角函数中,反函数的应用同样非常重要。

1. 三角函数的逆运算在解三角方程中,我们常常需要用到三角函数的反函数。

例如,当我们已知一个三角函数的值,想要求出对应的角度时,就需要用到反函数。

以正弦函数为例,当我们知道sin(x)的值为1/2时,可以通过反正弦函数求得x的解。

2. 导航系统的应用在现代导航系统中,我们经常使用反余弦函数来计算两个位置之间的夹角。

通过已知的两个位置的纬度和经度,我们可以利用反余弦函数来计算出它们之间的夹角,从而帮助我们确定行进方向。

三、综合应用除了上述单独应用外,三角函数的复合与反函数也常常在实际问题中综合应用。

三角函数的综合应用 高三数学一轮复习

三角函数的综合应用 高三数学一轮复习

(2)21bc sin A=4 3,A=π3,
则12bc× 23=4 3,解得 bc=16,
由余弦定理可知,a2=b2+c2-2bc·cos
A=b2+c2-2bc·cos
π 3
=b2+c2-bc≥2bc-bc=bc=16,当且仅当 b=c=4 时,等号成立,
故 a2≥16,
∵a>0, ∴a≥4, 在△ABC 中,b+c>a 恒成立, ∵b+c≥2 bc=2 16=8,当且仅当 b=c=4 时,等号成立, 故 a<8, 综上所述,a 的取值范围为[4,8).
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
=sin22C+4sin2C-5≥2× 2×4-5=4 2-5,
当且仅当 sin2C= 22时取等号. ∴a2+c2 b2的最小值为 4 2-5.
圆半径. (2)根据 b=2R sin B,c=2R sin C 把边长问题转化为三角函数
问题.
(3)再利用 sin B=sin (A+C)[或 sin C=sin (A+B), cos B=-cos (A+C)]消去一个未知角.
(4)利用三角恒等变换公式,化简为 M sin (ωx+φ)的形式. (5)根据未知角的取值范围确定三角函数的取值范围. 注意:若题目对三角形的形状有限制(如锐角三角形),需全面 考虑三个内角的取值范围.
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].

专题01 三角函数的图象与综合应用(精讲精练)(原卷版)

专题01 三角函数的图象与综合应用(精讲精练)(原卷版)

专题01 三角函数的图象与综合应用【命题规律】三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1、三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2、利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.3、三角恒等变换的求值、化简是高考命题的热点,常与三角函数的图象、性质结合在一起综合考查,如果单独命题,多用选择、填空题中呈现,难度较低;如果三角恒等变换作为工具,将其与三角函数及解三角形相结合求解最值、范围问题,多以解答题为主,中等难度.【核心考点目录】核心考点一:齐次化模型 核心考点二:辅助角与最值问题 核心考点三:整体代换与二次函数模型 核心考点四:绝对值与三角函数综合模型 核心考点五:ω的取值与范围问题 核心考点六:三角函数的综合性质【真题回归】1.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1B .32C .52D .32.(2022·全国·高考真题(理))设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤⎥⎝⎦3.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2022·全国·高考真题(文))将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .125.(多选题)(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 B .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭有两个极值点 C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 6.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________. 【方法技巧与总结】1、三角函数图象的变换(1)将sin y x =的图象变换为sin()y A x ωϕ=+(0,0)A ω>>的图象主要有如下两种方法:(2)平移变换函数图象的平移法则是“左加右减、上加下减”,但是左右平移变换只是针对x 作的变换; (3)伸缩变换①沿x 轴伸缩时,横坐标x 伸长(01)ω<<或缩短(1)ω>为原来的1ω(倍)(纵坐标y 不变);②沿y 轴伸缩时,纵坐标y 伸长(1)A >或缩短(01)A <<为原来的A (倍)(横坐标x 不变). (4)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. 2、三角函数的单调性 (1)三角函数的单调区间sin y x =的单调递增区间是2,2()22k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z ,单调递减区间是32,2()22k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ; cos y x =的单调递增区间是[2,2]()k k k π-ππ∈Z ,单调递减区间是[2,2]()k k k ππ+π∈Z ;tan y x =的单调递增区间是,()22k k k ππ⎛⎫π-π+∈ ⎪⎝⎭Z .(2)三角函数的单调性有时也要结合具体的函数图象如结合|sin |y x =,sin ||y x =, |cos |y x =,cos ||cos y x x ==的图象进行判断会很快得到正确答案.3、求三角函数最值的基本思路(1)将问题化为sin()y A x B ωϕ=++的形式,结合三角函数的图象和性质求解. (2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的图象和性质求解. (3)利用导数判断单调性从而求解. 4、对称性及周期性常用结论 (1)对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.(2)与三角函数的奇偶性相关的结论若sin()y A x ωϕ=+为偶函数,则有()2k k ϕπ=π+∈Z ;若为奇函数,则有()k k ϕ=π∈Z .若cos()y A x ωϕ=+为偶函数,则有()k k ϕ=π∈Z ;若为奇函数,则有()2k k ϕπ=π+∈Z . 若tan()y A x ωϕ=+为奇函数,则有()k k ϕ=π∈Z . 5、已知三角函数的单调区间求参数取值范刪的三种方法(1)子集法:求出原函数相应的单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正弦、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)周期性:由所给区间的两个端点到其相应对称中心的距离不超过14个周期列不等式(组)求解.【核心考点】核心考点一:齐次化模型【规律方法】齐次分式:分子分母的正余弦次数相同,例如:αααα++sin cos sin cos a b c d (一次显型齐次化)或者αααααααααα++⇒+222222sin cos +sin cos sin cos +sin cos sin cos a b c a b c (二次隐型齐次化)这种类型题,分子分母同除以αcos (一次显型)或者α2cos (二次隐型),构造成αtan 的代数式,这个思想在圆锥曲线里面关于斜率问题处理也经常用到.【典型例题】例1.(2022·广东揭阳·高三阶段练习)若tan 2θ=-,则()sin 1sin 24θθπθ-=⎛⎫- ⎪⎝⎭( )A .25B .25-C .65D .65-例2.(2022·江苏省丹阳高级中学高三阶段练习)已知tan 3α=,则3cos cos πcos 2ααα-=⎛⎫+ ⎪⎝⎭( )A .34-B .34C .310-D .310例3.(2022·湖南·高三阶段练习)已知曲线y =()1,4处的切线的倾斜角为2α,则1sin cos π14ααα++=⎛⎫+ ⎪⎝⎭( ) AB.C .12D .1例4.(2022·湖北·襄阳五中高三开学考试)若ππ2θ<<,tan 3θ=-,=( ) A .35 B .54-C .45-D .45核心考点二:辅助角与最值问题【规律方法】第一类:一次辅助角:αα±sin cos a b αϕ±).(其中ϕ=tan b a)第二类:二次辅助角()ωωω±>2sin cos cos ,0a x x b x a bωωω±=2sin cos cos a x x b x ()()ωωωϕϕ±+=±±=sin2cos212(tan )222a b b b x x x a【典型例题】例5.(2022·内蒙古·赤峰二中高三阶段练习(理))已知函数()41sin cos 55f x x x =+,当x β=时,()f x 取得最大值,则cos β=( ) ABC .47D .17例6.(2022·四川省成都市新都一中高三阶段练习(理))若2,43⎡⎤∈⎢⎥⎣⎦x ππ,则函数2()3sin cos =f x x x x 的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.D.[0,3+例7.(2022·四川省成都市新都一中高三阶段练习(文))若π0,2x ∈⎡⎤⎢⎥⎣⎦,则函数()23sin cos f x x x x=的值域为( )A.⎡⎢⎣⎦B.⎡⎢⎣⎦C.⎡⎣ D.0,3⎡⎣例8.(2022·全国·高三专题练习)函数()222sin f x x x =+,若()()123f x f x ⋅=-,则122x x -的最小值是( ) A .23πB .4πC .3πD .6π例9.(2022·浙江省杭州第二中学高三阶段练习)已知关于x 的方程sin cos 2a x b x +=有实数解,则()()2211a b -+-最小值是______.例10.(2022·全国·高三专题练习)函数()44sin sin cos 44xf x x x =+的最小值为___________. 例11.(2022·全国·高三专题练习)已知2251x y -+=,,x y R ∈,则22x y +的最小值为____.核心考点三:整体代换与二次函数模型【规律方法】三角函数和二次函数交汇也是一种常见题型,我们将其分为三类,第一类是最简单的,就是sin x ,cos x 与cos2x 之间的二次函数关系,第二类则有一点隐藏,就是±sin cos x x 与sin cos x x 之间的关系,第三类则是+sin cos a x b x 与sin2x 之间的关系.【典型例题】例12.(2022·全国·高三专题练习)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 例13.(2022·全国·高考真题(文))函数cos 22sin y x x =+的最大值为________.例14.(2022·全国·高考真题(理))函数sin cos sin cos y x x x x =++的最大值是_________. 例15.(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()f x 的最大值为___________.例16.(2022·全国·高三专题练习)若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是 A.12+B.12-+C .1 D核心考点四:绝对值与三角函数综合模型 【规律方法】关于=sin y x 和=sin y x ,如图,=sin y x 将=sin y x 图像中x 轴上方部分保留,x 轴下方部分沿着x 轴翻上去后得到,故=sin y x 是最小正周期为π的函数,同理ωφ=+sin()y A x 是最小正周期为πω的函数;=sin y x 是将=sin y x 图像中y 轴右边的部分留下,左边的删除,再将y 轴右边图像作对称至左边,故=sin y x 不是周期函数.我们可以这样来表示:ππππππ⎧∈+⎪=⎨-∈-⎪⎩,,sin ([22])sin sin ((22))x x k k x x x k k ,⎧≥⎪=⎨-<⎪⎩sin (0)sin sin (0)x x x x x 【典型例题】例17.(2022·安徽·铜陵一中高三阶段练习(理))已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小正周期为πB .()f xC .()3f x f x π⎛⎫-= ⎪⎝⎭D .()f x 5,012π⎡⎤-⎢⎥⎣⎦上有解 例18.(2022·全国·高三专题练习)已知()sin |||sin |cos |||cos |=+++f x x x x x ,给出下述四个结论: ①()y f x =是偶函数; ②()y f x =在3,22ππ⎛⎫⎪⎝⎭上为减函数; ③()y f x =在(,2)ππ上为增函数; ④()y f x =的最大值为 其中所有正确结论的编号是( )A .①②④B .①③④C .①②③D .①④例19.(2022·江苏·泗阳县实验高级中学高三阶段练习)已知函数()cos ||2|sin |f x x x =-,以下结论正确的是( )A .π是()f x 的一个周期B .函数在2π0,3⎡⎤⎢⎥⎣⎦单调递减C .函数()f x 的值域为[D .函数()f x 在[2π,2π]-内有6个零点例20.(多选题)(2022·安徽·砀山中学高三阶段练习)已知函数()sin cos 336x x f x π⎛⎫=++ ⎪⎝⎭,则( ) A .()f x 的最小正周期为3π B .()f xC .()f x 在[5,7]ππ上单调递减D .()f x 在[4,4]ππ-上有4个零点例21.(2022·湖南省临澧县第一中学高三阶段练习)函数()sin sin cos cos f x x x x x =+++的最大值为______.例22.(2022·全国·高三专题练习)已知函数()sin 2f x x x π⎛⎫=- ⎪⎝⎭,则 ①()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最小值是1; ②()f x 的最小正周期是2π;③直线()2k x k Z π=∈是()fx 图象的对称轴;④直线2y x π=与()fx 的图象恰有2个公共点.其中说法正确的是________________.例23.(2022·陕西·长安一中高一期末)关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间()2,π上递增; ③()f x 在[]π,π-上有4个零点; ④()f x 的最大值为2.其中所有正确结论的编号__________.例24.(2022·云南省玉溪第一中学高二期中(文))设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________.①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点.核心考点五:ω的取值与范围问题【规律方法】1、()sin()f x A x ωϕ=+在()sin()f x A x ωϕ=+区间()a b ,内没有零点⎪⎪⎩⎪⎪⎨⎧+≤+<+<+≤≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+≤-≥≤-⇒ωϕππωϕπk b k a T a b 2 同理,()sin()f x A x ωϕ=+在区间[]a b ,内没有零点 ⎪⎪⎩⎪⎪⎨⎧+<+<+<+<≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+<-><-⇒ωϕππωϕπk b k a T a b 2 2、()sin()f x A x ωϕ=+在区间()a b ,内有3个零点⎪⎩⎪⎨⎧+≤+<++<+≤≤-<⇒ππϕωππππϕωπk b k k a k Ta b T 432(1)(3)(24)T b a k T k a k k b πϕπϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒≤<⎨⎪⎪+<-≤-+-<≤⎪⎩同理()sin()f x A x ωϕ=+在区间[]a b ,内有2个零点⎪⎪⎩⎪⎪⎨⎧+<+≤++≤+<<-≤⇒ππϕωππππϕωπk b k k a k T a b T 32232(2))2(332k TT b k a k b a k πϕππϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+≤-<-+-≤<⎪⎩ 3、()sin()f x A x ωϕ=+在区间()a b ,内有n 个零点⇒(()(+1)1)(1)22n Tn T b a k k a k n k n b πϕππϕωωπϕπϕωω-+≤-⎧⎪⎪-+-⎪≤<⎨⎪⎪+-+-<≤⎩<⎪同理()sin()f x A x ωϕ=+在区间[]a b ,内有n 个零点(1)(1()()22+1)n T n T b k k a k n k n b a πϕππϕωωπϕπϕωω-+≤-<⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+-+-≤<⎪⎩4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为214n T +,则21(21)42n n T b a πω++==-. 5、已知单调区间(,)a b ,则2T a b -≤.【典型例题】例25.(2022·河南·模拟预测(文))已知函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,3x π=-为()f x 的一个零点,3x π=为()y f x =图象的一条对称轴,且()f x 在,20216ππ⎛⎫⎪⎝⎭内不单调,则ω的最小值为______. 例26.(2022·全国·高三专题练习)若函数()()cos 0f x x ωω=>在区间()2,3ππ内既没有最大值1,也没有最小值1-,则ω的取值范围是___________.例27.(2022·上海·高三专题练习)已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0ω>)有且仅有3个零点,则ω的最小值是_________.例28.(2022·宁夏·平罗中学高三期中(理))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在()2ππ,内单调且有一个零点,则ω的最大值是______________.例29.(2022·湖南·永州市第一中学高三阶段练习)若函数()()π2sin 04f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,46⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为________.例30.(2022·全国·高三阶段练习(理))已知函数π()2cos (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,()f x 的一个极值点为πx=.若π2π33T <<,则ω的最大值是_____.例31.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))将函数()sin2cos 222x x x f x ωωω⎛⎫=-+ ⎪⎝⎭(0ω>)的图象向左平移π3个单位长度,得到曲线C .若C 关于y 轴对称,则ω的最小值是______.例32.(2022·北京师大附中高三阶段练习)记函数()()()cos 0,0f x x ωϕωϕ=+><<π的最小正周期为T ,若()f T =π12x =为()f x 的零点,则ω的最小值为_______. 例33.(2022·云南·高三阶段练习)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,若π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,()f x 在区间5π7π,1818⎛⎫⎪⎝⎭上有最大值点无最小值点,且5π7π1818f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,记满足条件的ω的取值集合为M ,则=M ______.例34.(2022·四川成都·模拟预测(理))已知函数()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,若03f π⎛⎫=⎪⎝⎭,且()f x 在5,312ππ⎛⎫ ⎪⎝⎭上有最大值,没有最小值,则ω的最大值为______. 例35.(2022·全国·高三专题练习(理))设函数()sin()f x x ωϕ=+,其中0ω>.且1(0),0263f f f ππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,则ω的最小值为________.例36.(2022·福建省福州教育学院附属中学高三开学考试)已知()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭,63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,则ω=______.例37.(多选题)(2022·山西·高三阶段练习)已知函数()(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间π,π3⎛⎤⎥⎝⎦内没有零点,则ω的值可以是( )A .18B .12C .76D .32核心考点六:三角函数的综合性质 【典型例题】例38.(多选题)(2022·山东德州·高三期中)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭同时满足下列三个条件:②该函数图象的两条对称轴之间的距离的最小值为π; ③该函数图象关于5,03π⎛⎫⎪⎝⎭对称. 那么下列说法正确的是( ) A .ϕ的值可唯一确定B .函数56f x π⎛⎫-⎪⎝⎭是奇函数 C .当52()6x k k ππ=-∈Z 时,函数()f x 取得最小值 D .函数()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增例39.(多选题)(2022·湖北襄阳·高三期中)函数π()sin(2)3f x x =-的图象向左平移π4个单位长度,得到函数()g x 的图象,则下列结论正确的有( ) A .直线5π6x =-是()g x 图象的一条对称轴B .()g x 在ππ(,)26-上单调递增C .若()g x 在(0,)α上恰有4个零点,则23π29π(,]1212α∈ D .()g x 在ππ[,]42上的最大值为12例40.(多选题)(2022·江苏南通·高三期中)已知函数()f x ,()g x 的定义域均为R ,它们的导函数分别为()f x ',()g x '.若()1y f x =+是奇函数,()()cos g x x π'=,()f x 与()g x 图象的交点为()11,x y ,()22,x y ,…,(),m m x y ,则( )A .()f x 的图象关于点()1,0-对称B .()f x '的图象关于直线1x =对称C .()g x 的图象关于直线12x =对称D .()1mi i i x y m =+=∑例41.(多选题)(2022·山东菏泽·高三期中)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则下列说法正确的是( ).A .π2f ⎛⎫= ⎪⎝⎭B .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减 C .()f x 在区间π11π,1212⎛⎫-⎪⎝⎭上有且仅有2个零点 D .将()f x 的图象向右平移π12个单位长度后,可得到一个奇函数的图象 例42.(多选题)(2022·河北·模拟预测)已知函数π()sin()(0,0π),()04f x x f ωϕωϕ=+><<=,且对任意x ∈R均有π()(),()2f x f f x 在π[0,]2上单调递减,则下列说法正确的有( ) A .函数()f x 为偶函数B .函数()f x 的最小正周期为2πC .若1()([0,2π])3f x x =∈的根为(1i x i =,2,⋯,)n ,则14πn i i x ==∑ D .若(2)()f x f x >在(,)m n 上恒成立,则n m -的最大值为π3例43.(多选题)(2022·广东·深圳实验学校光明部高三期中)已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图(1)所示,函数()()1111()cos 0,0,||πg x A x A ωαωα=+>><的部分图象如图(2)所示,下列说法正确的是( )A .函数()y f x =的周期为2πB .函数()y f x =的图象关于直线1912x π=对称 C .函数()1y f x =-在区间[0,2]π上有4个零点 D .将函数()y f x =的图像向左平移23π可使其图像与()y g x =图像重合例44.(多选题)(2022·福建·厦门外国语学校高三期中)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图像上所有的点向右平移π6个单位长度,得到函数()g x 的图像,则下列说法正确的是( ) A .()g x 的最小正周期为π B .()g x 图像的一个对称中心为7π,012⎛⎫⎪⎝⎭C .()g x 的单调递增区间为()π5ππ,πZ 36k k k ⎡⎤++∈⎢⎥⎣⎦D .()g x 的图像与函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图像重合例45.(多选题)(2022·黑龙江齐齐哈尔·高三期中)已知()44cossin 22x xf x =+,则下列说法错误的是( ) A .函数()f x 的最小正周期为2π B .函数4f x π⎛⎫- ⎪⎝⎭为奇函数C .函数()f x 在,63ππ⎛⎫⎪⎝⎭上的值域为5,18⎛⎫⎪⎝⎭D .函数()34y f x =-在区间[]2,2ππ-上的零点个数为8【新题速递】一、单选题1.(2022·河北·张家口市第一中学高三期中)函数()()πtan 0,02f x x ωϕϕω⎛⎫=+<<> ⎪⎝⎭某相邻两支图象与坐标轴分别交于点π,06A ⎛⎫ ⎪⎝⎭,2π,03B ⎛⎫⎪⎝⎭,则方程()[]πsin 2,0,π3f x x x ⎛⎫=-∈ ⎪⎝⎭所有解的和为( ) A .5π12B .5π6 C .π2D .π2.(2022·北京市第十一中学高三阶段练习)已知函数()2π2cos 4f x x ⎛⎫=- ⎪⎝⎭则( )A .()f x 是奇函数B .函数()f x 的最小正周期为4πC .曲线()y f x =关于π2x =对称D .()()12f f >3.(2022·贵州·顶效开发区顶兴学校高三期中(理))已知函数()()sin f x x ωϕ=+(0ω>,π<ϕ),其图象相邻两条对称轴的距离为π2,且对任意x ∈R ,都有()7π12f x f ⎛⎫⎪⎝⎭,则在下列区间中,()f x 为单调递减函数的是( ) A .ππ,63⎡⎤-⎢⎥⎣⎦B .7π0,12⎡⎤⎢⎥⎣⎦C .π12π,2⎡⎤⎢⎥⎣⎦D .7π,π12⎡⎤⎢⎥⎣⎦4.(2022·吉林长春·模拟预测)定义域为[]0,π的函数())()1cos cos 02f x x x x ωωωω=-+>,其值域为1,12⎡⎤-⎢⎥⎣⎦,则ω的取值范围是( ) A .30,2⎛⎤ ⎥⎝⎦B .3,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .12,33⎡⎤⎢⎥⎣⎦5.(2022·江苏南通·高三期中)已知112tan sin =-αα,则πtan 4α⎛⎫-= ⎪⎝⎭( )A .7-B .17-C .19D .436.(2022·河南·高三阶段练习(理))设函数()sin()(0)5f x x πωω=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论中,正确结论的编号是( ) ①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在05π⎛⎫⎪⎝⎭,单调递增④ω的取值范围是1229510⎡⎫⎪⎢⎣⎭, A .①④B .②③C .①②③D .①③④7.(2022·天津市南开中学滨海生态城学校高三阶段练习)下列关于函数()4cos cos 3f x x x ⎛⎫=- ⎪⎝⎭π的命题,正确的有( )个(1)它的最小正周期是π2(2)π,012⎛⎫-⎪⎝⎭是它的一个对称中心 (3)π6x =是它的一条对称轴 (4)它在π0,3⎛⎤⎥⎝⎦上的值域为[]2,3A .0B .1C .2D .38.(2022·宁夏六盘山高级中学高三期中(理))已知函数()()sin f x x ωϕ=+(其中0,2πωϕ><),()30,88f f x f ππ⎛⎫⎛⎫-=≤ ⎪ ⎪⎝⎭⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,给出下列命题①()f x 是偶函数;②()304f f π⎛⎫= ⎪⎝⎭;③ω是奇数;④ω的最大值为3;其中正确的命题有( )A .①②③B .①②④C .②③④D .①③④二、多选题9.(2022·重庆八中高三阶段练习)已知函数()()sin 2(0π)f x x ϕϕ=+<<,曲线()y f x =关于点7π,012⎛⎫- ⎪⎝⎭中心对称,则( )A .将该函数向左平移π6个单位得到一个奇函数B .()f x 在3π7π,46⎛⎫⎪⎝⎭上单调递增 C .()f x 在π7π,1212⎛⎫-⎪⎝⎭上只有一个极值点 D .曲线()y f x '=关于直线π6x =对称10.(2022·福建·泉州五中高三期中)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .直线7π6x =是()fx 的对称轴B .点2π,03⎛⎫⎪⎝⎭是()f x 的对称中心 C .()f x 在区间π22π,3⎡⎤⎢⎥⎣⎦上单调递减D .()f x 的图象向右平移7π12个单位得cos 2y x =的图象11.(2022·山东青岛·高三期中)已知函数i π()sin 23s n 2cos π66f x x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭,则( )A .()f x 的最大值为2B .π3x =是()f x 的图象的一条对称轴C .()f x 在ππ,63⎛⎫-⎪⎝⎭上单调递减 D .()f x 的图象关于π,06⎛⎫ ⎪⎝⎭对称12.(2022·湖北·荆门市龙泉中学高三阶段练习)设()()sin f x x ωϕ=+(其中ω为正整数,π2<ϕ),且()f x 的一条对称轴为π12x =-;若当0ϕ=时,函数()f x 在ππ,55⎡⎤-⎢⎥⎣⎦单调递增且在ππ,33⎡⎤-⎢⎥⎣⎦不单调,则下列结论正确的是( ) A .2ω=B .()f x 的一个对称中心为5π,06⎛⎫⎪⎝⎭C .函数()f x 向右平移π12个单位后图象关于y 轴对称 D .将()f x 的图象的横坐标变为原来的一半,得到()g x 的图象,则()g x 的单调递增区间为()ππ5ππ,Z 242242k k k ⎛⎫-++∈ ⎪⎝⎭三、填空题13.(2022·甘肃·兰州市外国语高级中学高三阶段练习(文))已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的相邻对称轴之间的距离为π2,且()f x 图象经过点π,03P ⎛⎫⎪⎝⎭,则下列说法正确的是___________.(写出所有正确的题号)A .该函数解析式为()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;B .函数()f x 的一个对称中心为2π,03⎛⎫-⎪⎝⎭C .函数y =()π5ππ,π2424k k k ⎡⎤-++∈⎢⎥⎣⎦Z D .将函数()y f x =的图象向右平移(0)b b >个单位,得到函数()g x 的图象,且函数()g x 的图象关于原点对称,则b 的最小值为π3.14.(2022·四川省遂宁市教育局模拟预测(文))正割(Secant ,sec )是三角函数的一种,正割的数学符号为sec ,出自英文secant .该符号最早由数学家吉拉德在他的著作《三角学》中所用,正割与余弦互为倒数,即1sec cos x x=.若函数()sec sin f x x x x =⋅-,则下列结论正确的有__ ①函数()f x 的图像关于直线x π=对称;②函数()f x 图像在(),()f ππ处的切线与x 轴平行,且与x 轴的距离为π; ③函数()f x 在区间95,168ππ⎡⎤⎢⎥⎣⎦上单调递增; ④()f x 为奇函数,且()f x 有最大值,无最小值.15.(2022·河南·驻马店市第二高级中学高三阶段练习(理))若1sin cos 2θθ=,则()sin 1sin 2sin cos θθθθ-=+______.16.(2022·吉林·东北师大附中模拟预测)已知函数()sin ||f x x x =,若关于x 的方程()f x m =在4π,2π3⎛⎤- ⎥⎝⎦上有三个不同的实根,则实数m 的取值范围是_________. 四、解答题17.(2022·江西·丰城九中高三开学考试(理))已知函数()2cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)若函数()()g x f x k =-在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的零点,求实数k 的取值范围.18.(2022·江苏盐城·高三阶段练习)已知函数()22cos 2sin cos sin (04)f x x x x x ωωωωω=+-<<,且_____.从以下①②③三个条件中任选一个,补充在上面条件中,并回答问题:①过点;8π⎛⎝②函数()f x 图象与直线0y 的两个相邻交点之间的距离为;π③函数()f x 图象中相邻的两条对称轴之间的距离为2π.(1)求函数()f x 的单调递增区间;(2)设函数()2cos 23g x x π⎛⎫=-⎪⎝⎭,则是否存在实数m ,使得对于任意1[0,]2x π∈,存在2[0,]2x π∈,()()21m g x f x =-成立?若存在,求实数m的取值范围;若不存在,请说明理由.19.(2022·黑龙江·哈师大附中高三阶段练习)已知函数()4sin cos 3f x x x π⎛⎫=- ⎪⎝⎭(1)求函数()f x 的单调递增区间;(2)若函数()()32g x f x =-在区间(0,π)上恰有2个零点()1212,x x x x <,求()12cos x x -的值.20.(2022·福建省诏安县桥东中学高三期中)已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图象横坐标不变,纵坐标缩短到原来的12倍,得到函数()g x 图象,再将()g x 图象右平移π12个单位后得到()h x 的图象,求函数()y h x =在π3π,124x ⎡⎤∈⎢⎥⎣⎦上的单调减区间.21.(2022·青海·西宁市海湖中学高三期中)某同学用“五点法”画函数()sin()0,||2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:()f x 的解析式;(2)将()y f x =图象上所有点向左平移(0)θθ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5,012π⎛⎫⎪⎝⎭,求θ的最小值.22.(2022·北京·北大附中高三阶段练习)已知函数()()sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图像如下图所示.(1)直接写出()f x 的解析式;(2)若对任意0,3s π⎡⎤∈⎢⎥⎣⎦,存在[]0,t m ∈,满足()()f s f t =-,求实数m 的取值范围.。

三角函数的应用及实例

三角函数的应用及实例

三角函数的应用及实例三角函数是数学中一个重要的分支,是数学与实际生活相结合的一个桥梁。

它的应用涵盖了物理、工程、计算机图形学等多个领域,可以解决很多实际问题。

下面我将介绍三角函数的应用及实例。

一、物理应用:1. 力的合成:假设有两个力F1和F2作用在一个固定点上,我们需要求这两个力的合力及合力的方向。

可以利用三角函数中的正弦定理和余弦定理来解决这个问题。

2. 运动学: 三角函数在描述物体的运动过程中经常会用到,例如在直角坐标系中,物体在坡面上滑动的速率与坡度的关系可以用正弦函数表示。

3. 波动现象:波动是物理学中一个重要的概念,它的描述和分析中就需要用到三角函数。

例如,我们可以用正弦函数描述声波、水波、电磁波的传播过程,利用三角函数来计算频率、波长、速度等物理量。

二、工程应用:1. 构建桥梁:在构建拱桥或斜拉桥等大型工程中,需要计算各个构件的长度、倾角等问题,利用三角函数可以快速地解决这些问题。

2. 建筑设计:在建筑设计中,尤其是对于带有倾斜屋顶的建筑物,需要计算倾角、弧度以及各个构件的长度,三角函数可以提供精确的计算方法。

3. 导航与测量:在航海、航空和地理测量等领域,计算方向、距离、高度等问题常用到三角函数,例如计算飞机的飞行角度、航线等。

三、计算机图形学:1. 三维图形的旋转:在计算机图形学中,三角函数的旋转变换经常使用,可以实现物体的旋转、缩放等操作。

2. 光线追踪:在渲染和光线追踪算法中,需要计算光线与物体表面相交的位置和角度,用到了三角函数的计算。

3. 视角变换:在3D图形的构建和显示中,视角变换是一个常见的操作。

通过调整视角的角度和距离,可以改变观察者对图形的观察效果,三角函数被广泛应用于此。

综上所述,三角函数在物理、工程和计算机图形学等多个领域中都有广泛的应用。

无论是解决实际问题,还是进行工程设计和计算机图形的构建,都需要用到三角函数。

因此,掌握三角函数的概念、公式和应用是十分重要的。

三角函数的综合运用

三角函数的综合运用

三角函数的综合运用三角函数是数学中重要的一门分支,广泛应用于各个领域。

它们不仅可用于解决几何问题,还在物理、工程和计算机科学等领域起着重要作用。

本文将探讨三角函数的综合运用,并介绍一些相关的实际应用。

1. 三角函数的基本概念在开始讨论三角函数的综合运用之前,我们首先需要了解一些基本概念。

三角函数包括正弦函数、余弦函数和正切函数,分别表示为sin、cos和tan。

2. 三角函数的性质三角函数具有一些重要的性质,这些性质在综合运用中起到了关键作用。

例如,它们的周期性质使得它们常常在波浪形的变化中产生应用;另外,三角函数之间具有重要的关系,如余弦函数和正弦函数的和差公式等。

3. 三角函数的图形表示三角函数的图形可帮助我们更好地理解它们的性质和变化规律。

通过绘制正弦、余弦和正切函数的图像,我们可以观察到它们的周期性、振幅、分段性等特点。

4. 三角函数在几何中的应用三角函数在几何中有着广泛的应用。

例如,我们可以利用正弦函数来计算三角形的高度,或者利用余弦函数来计算其边长。

通过使用三角函数,我们可以更加准确地解决各种几何问题。

5. 三角函数在物理中的应用三角函数在物理学中也扮演着重要的角色。

例如,我们可以通过正弦函数来描述声音的波动、通过余弦函数来描述电流的变化,或者通过正切函数来解决带有摩擦力的斜面问题。

三角函数的应用使得物理学问题的解决更加精确。

6. 三角函数在工程中的应用在工程领域,三角函数的应用更加广泛。

例如,在建筑设计中,我们可以利用正弦函数来计算建筑物的斜塔高度;在通信工程中,我们可以利用三角函数来计算信号的传播距离。

三角函数在工程中的应用使得工程设计更加可靠和准确。

7. 三角函数在计算机科学中的应用在计算机科学领域,三角函数也有着重要的应用。

例如,图形学中的三角函数可用于计算图像的旋转和变换;在模拟仿真中,三角函数可用于计算物体的运动轨迹。

三角函数的应用使得计算机科学中的数值计算更加精确和高效。

三角函数综合应用

三角函数综合应用

解 (1)m·n= 3sin x4·cos x4+cos2x4

3 2 sin
x2+1+c2os
x 2=sinx2+π6+12,
∵m·n=1,∴sinx2+π6=12. cosx+π3=1-2sin2x2+π6=12, cos23π-x=-cosx+π3=-12. (2)∵(2a-c)cos B=bcos C,
[4 分]
(2)解 |b+c|2=(b+c)2=b2+c2+2b·c=sin2β+16cos2β+cos2β+
16sin2β+2(sin βcos β-16sin βcos β)
=17-30sin βcos β=17-15sin 2β,
最大值为 32,所以|b+c|的最大值为 4 2.
[9 分]
(3)证明 由 tan αtan β=16,得 sin αsin β=16cos αcos β,
答题模板
平面向量与三角函数的结合问题
(14 分)设向量 a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β, -4sin β). (1)若 a 与 b-2c 垂直,求 tan(α+β)的值; (2)求|b+c|的最大值; (3)若 tan αtan β=16,求证:a∥b.
因为 α 是第一象限角,故 sin α=1123.
所以,cossin4απ++π42α=sicnoαs +2απ4
=2cos
2 α-sin
α=-1134
2.
三角形中的三角恒等变换
例 2 设锐角三角形 ABC 的内角 A,B,C 的对边分别为 a,b, c,a=2bsin A. (1)求 B 的大小; (2)求 cos A+sin C 的取值范围.
变式训练 1

高中数学导数与三角综合

高中数学导数与三角综合

高中数学导数与三角综合导数是数学中的重要概念之一,与三角函数的综合运用也是高中数学的重要内容。

本文将重点探讨导数与三角函数的综合应用,以帮助学生更好地理解和应用这一知识点。

一、导数的定义与基本性质导数的定义是指函数在某一点处的变化率,可以用极限的概念来表示。

常见的导数记号有f'(x)、dy/dx或y',表示函数f(x)关于自变量x的导数。

在计算导数时,我们可以利用基本的求导法则,如常数法则、乘积法则、链式法则等来简化计算过程。

此外,导数还具有一些基本性质,如线性性、可导必连续等,这些性质在计算中十分重要。

二、导数的应用导数在实际问题中有广泛的应用,尤其在物理学和经济学等领域中经常被使用。

下面我们将重点讨论导数在三角函数中的应用。

1. 最值问题通过对函数进行求导,我们可以找到函数的驻点和拐点,进而确定函数的最值点。

在三角函数中,最常见的最值问题是求解极值点和最大最小值问题。

2. 函数图像的描绘函数的导数可以告诉我们函数图像的变化趋势,在描绘函数图像时起到了关键的作用。

通过分析导函数的正负性、零点、增减区间等信息,我们可以描绘出函数的基本形态,并且确定函数的极值点和拐点。

三、三角函数的综合应用三角函数是高中数学中的重要内容,也是数学与实际问题相结合的桥梁。

下面我们将介绍一些三角函数的综合应用。

1. 三角函数的周期性三角函数的周期性是指函数图像在一定区间内呈现出重复的规律性。

利用三角函数的周期性,我们可以解决各种周期性问题,如周期函数的图像变化、正弦定理、余弦定理等。

2. 三角函数的和差角公式三角函数的和差角公式是指将两个三角函数的角度进行加减运算时所满足的一些关系。

这些公式在解决三角函数的综合问题中十分有用,例如求解三角方程、计算三角函数的具体数值等。

通过本文的探讨,我们对高中数学中的导数与三角综合有了更深入的了解。

导数的应用可以帮助我们解决函数的最值问题和描绘函数图像,而三角函数的综合应用则为我们解决各种周期性问题和三角方程提供了方法和工具。

三角函数的综合应用

三角函数的综合应用

城东蜊市阳光实验学校三角函数的综合应用一、明确复习目的1.掌握三角函数的图象、性质和恒等变形,会用反三角函数表示角; 2.掌握正、余弦定理解斜三角形的方法;3.能解决三角函数与几何、向量综合的题目,能用三角知识解决简单的实际问题。

二.建构知识网络1. 三角函数的性质和图象变换;2. 三角函数的化简,求值,证明——恒等变形的策略与技巧.3. 正、余弦定理,斜三角形的可解类型;在应用题中要能抽象或者者构造出三角形;4.在应用与综合性题目中,当角不是特殊角,要“用反三角函数表示角〞: (1)arcsin [,],;22a a a ππ-∈表示上正弦值等于的角,[-1,1] (2)arccosa 表示[0,π]上余弦值等于a 的角,a∈[-1,1]; (3)arctan (,),;22aa a R ππ-∈表示上正切值等于的角,(4)对于不是上述范围内的角,可借助诱导公式和三角函数线,找出与上述反三角的关系进而求出.例如:sinα=0.3,α是钝角,那么α=π-arcsin0.3.三、双基题目练练手 1.tan 3x =-,那么x 等于〔〕2.假设A 、B 是锐角△ABC 的两个内角,那么点P 〔cosB -sinA ,sinB -cosA 〕在()A.第一象限B.第二象限C.第三象限D.第四象限3.111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,那么(〕 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为A.75°B.60°C.50°D.45°5.〔2021〕假设x=3π是方程2cos 〔x+α〕=1的解,其中α∈〔0,2π〕,那么α=_________. 6.〔2021西城二模〕函数y=sinx(sinx+3cosx 〕〔x∈R〕的最大值是_______. ◆答案:1-4.CBDC;2.A+B >2π.∴A>2π-B ,B >2π-A. ∴sinA>cosB ,sinB >cosA.,P 在第二象限.3.sinA2=cosA1,……A1、B1、C1是锐角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答题规范练
三角函数的综合应用
(推荐时间:70分钟)
1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .
(1)若函数f (x )=1-3,且x ∈⎣⎡⎦
⎤-π3,π
3,求x 的值; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.
解 (1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π
6+1. 由2sin ⎝⎛⎭⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎫2x +π6=-3
2. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π
6,
∴2x +π6=-π3,即x =-π4
.
(2)当-π2+2k π≤2x +π6≤π
2
+2k π(k ∈Z ),
即-π3+k π≤x ≤π
6
+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为
⎣⎡⎦
⎤-π3+k π,π6+k π(k ∈Z ),
x 0 π
6 π3 π2 2π3 5π6 π y
2
3
2
-1
2
2. 已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -
cos 2x .
(1)求函数f (x )的值域;
(2)若f (θ)=1
5,θ∈⎣⎡⎦⎤π6,π3,求sin 2θ的值. 解 (1)f (x )=a ·b -cos 2x
=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin ⎝⎛⎭⎫2x +π
6-1, f (x )的值域为[-3,1].
(2)由(1)知f (θ)=2sin ⎝
⎛⎭⎫2θ+π
6-1, 由题设2sin ⎝⎛⎭⎫2θ+π6-1=1
5,即sin ⎝⎛⎭⎫2θ+π6=35, ∵θ∈⎣⎡⎦⎤π6,π3,∴2θ+π6∈⎣⎡⎦⎤π2,5π6, ∴cos ⎝⎛⎭⎫2θ+π6=-45
, ∴sin 2θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π6-π6=sin ⎝⎛⎭⎫2θ+π6cos π6-cos ⎝⎛⎭⎫2θ+π6sin π
6 =35×3
2-⎝⎛⎭⎫-45×12=33+410
.
3. 已知向量m =⎝
⎛⎭⎫sin A ,1
2与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;
(2)若BC =2,求△ABC 面积S 的最大值.
解 (1)∵m ∥n ,∴sin A ·(sin A +3cos A )-3
2=0.
∴1-cos 2A 2+32sin 2A -32=0,

32sin 2A -1
2
cos 2A =1, 即sin ⎝
⎛⎭⎫2A -π
6=1. ∵A ∈(0,π),∴2A -π
6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π
3
.
(2)∵BC =2,由余弦定理得b 2+c 2-bc =4,
又b 2+c 2≥2bc ,∴bc ≤4(当且仅当b =c 时等号成立), 从而S △ABC =12bc sin A =34bc ≤3
4×4= 3.
即△ABC 面积S 的最大值为 3.
4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C cos B =3c -a
b
.
(1)求
sin C
sin A
的值; (2)若B 为钝角,b =10,求a 的取值范围. 解 (1)由正弦定理,设
a sin A =
b sin B =
c sin C
=k , 则3c -a b =3k sin C -k sin A k sin B =3sin C -sin A sin B ,
所以cos A -3cos C cos B =3sin C -sin A sin B

即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ). 又A +B +C =π,所以sin C =3sin A , 因此sin C
sin A =3.
(2)由
sin C
sin A
=3得c =3a .
由题意知⎩
⎪⎨⎪⎧
a +c >b
a 2+c 2<
b 2,
又b =10,所以5
2
<a <10.
5. 已知函数f (x )=A sin(ωx +φ)⎝
⎛⎭⎫其中x ∈R ,A >0,ω>0,-π2<φ<π
2的部分图象如图所示.
(1)求函数f (x )的解析式;
(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π
4
.
又f (1)=sin ⎝⎛⎭⎫π4+φ=1,且-π2<φ<π
2, 所以π4+φ=π2,解得φ=π
4.
所以f (x )=sin ⎝⎛⎭⎫π4x +π4. (2)因为f (-1)=0,f (1)=1, f (5)=sin ⎝⎛⎭⎫5π4+π4=-1,
所以M (-1,0),N (1,1),P (5,-1). 所以|MN |=5,|PN |=20,|MP |=37. 由余弦定理得
cos ∠MNP =5+20-3725×20=-35.
因为∠MNP ∈(0,π), 所以sin ∠MNP =4
5
.
6. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中
0<α<x <π.
(1)若α=π
4
,求函数f (x )=b ·c 的最小值及相应x 的值;
(2)若a 与b 的夹角为π
3
,且a ⊥c ,求tan 2α的值.
解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π
4

∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).
令t =sin x +cos x ⎝⎛⎭⎫π
4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝
⎛⎭⎫t +
222-3
2
,-1<t <2, ∴t =-
22时,y min =-32,此时sin x +cos x =-22
, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<5
4π, ∴x +π4=76π,∴x =11π12
.
∴函数f (x )的最小值为-32,相应x 的值为11π12.
(2)∵a 与b 的夹角为π
3

∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).
∵0<α<x <π,∴0<x -α<π,∴x -α=π3.
∵a ⊥c ,
∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π
3+2sin 2α=0. ∴52sin 2α+3
2cos 2α=0, ∴tan 2α=-
3
5
.。

相关文档
最新文档