高三电磁场必做综合题(1)
电磁场练习题电场与磁场的叠加与相互作用
电磁场练习题电场与磁场的叠加与相互作用电磁场练习题——电场与磁场的叠加与相互作用在物理学中,电磁场是电荷与电流所产生的场,由电场和磁场组成。
电磁场的相互作用以及叠加是电磁学的重要内容。
下面,我们将通过一些实例来解析电场与磁场的叠加与相互作用。
1. 实例一:平行板电容器中的带电粒子假设有一个带正电荷q的质点,位于距离一个平行板电容器距离为d的位置。
平行板电容器的两个平行的金属板分别带上正电荷和负电荷,形成了一个匀强电场。
此时,电场的电势差为ΔV,根据电场的叠加原理,带电粒子所受到的电场力为F1 = qΔV。
假设带电粒子的速度v与电场垂直,则带电粒子还受到一个宽度为d的磁场,根据磁场的叠加原理,粒子在磁场中受到的洛伦兹力为F2 = qvB。
因此,带电粒子所受到的合力为F = F1 + F2 = qΔV + qvB。
2. 实例二:电流通过直导线考虑一个长直导线,导线中有电流I,与导线平行的方向定义为x轴方向。
在导线周围产生一个以导线为轴线的环形磁场。
现在,我们再在导线周围和导线之间施加一个电场,即有一个电场E与导线方向相同。
根据磁场的叠加原理,磁场B和电场E的合力为F1 = qE。
根据电场的叠加原理,导线所带来的电场力为F2 = ILB,其中L为导线的长度,B为导线周围的磁场强度。
所以,导线受到的总合力为F = F1 + F2 = qE + ILB。
3. 实例三:异向电场和磁场中的运动粒子假设有一个粒子,同时存在电场和磁场。
电场E方向为x轴方向,磁场B方向为z轴方向。
粒子的速度v方向既不与电场方向也不与磁场方向垂直,而是与两者夹角θ。
粒子在电场中受到的电场力为F1 = qE。
粒子在磁场中受到的洛伦兹力为F2 = qvBsinθ。
所以,粒子所受到的合力为F = F1 + F2 = qE + qvBsi nθ。
当粒子在电磁场中运动时,合力将改变粒子的运动轨迹。
总结起来,电场与磁场的叠加与相互作用是电磁学中的基本概念。
高中物理电磁学专题1:带电粒子在电磁场中的运动问题
的比荷 (q/m) 决定.
电偏转和磁偏转的比较
电偏转和磁偏转的比较
电偏转和磁偏转的比较
(一)带电粒子在有界匀强磁场中的运动
1. 有界匀强磁场问题是指只在局部存在匀强磁场,带电粒 子从磁场区域外垂直磁场方法进入磁场,在磁场区域内 经历一段匀速圆周运动后离开磁场区域的一类问题.
2. 由于磁场区域边界不同、带电粒子垂直进入磁场的方向 不同,造成粒子在磁场中运动的情形各不相同.
8.带电粒子在磁场中运动的多解问题 (4) 题目所给条件不足形成多解
若题目只给出了带电粒子在有界磁场的进入点、飞出点以 及轨迹,如图所示,即可形成多解.
8.带电粒子在磁场中运动的多解问题 (5) 带电粒子在运动的周期性形成多解
带电粒子在部分是电场,部分是磁场的空间运动时,运动 往往具有往复性,从而形成多解.
圆心的确定
(2) 已知入射方向和出射点的位置 通过入射点作入射方向的垂线,连接 入射点和出射点,作中垂线,这两条 垂线的交点就是圆弧轨道的圆心(如图 乙所示,P为入射点,M为出射点).
依据:弦的垂直平分线过圆心
4. 求解带电粒子做圆周运动的半径和圆心角,主要是灵活 应用几何知识(勾股定理、三角函数等).
功
也可能不做功
理论基础
大小 力F=0的情况
洛伦兹力 B不一定为零
电场力
F=qE
E一定为零
作用效果
只改变电荷运动的 既可以改变电荷运动
速度方向,不改变 的速度大小,也可以
速度大小
改变电荷运动的方向
U
若不计重力,则带电粒子只受电场力作用,
+
q
_ 应用动能定理:
v1 m v2 d
1 2
mv22
电磁感应问题的综合分析 (1)
以题说法 1.应用“感应电流的磁场总是阻碍原磁场的磁 通量的变化”分析问题时,首先要明确原磁场的方向和磁 通量的变化. 2.E=ΔΔBt S中的S是磁场穿过的有效面积.
针对训练 1 两磁感应强度为 B 的匀强磁场区域Ⅰ、Ⅲ,方 向如图 3 所示,两区域中间是宽为 s 的无磁场区域Ⅱ,有 一边长为 L(L>s)、电阻为 R 的均匀正方形金属线框 abcd 置于Ⅰ区域,ab 边与磁场边界平行,现拉着金属框以速 度 v 向右匀速运动,则 ()
方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,
在下图中感应电流 i 与线框移动距离 x 的关系图象正确的
是
()
图5
解析 在 0~a 距离内,有效切割长度 l 均匀增大,即 l=vttan 30° = 33vt,感应电流 i= 33RBv2t,且最大值 I0=BRav,电流方向为 逆时针方向;在 a~2a 距离内,线框处在两个磁场中,在两个 磁场中有效切割长度相同,感应电流方向相同,且感应电流最 大值为 Imax=2I0,方向为顺时针方向;2a~3a 距离内,感应电 流为逆时针方向,且最大感应电流的值为 I0,C 正确.
答案 C
题型 3 电磁感应过程的动力学分析 例 3 (12 分)如图 6 所示,两根足够长的光滑直金属导轨 MN、
PQ 平行固定在倾角 θ=37°的绝缘斜面上,两导轨间距 L =1 m,导轨的电阻可忽略.M、P 两点间接有阻值为 R 的电阻.一根质量 m=1 kg、电阻 r=0.2 Ω 的均匀直金属 杆 ab 放在两导轨上,与导轨垂直且接触良好.整套装置 处于磁感应强度 B=0.5 T 的匀强磁场中,磁场方向垂直斜 面向下.自图示位置起,杆 ab 受到大小为 F=0.5v+2(式 中 v 为杆 ab 运动的速度,力 F 的单位为 N)、方向平行导 轨沿斜面向下的拉力作用,由静止开始运动,测得通过电 阻 R 的电流随时间均匀增大.g 取 10 m/s2,sin 37°=0.6.
电磁场复习样题2013
电磁场复习样题20131. ()下⾯关于电位和电场的关系,正确表述为。
A .电位相等处,电场强度也相等。
B .电位相等处,电场强度不⼀定相等。
C .电场强度为零处,电位⼀定为零。
D .电位为零处,电场强度⼀定为零。
2. ()球坐标系原点处有⼀点电荷q ,在r a =处有⼀球⾯,球⾯上均匀分布着电荷量为q ',求穿过球⾯r k =的电通量为。
A .q k a >当时B .q k a '>当时C .q q '+D .q q k a '+>当时3. ()⼀点电荷q +位于(δ,0,0),另⼀点电荷q -位于(δ,δ,0),这两个点电荷可以看成为⼀个偶极⼦,其偶极矩p =________。
A .2q δB .q δC .y q e δD .y q e δ-4. ( )下⾯关于点电荷的电场强度表述错误的是。
A . ⼤⼩等于单位正电荷在该点所受电场⼒的⼤⼩B . ⽅向与正电荷在该点所受电场⼒⽅向⼀致C . 与受⼒电荷电量有关D . 与产⽣电场的电荷有关。
5. ()静电场中的导体处于静电平衡状态,对其性质的描述错误的是________。
A .导体内的⾃由电⼦在局部范围内仍作宏观运动B .导体是⼀个等位体,其表⾯是等位⾯C .导体带净电时,电荷只能分布于其表⾯D .导体内的电场强度等于零6. ()下⾯关于电介质描述正确的是________。
A .其分⼦分为有极分⼦和⽆极分⼦,因此在宏观上显⽰出电特性B .在外电场作⽤下发⽣极化,其中的总电偶极矩不为零,产⽣了⼀个附加电场C .极化后产⽣的附加电场能够抵消外加电场D .极化后产⽣的极化电荷只能分布于介质表⾯B .电场强度的线积分与积分路径有关C .电场强度的环量为常数D .电场强度的旋度为常⽮量8. ()在静电场中,电场强度E 与电位?的关系为________________。
A .E ?=??B .-E ?=?C .E ?=??D .2E ?=?9. ( )点电荷q 位于两种电介质1和2分界⾯的上⽅h 处的介质1中(介质2在下,介质1在上,取分界⾯上⽅的距离为正,下⽅为负),则下⾯关于该点电荷在这两种电介质中的镜像电荷的电荷量和位置,错误的⼀项是。
高中物理选修二第四章《电磁振荡与电磁波》经典习题(1)
一、选择题1.关于电磁波的下列说法正确的是()A.T射线(1THz=1012Hz)是指频率从0.3~10THz、波长介于无线电波中的毫米波与红外线之间的电磁辐射,它的波长比可见光波长短B.电磁波可以通过电缆、光缆进行有线传输,但不能实现无线传输,光缆传递的信息量最大,这是因为频率越高可以传递的信息量越大C.太阳辐射的能量大部分集中在可见光及附近的区域D.调制的方法分调幅和调频,经过调制后的电磁波在空间传播得更快2.出海捕鱼的渔船,船长会通过海事对讲机电台来与甲板上的船员沟通,在这个过程中需要使海事对讲机接收频率与电台频率相同,船员才能用海事对讲机接收信号,与此过程原理相似的是()A.乐器利用共鸣腔提高声音的响度B.调节共振筛的振动频率,以较小的驱动力驱动质量较大的筛箱C.在较空旷地方高声喊,能听到回声D.在大厦底部安装阻尼器以减小大风天气时大厦的晃动幅度3.关于电磁场和电磁波,下列说法正确的是()A.把带电体和永磁体放在一起,可在其周围空间中产生电磁波B.手机、电视、光纤通信都是通过电磁波来传递信息的C.医院中用于检查病情的“B超”是利用了电磁波的反射原理D.车站、机场安全检查时“透视”行李箱的安检装置利用的是红外线4.关于电磁场和电磁波,下列说法中正确的是()A.麦克斯韦认为变化的电场产生变化的磁场B.红外线、可见光和紫外线是由原子的外层电子受激发产生的C.电磁波由真空进入介质传播时,波长变大D.电磁波按频率由高到低的正确排列顺序是:无线电波、红外线、可见光、紫外线、X 射线, 射线5.调谐电路的可变电容器的动片从完全旋入到完全旋出仍接收不到较高频率电台发出的电信号,如果要接收到这个电台的信号,应该采取的措施是()A.增大调谐电路中线圈的匝数B.加大电源电压C.增加调谐电路中的电容D.将线圈中的铁芯抽出6.手机无线充电是比较新颖的充电方式。
如图所示电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量。
《电磁场与微波技术》补充练习题1(1)
2《电磁场与微波技术》补充练习一、填空:1、波速随频率变化的现象称为波的色散,色散波的群速度表达式=z ν⎪⎭⎫⎝⎛-x c λ21。
2、测得一微波传输线的反射系数的模21=Γ,则行波系数K=1/3;若特性阻抗Z 0=75Ω,则波节点的输入阻抗R in (波节)=25欧。
3、微波传输线是一种分布参数电路,其线上的电压和电流沿线的分布规律可由传输线方程来描述。
4、同轴线传输的主模是TEM 模,微带线传输的主模是准TEM 模。
5、矩形波导尺寸a = 2cm, b = 1.1cm.若在此波导中只传输TE 10模,则其中电磁波的工作波长范围为2.2<λ<4。
6、微波传输线按其传输的电磁波波型,大致可划分为TEM 波传输线,TE 、TM 传输线和表面波传输线。
7、长线和短线的区别在于:前者为分布(长线)参数电路,后者为集中参数电路。
8、均匀无耗传输线工作状态分三种:(1)行波(2)驻波(3)行驻波。
10、从传输线方程看,传输线上任一点处的电压或电流等于该处相应的入射波和反射波的叠加。
11、当负载为纯电阻L R ,且0Z R L 时,第一个电压波腹点在终端,当负载为感性阻抗时,第一个电压波腹点距终端的距离在0<z 0<4λ范围内。
12、导波系统中的电磁波纵向场分量的有无,一般分为三种波型(或模):TEM 波;TE 波;TM 波。
13、导波系统中传输电磁波的等相位面沿着轴向移动的速度,通常称为相速;传输信号的电磁波是多种频率成份构成一个“波群”进行传播,其速度通常称为群速。
14、波速随着频率变化的现象称为波的色散,色散波的相速大于无限媒质中的光速,而群速小于无限媒质中的光速。
15、矩形波导传输的主模是TE 10模;同轴线传输的主模是TEM 模。
16、线性媒质的本构关系为→→=E D ε,→→=H B μ;17、媒质为均匀媒质时,媒质的ε、μ、υ与空间坐标无关。
18、媒质的ε、μ、σ与电磁场的幅度无关时,此媒质为线性媒质;19、若媒质的ε、μ、σ与电磁场的方向无关时,则称此媒质为各向同性媒质; 20、若媒质的ε、μ、σ与电磁场的频率无关 时,则称此媒质为非色散媒质。
《电磁场与电磁波》课后习题解答第一章
n(x2
y2
z2)
(x2 y2 z2)2 (x2 y2 z2)
(n 3)rn
【习题 1.20 解】
1
已知 r (x2 y2 z2 )2
r xex yey zez
所以
(1)
r
(ex
x
ey
y
ez
z
)
(
xex
yey
zez )
ex ey ez
xyz
Bx ex By ey Bz ez
取一线元: dl exdx eydy ezdz
则有
B dl
ex ey ez Bx By Bz 0 dx dy dz
则矢量线所满足的微分方程为
dx dy dz Bx By Bz
或写成
dx dy dz =k(常数) a2 z a3 y a3x a1z a1 y a2x
对(3)(4)分别求和
(4)
d (a1x) d (a2 y) d (a3 z) 0 xdx ydy zdz 0
d (a1x a2 y a3 z) 0 d(x2 y2 z2) 0
所以矢量线方程为
a1x a2 y a3 z k1
x2 y2 z2 k2
【习题 1.6 解】
ex ey ez A B (ex 9ey ez ) (2ex 4ey 3ez ) 1 9 1
2 4 3
31ex 5ey 14ez
【习题 1.3 解】
已知 A ex bey cez , B ex 3ey 8ez ,
(1)要使 A B ,则须散度 A B 0
所以从 A B 1 3b 8c 0 可得: 3b 8c 1
即 12ex 9ey ez • aex bey 12a 9b 0 ⑴
电磁场与电磁波习题+问题课(一)
1.16(P32):已知)2()()(222xyz czx z z e by xy e axz x e E z y x -+-++++=,试确定常数a 、b 、c使E为无源场。
(知识点:无散场定义(散度为0的矢量场为无散场);散度计算:zE y E x E E zy x ∂∂+∂∂+∂∂=⋅∇ 。
关键点:无源场就是无散场,这里的源指通量源。
相关拓展:无散场又称无源场,无旋场又称保守场,无旋无散场又称调和场。
)解:zxyz czx z z y by xy x axz x z E y E x E E z y x ∂-+-∂+∂+∂+∂+∂=∂∂+∂∂+∂∂=⋅∇)2()()(222 cxz b az x xyxc z b xy az x +-+++=-+-++++=21222122若E 为无源场,即E无无散场:0=⋅∇E有2,1,201,02,02-=-==⇒=+=-=+c b a b a c因此在2,1,2-=-==c b a 时E为无源场。
)1()2()2(++-++=b z a x c1.18(P32):(1)求矢量32222224z y x e y x e x e A zy x ++=的散度;(2)求A ⋅∇对中心在原点的一个单位立方体的积分;(3)求A对立方体表面的积分,验证散度定理。
(知识点:散度计算zE y E x E E zy x ∂∂+∂∂+∂∂=⋅∇ ;散度定理:V E S E SVd d ⎰⎰⋅∇=⋅;体积分和面积分。
注意:“A对立方体表面的积分”只能积分求得,不能用散度定理来求。
因为题目的要求是要验证散度定理。
)解:(1)矢量A的散度:z A y A x A A z y x ∂∂+∂∂+∂∂=⋅∇ zz y x y y x x x ∂∂+∂∂+∂∂=32222224 22227222z y x y x x ++=(2)A⋅∇对中心在原点的一个单位立方体的积分(3) A对立方体表面的积分241d d d )7222(d )7222(d 21212121212122222222=++=++=⋅∇⎰⎰⎰⎰⎰---zy x z y x y x x V z y x y x x V A VV241d d 21d d 21d d 21d d 21d d )2124d d )2124d d d d d d d 212121212212121212212121212221212121222121212132221212121322=--+--+--=⋅+⋅+⋅+⋅+⋅+⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------------z y z y z x x z x x y x y x y x y x SA S A S A S A S A S A S A S S S S S S S)()()()(((后前右左下上即有V A S A SVd d ⎰⎰⋅∇=⋅,得证散度定理。
第8章_电磁感应_电磁场[1]
第8章 电磁感应 电磁场参考题(1)填空题第8章 参考题1 4. 如图所示,用一根硬导线弯成半径为r 的一个半圆,使这根半圆形导线在磁感强度为B的匀强磁场中以频率f 旋转,整个电路的电阻为R ,(1)感应电流的表达式(()tf RBf r Rt I ⋅⋅⋅==ππε2sin 22);(2)感应电流的最大值(RfBr Im22π=)。
选择题 电子教案 8-3 自感和互感 3. 如图所示,在一无限长的长直载流导线旁,有一正方形单匝线圈,导线与线圈一侧平行并在同一平面内,问:下列几种情况中,它们的互感产生变化的有(B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动 证明题8-14 2.如图所示,在一无限长直载流导线的近旁放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向移动,证明:在图示位置处线框中的感应电动势大小为(()12102l d l Ivl +=πμε)马文蔚物理学中册第四版楞次定律 1.在电磁感应定律dtd i φε-=中,负号的意义是什么?答:楞次定律表明,“闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因”。
所以,感应电流的方向必须使楞次定律所规定的方向。
电磁感应定律dtd iφε-=中的负号,正表明了电磁感应现象和能量守恒定律之间的必然联系。
8-22 4. 在一个圆筒骨架上,采用双线并绕法线制两个线圈,如图所示.线圈a a '和线圈b b '的自感都是50mH ,今将两线圈的a '端和b '端相连,a 、b 端通交流电流,则a 、b 间呈现出的自感是( 0 ) 选择题电子教案 8-3 自感和互感3. 如图所示,两个环形线圈a 、b 互相平行放置,当它们的电流同时发生变化时,在下列情中,正确的是:( C )(A )a 中产生自感电流,b 中产生互感电流; (b )b 中产生自感电流,a 中产生互感电流; (c )a 、b 中同时产生自感和互感电流; (d )a 、b 中只产生自感电流,不产生互感电流教材上册8-2动生电动势和感生电动势 6. 由于电磁感应强度变化而引起的感应电动势是(1)(感生电动势);由于回路所围面积的变化或面积取向变化所引起的感应电动势是(2)(动生电动势)。
电磁场与电磁波第一章复习题练习答案
电子信息学院电磁场与电磁波第一章复习题练习姓名学号班级分数1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。
8:解:不总等于,讨论合理即可9. 已知直角坐标系中的点P1(-3,1,4)和P2(2,-2,3):(1)在直角坐标系中写出点P1、P2的位置矢量r1和r2;(2)求点P1到P2的距离矢量的大小和方向;(3)求矢量r1在r2的投影;解:(1)r1=-3a x+a y+4a z;r2=2a x-2a y+3a z(2)R=5a x-3a y-a z(3) [(r1•r2)/ │r2│] =(17)½10.用球坐标表示的场E=a r 25/r2,求:(1)在直角坐标系中的点(-3,4,-5)处的|E|和E z;(2)E与矢量B=2a x-2a y+a z之间的夹角。
解:(1)0.5;2½/4;(2)153.611.试计算∮s r·d S的值,式中的闭合曲面S是以原点为顶点的单位立方体,r为空间任一点的位置矢量。
解:学习指导书第13页12.从P(0,0,0)到Q(1,1,0)计算∫cA·d l,其中矢量场A的表达式为A=ax 4x-ay14y2.曲线C沿下列路径:(1) x=t,y=t2;(2)从(0,0,0)沿x轴到(1,0,0),再沿x=1到(1,1,0);(3)此矢量场为保守场吗?解:学习指导书第14页13.求矢量场A =a x yz+a y xz+a z xy 的旋度。
A ∇⨯=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。
u ∇=x a u x ∂∂+y a u y ∂∂+z a u z ∂∂=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)15.求矢量场A =a x x 2y+a y yz+a z 3z 2在点P (1,1,0)的散度。
第十二章 电磁感应电磁场(一)作业答案
一.选择题[ A ]1.(基础训练1)半径为a的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60︒时,线圈中已通过的电量与线圈面积及转动时间的关系是:(A)与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】[ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】dt dI LL -=ε,在每一段都是常量。
dtdI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω (B) =0,U a – U c =221l B ω- (C) =2l B ω,U a – U c =221l B ω (D) =2l B ω,U a – U c=221l B ω-【解析】金属框架绕ab 转动时,回路中0d d =Φt,所以0=ε。
2012cL a c b c bc b U U U U v B d l lBdl Bl εωω→→→⎛⎫-=-=-=-⨯⋅=-=- ⎪⎝⎭⎰⎰[ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220r a a R Ir +-πμ (B)ar a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=εaIR q 21φφ-=感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为:∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daR Ir R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈[ C ]6.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1.【解析】自感系数为l r n V n L 222πμμ==,磁能为221LI W m =[ B ]7.(附录C3)在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt 变化。
高中物理电磁场经典高考例题
1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。
一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。
已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。
设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。
已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。
在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。
已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。
高考必做大题03:带电粒子与复合场
高考必做大题03:带电粒子与复合场一、综合题1.如图所示,大量的同种粒子从静止经电压U1加速后。
沿虚线方向射入正交的电磁场之中,恰好做直线运动,电场强度方向竖直向下,磁感应强度B1=0.2T。
方向垂直纸面向里,两平行板之间的距离d=6cm。
平行板右侧有一圆形磁场区域,圆心O在虚线上、半径r=10cm,圆内有垂直纸面向里的磁场B,B的大小可以调控。
边界上有磁场。
圆形区域的上方安装有荧光屏,荧光屏与虚线平行。
与O的距离l=20√3cm,M、N是荧光屏上两点,MO连线与屏垂直,N到M点之间的距离L=20cm。
已知加在平行板间的电压U2=1.2×104V,粒子的比荷为q m=108C/kg。
不计重力的影响,求:(1)加速电场U1大小;(2)要使粒子打到荧光屏上MN之间,圆形区域内的磁场B范围。
2.如图,在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形,图中OEFG区域也为边长为L的正方形且无电场。
已知电子的质量为m,电荷量为e,不计电子所受重力。
求:(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标(x,y);(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置坐标x、y间满足的关系;(3)若将左侧电场Ⅱ整体水平向右移动L3,仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置x、y满足的关系。
3.如图所示,一水平分界线KL把足够长的竖直边界NS和MT之间的空间分为上下两部分,KL上方区域存在竖直向下的匀强电场,KL下方区域存在垂直纸面向外的匀强磁场。
在NS和MT边界上,距KL高ℎ处分别有P、Q两点。
一电荷量为q、质量为m的带正电的粒子(重力不计)以初速度v0从P点垂直于边界NS进入匀强电场,经偏转后从边界KL进入匀强磁场,并恰好不从边界NS射出。
高三物理高考第一轮专题复习——电磁场(含答案详解)
高三物理第一轮专题复习——电磁场 例1. (高考题)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少?例2.(调研)电子自静止开始经M 、N 板间(两板间的电压为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m ,电量为e )例3.(高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0υ=80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少? 例4.(北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。
它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。
两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速。
高三物理备考一轮总复习—带电粒子在磁场中的运动必刷题 Word版含解析
2023届高三物理高考备考一轮总复习—带电粒子在磁场中的运动必刷题一、单选题(共7题)1.质子(11H )和α粒子(42He )以相同的速度垂直进入同一匀强磁场中,它们在垂直于磁场的平面内都做匀速圆周运动,它们的轨道半径和运动周期的关系是( ) A .R P :R a =1:2,T P :T a =1:2 B .R P :R a =2:1,T P :T a =2:1 C .R P :R a =1:2,T P :T a =2:1D .R P :R a =1:4,T P :T a =1:42.如图所示,在边长为a 的正三角形区域内存在着方向垂直于纸面向外、磁感应强度大小为B 的匀强磁场。
一个质量为m 、电荷量为q +的带电粒子(重力不计)从AB 边的中点O 以某一速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°。
从AB 边穿出磁场的粒子中,最大速度v 为( )A B .4BqamC D .38Bqam3.如图所示,匀强磁场限定在一个圆形区域内,磁感应强度大小为B ,一个质量为m ,电荷量为q ,初速度大小为v 的带电粒子沿磁场区域的直径方向从P 点射入磁场,从Q 点沿半径方向射出磁场,粒子射出磁场时的速度方向与射入磁场时相比偏转了θ角,忽略重力及粒子间的相互作用力,下列说法错误..的是( )A .粒子带正电B .粒子在磁场中运动的轨迹长度为mv θBqC .粒子在磁场中运动的时间为m θBqD .圆形磁场区域的半径为tan mvθBq4.如图,一束正离子平行纸面、从两极板中央平行极板射入正交的匀强磁场和匀强电场区域里,离子束保持原运动方向未发生偏转,接着进入另一匀强磁场B2,发现这些离于分成几束,不计离子间的相互作用,可以判断这几束粒子()A.质量一定不同B.速率一定不同C.动能一定不同D.比荷一定不同5.圆形区域内有垂直纸面的匀强磁场,三个完全相同的带电粒子a b c、、,以不同的速率从A点开始对准圆心O沿着AO方向射入磁场,其运动轨迹分别如图所示。
工程电磁场习题解答1
=
t
ln R2
+
r
é ê
R
2
-
R12
-
2R12
ln
R
2
ù ú
2pe R1 4e ë
R1 û
( ) \
t
=
U12
-
r 4e
R2
- R12
2pe
ln R2
+
r 2e
R12
R1
( ) 将式(1-27)代入式(1-26)中,得:
E(R)
=
U12
-
r 4e ln
R22 R2
-
R12
+
rR 2e
(R 1 á R á R
的内半径为 R2,其间绝缘介质的电容率为ε ,试确定其中电场强度与电压的关系。
解 作半径为 R 的同轴圆柱面,R1<R<R2。设缆芯单位长度上的电荷量为τ ,由高斯定理,
t
D= ÞE= t
2pR
2peR
两柱面间的电压:
U12
=
òRR12 E
× dR
=
t 2pe
òRR12
dR R
=
t 2pe
ln
R2 R1
\D
=
t 2pR
(R1 áRáR 2
),
E
=
D e
=
t 2peR
第 7 题图
R1áRáR 0 , E1
=
t 2per1e0R
=
2 ´103 R
(V / m)
R
=
R1+ , E1
=
4´105(V /
m); R
=
高考物理-电磁学-复合场专题练习(含答案)(一)
高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。
电磁场与电磁波模拟试题一
可能遇到的计算单位:70410μπ-=⨯ ,9011036επ-=⨯ 一、填空题(每空1分,共15分)1.对于矢量→A ,若z z y y x x A e A e A e A →→→→++= 则:x z e e →→∙= ;x x e e →→∙= ;→→⨯y z e e = ;y y e e →→⨯= 。
2.麦克斯韦方程说明电场和磁场相互关联,变化的电场可以产生 ,而变化的磁场可以产生 。
3.带电导体内静电场值为 ,从电位的角度来说,导体是一个 ,电荷分布在导体的 。
4.在矩形波导中,传播常数γ=0时对应的电磁波的频率c f 称为 ,对应的c λ被称为 。
5.静电场中已知D =z y x e x y e y x e y z)2()3()33(-+-+-,则ρ= 。
6.如果在电磁波传播方向(假设为z 方向)上没有电场分量和磁场分量,即:z E 0=,0z H =,即电磁场完全被限制在横截面内,该电磁波称为 简写为 如果0≠z E ,0=z H ,则这种电磁波称为 。
二、单项选择题(每题2分,共20分)1. 静电场中带有面电荷σ的无限大导体平面,在场域中某点产生的E,与场点到平面的距离r 的关系是( )。
A. 与r 成正比 B. 与r 成反比 C. 与r 2成比例D. 与r 无关2.天线辐射的最小单元是 ( )。
A. 对称振子B. 电流元C. 磁偶极子D. 电偶极子3.导体带有电荷在静电平衡后导体内部的ϕ( )。
A. 与所在位置有关B. 与位置无关的定值C. 一定为零D. 不能确定4.恒定磁场中,某些J=0的区域,可用标量磁位m ϕ来计算磁场,其计算公式是( )。
A. H=m ϕ∇ B. H=m ϕ⨯∇ C.H=-m ϕ∇D.H=-m ϕ⨯∇5.平面电磁波的波阻抗等于( )。
A.με B. με1 C.με1D.εμ 6.已知两点电荷在同一处产生的电场分别为E 1=-48.0e y +60.0e z v/m ,E 2=74.9e x -124.9e z v/m ,则该处的电场强度为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场;在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场;在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场.一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限,然后经过x轴上x=-2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y 轴上y=-2h处的P3点进入第四象限.已知重力加速度为g.求:(1)粒子到达P2点时速度的大小和方向;(2)第三象限空间中电场强度和磁感应强度的大小;(3)带电质点在第四象限空间运动过程中最小速度的大小和方向.2.如图17所示,一带电微粒质量为m=2.0×10-11kg、电荷量为q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,偏转电压为U2=100V,接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。
已知偏转电场中金属板长L=20cm,两板间距d =17.3cm,带电微粒的重力忽略不计。
求:(1)带电微粒进入偏转电场时的速率v1;(2)带电微粒射出偏转电场时的速度偏转角;(3)为使带电微粒不会从磁场右边界射出,该匀强磁场的磁感应强度的最小值B。
4.如图所示,带电平行金属板PQ和MN之间的距离为d;两板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。
如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。
区域I的左边界为y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。
在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。
一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。
已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。
不计电子重力。
(1)求两金属板之间电势差U;(2)求电子从区域II右边界射出时,射出点的纵坐标y;(3)撤除区域I中的磁场而在其中加上沿x轴正向的匀强电场,使得该电子刚好不能从区域II的右边界飞出。
求电子两次经过y轴的时间间隔t。
5.如图所示,真空中有以(r,0)为圆心,半径为 r 的圆形匀强磁场区域,磁场的磁感应强度大小为 B ,方向垂直于纸面向里,在 y = r 的虚线上方足够大的范围内,有水平向左的匀强电场,电场强度的大小为 E ,现在有一质子从 O 点沿与 x 轴正方向斜向下成 30o方向(如图中所示)射入磁场,经过一段时间后由M点(图中没有标出)穿过y轴。
已知质子在磁场中做匀速圆周运动的半径为 r ,质子的电荷量为 e ,质量为 m ,不计重力、阻力。
求:(1)质子运动的初速度大小(2)M点的坐标(3)质子由O点运动到M点所用时间7.质量为m、电量为q的带电离子从P(0,h)点沿x轴正方向射入第一象限的匀强磁场中,磁感应强度为B,并沿着y轴负方向垂直进入匀强电场(电场方向沿x轴负方向),然后离子经过y轴上的M(0,-2h)点,进入宽度为h的无场区域,如图所示,再进入另一范围足够大的匀强磁场,最后回到P点。
不计重力,试求:(1)初速度v0(2)电场强度E(3)从P点出发到再次回到P点所用的时间8.如图所示,匀强电场区域和匀强磁场区域是紧邻的且宽度相等均为d,电场方向在纸平面内,而磁场方向垂直纸面向里.一带正电粒子从O点以速度v0沿垂直电场方向进入电场.在电场力的作用下发生偏转,从A点离开电场进入磁场,离开电场时带电粒子在电场方向的偏移量为d,当粒子从C点穿出磁场时速度方向与进入电场O点时的速度方向一致,不计带电粒子的重力,求:(1)粒子从C点穿出磁场时的速度v.(2)电场强度和磁感应强度的比值.10.如图所示, xoy为空间直角坐标系,PQ与y轴正方向成θ=30°角。
在第四象限和第一象限的xo Q区域存在磁感应强度为B的匀强磁场,在P oy区域存在足够大的匀强电场,电场方向与PQ平行,一个带电荷量为+q,质量为m的带电粒子从-y 轴上的 A(0,-L)点,平行于x轴方向射入匀强磁场,离开磁场时速度方向恰与PQ垂直,粒子在匀强电场中经时间后再次经过x轴, 粒子重力忽略不计。
求:(1)从粒子开始进入磁场到刚进入电场的时间;(2)匀强电场的电场强度E的大小。
11.如图甲所示的坐标系中,第四象限内存在垂直于纸面向里的有界匀强磁场,方向的宽度OA=cm,方向无限制,磁感应强度B0=1×10-4T。
现有一比荷为=2×1011C/kg的正离子以某一速度从O点射入磁场,α=60°,离子通过磁场后刚好从A点射出。
(1)求离子进入磁场B0的速度的大小;(2)离子进入磁场B0后,某时刻再加一个同方向的匀强磁场,使离子做完整的圆周运动,求所加磁场磁感应强度的最小值;(3)离子进入磁场B0的同时,再加一个如图乙所示的变化磁场(正方向与B0方向相同,不考虑磁场变化所产生的电场),求离子从O点到A点的总时间。
12.在xoy坐标平面内存在着如图所示的有理想边界的匀强电场和匀强磁场,在x<-2d的区域内匀强电场的场强为E、方向沿+x轴方向,在-2d<x<0的区域内匀强电场的场强为E、方向沿+y轴方向,在x>0的区域内匀强磁场的磁感应强度的大小为,方向垂直于该平面向外。
一质量为m、带电荷量为+q的微粒从x轴上的x=-3d处由静止释放,经过-2d<x<0的匀强电场区域后进入匀强磁场。
求:(1)微粒到达x=-2d处的速度;(2)微粒离开电场时沿y轴正方向上的位移;(3)微粒第一次打到x轴上的坐标。
13.如图所示,坐标系中第一象限有垂直纸面向外的匀强磁场,磁感应强度B=102T,同时有竖直向上与y轴同方向的匀强电场,场强大小E1=102 V/m,第四象限有竖直向上与y轴同方向的匀强电场,场强大小E2=2E1=2×102 V/m.若有一个带正电的微粒,质量m=10-12kg,电荷量q=10-13C,以水平与x轴同方向的初速度从坐标轴的P1点射入第四象限,OP1=0.2 m,然后从x轴上的P2点进入第一象限,OP2=0.4 m,接着继续运动.(g=10 m/s2)求:(1)微粒射入的初速度;(2)微粒第三次过x轴的位置及从P1开始到第三次过x轴的总时间.14.如图,POy区域内有沿y轴正方向的匀强电场,POx区域内有垂直纸面向里的匀强磁场,OP与x轴成θ角.不计重力的负电荷,质量为m、电量为q,从y轴上某点以初速度v0垂直电场方向进入,经电场偏转后垂直OP进入磁场,又垂直x轴离开磁场.求:(1)电荷进入磁场时的速度大小(2)电场力对电荷做的功(3)电场强度E与磁感应强度B的比值16.如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。
一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间从半圆形区域的边界射出。
求粒子运动加速度的大小。
18.如图所示,在xoy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负14x轴成45°角.在x<0且OM的左侧空间存在着负x方向的匀强电场E,场强大小为0.32N/C;在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场B,磁感应强度大小为0.1T.一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电磁场区域.已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求:(1)带电微粒第一次经过磁场边界的位置坐标;(2)带电微粒在磁场区域运动的总时间;(3)带电微粒最终离开电磁场区域的位置坐标.19.如图所示,真空有一个半径r=0.5m的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2×10-3T,方向垂直于纸面向外,在x=r处的右侧有一个方向竖直向上的宽度为L1=0.5m的匀强电场区域(电场区域的左右边界如图中虚线所示),电场强度E=1.5×103N/C。
在x=2m处有一垂直x方向的足够长的荧光屏,从O点处向不同方向发射出速率相同的荷质比=1×109C/kg带正电的粒子,粒子的运动轨迹在纸面内,一个速度方向沿y轴正方向射入磁场的粒子,恰能从磁场与电场的相切处进入电场。
不计重力及阻力的作用。
求:(1)该粒子进入电场时的速度和粒子在磁场中的运动时间。
(2)该粒子最后打到荧光屏上,该发光点的位置坐标。
(3)求荧光屏上出现发光点的范围20.如图甲所示,水平放置的平行金属板A、B,两板的中央各有一小孔O1、O2,板间距离为d,当t=0时,在a、b两端加上如图乙所示的电压,同时,在c、d两端加上如图丙所示的电压.此时将开关S接1.一质量为m的带负电微粒P恰好静止于两孔连线的中点处(P、O1、O2在同一竖直线上).重力加速度为g,不计空气阻力.(1)若在t=T/4时刻,将开关S从1扳到2,当U cd=2U0时,求微粒P加速度的大小和方向;(2)若要使微粒P以最大的动能从A板的小孔O1射出,问在t=T/2到t=T之间的哪个时刻,把开关S从1扳到2?U cd的周期T至少为多少?21.如图甲所示,在光滑绝缘的水平桌面上建立一xoy坐标系,平面处在周期性变化的电场和磁场中,电场和磁场的变化规律如图乙所示(规定沿+y方向为电场强度的正方向,竖直向下为磁感应强度的正方向).在t=0时刻,一质量为10g、电荷量为0.1C的带电金属小球自坐标原点O处,以v0=2m/s的速度沿x轴正方向射出.已知E0=0.2N/C、B0=0.2T.求:(1)t=1s末速度的大小和方向;(2)1s~2s内,金属小球在磁场中做圆周运动的半径和周期;(3)在给定的坐标系中,大体画出小球在0到6S内运动的轨迹示意图。
(4)6s内金属小球运动至离x轴最远点的位置坐标.22.如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外,两区域切点为C.今有质量m=3.2×10-26 kg、带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直射入磁场,它将穿越C点后再从右侧区穿出.求:(1)该离子通过两磁场区域所用的时间.(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离).23.如图所示,真空中有以(r,0)为圆心,半径为 r 的圆形匀强磁场区域,磁场的磁感应强度大小为 B ,方向垂直于纸面向里,在 y = r 的虚线上方足够大的范围内,有水平向左的匀强电场,电场强度的大小为 E ,现在有一质子从 O 点沿与 x 轴正方向斜向下成 30o方向(如图中所示)射入磁场,经过一段时间后由M点(图中没有标出)穿过y轴。