2017年贵州省黔西南州中考数学试卷(含答案解析版)
2017年贵州省黔西南州中考数学试卷(含解析版)
2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣12017D.120172.(4分)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个5.(4分)下列各式正确的是()A.(a﹣b)2=﹣(b﹣a)2B.1x3=x﹣3C.a2+1a+1=a+1 D.x6÷x2=x36.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.23B.110C.15D.147.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是()A.3 B.2.5 C.2 D.19.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.8910.(4分)如图,点A是反比例函数y=1x(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=kx图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(每小题3分,共30分)11.(3分)计算:(﹣12)2= .12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为(精确到百万位).13.(3分)不等式组{x+2>12x−1≤8−x的解集是.14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是.15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 度.17.(3分)函数y=√x−1的自变量x的取值范围是.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.三、(本大题12分)21.(12分)(1)计算:√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2(2)解方程:2−xx −3+13−x =1.四、(本大题12分)22.(12分)如图,已知AB 为⊙O 直径,D 是xx ̂的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F . (1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE=4,⊙O 的半径为5,求tan ∠F 的值.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A= ;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=1213,求cosA.八、(本大题16分)26.(16分)如图1,抛物线y=ax2+bx+74,经过A(1,0)、B(7,0)两点,交y 轴于D点,以AB为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M,是S△ABM =4√39S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2017•黔西南州)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣12017D.12017【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2017•黔西南州)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.。
2017年贵州省黔南州中考数学试卷
2017年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2017年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2017•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2017•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2017•黔南州)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2017•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2017•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2017•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2017•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2017•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2017•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2017•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2017•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2017•黔南州)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2017•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2017•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2017•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2017•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。
【2017中考数学真题】贵州黔西南州试卷及解析【2017数学中考真题系列】
2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个5.(4分)下列各式正确的是()A.(a﹣b)2=﹣(b﹣a)2B.=x﹣3C.=a+1 D.x6÷x2=x36.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.B.C.D.7.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.19.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.8910.(4分)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(每小题3分,共30分)11.(3分)计算:(﹣)2= .12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为(精确到百万位).>的解集是.13.(3分)不等式组14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是.15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 度.17.(3分)函数y=的自变量x的取值范围是.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C 落在点Q处,折痕为FH,则线段AF的长是cm.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.三、(本大题12分)21.(12分)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.22.(12分)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O 的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A= ;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.26.(16分)如图1,抛物线y=ax2+bx+,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M,是S△ABM=S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2017•黔西南州)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2017•黔西南州)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3.(4分)(2017•黔西南州)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【考点】W7:方差;W1:算术平均数.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4.(4分)(2017•黔西南州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个【考点】U1:简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(4分)(2017•黔西南州)下列各式正确的是()A.(a﹣b)2=﹣(b﹣a)2B.=x﹣3C.=a+1 D.x6÷x2=x3【考点】4C:完全平方公式;48:同底数幂的除法;66:约分;6F:负整数指数幂.【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答.【解答】解:A、(a﹣b)2=(b﹣a)2,故错误;B、正确;C、不能再化简,故错误;D、x6÷x2=x4,故错误;故选:B.【点评】本题考查了完全平分公式、负整数指数幂、同底数幂的除法,解决本题的关键是熟记完全平分公式、负整数指数幂、同底数幂的除法的法则.6.(4分)(2017•黔西南州)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.B.C.D.【考点】X4:概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是=,故选:B.【点评】本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(4分)(2017•黔西南州)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.【解答】解:如图,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(4分)(2017•黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.1【考点】M2:垂径定理.【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.(4分)(2017•黔西南州)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【考点】38:规律型:图形的变化类.【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.10.(4分)(2017•黔西南州)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B 也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=(x>0)上的一个动点,∴可设A(x,),∴OC=x,AC=,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴===,∴OD=2AC=,BD=2OC=2x,∴B(﹣,2x),∵点B反比例函数y=图象上,∴k=﹣•2x=﹣4,故选A.【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B点坐标是解题的关键.二、填空题(每小题3分,共30分)11.(3分)(2017•黔西南州)计算:(﹣)2= .【考点】1E:有理数的乘方.【分析】本题考查有理数的乘方运算,(﹣)2表示2个(﹣)的乘积.【解答】解:(﹣)2=.故答案为:.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.12.(3分)(2017•黔西南州)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 2.0×107(精确到百万位).【考点】1L:科学记数法与有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107,故答案为:2.0×107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,应当看末位数字实际在哪一位是解题的关键.13.(3分)(2017•黔西南州)不等式组>的解集是﹣1<x≤3 .【考点】CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:>①②,解不等式①得x>﹣1,解不等式②得x≤3.故不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(3分)(2017•黔西南州)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是 4 .【考点】W5:众数;W1:算术平均数.【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5×5,解得x=4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为4.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数的定义.15.(3分)(2017•黔西南州)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是m<1 .【考点】AA:根的判别式.【分析】由方程没有实数根结合根的判别式,即可得出△=4m﹣4<0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0没有实数根,∴△=22+4(m﹣2)=4m﹣4<0,解得:m<1.故答案为:m<1.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.16.(3分)(2017•黔西南州)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 25 度.【考点】JA:平行线的性质;K7:三角形内角和定理.【分析】要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.【解答】解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.【点评】本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.17.(3分)(2017•黔西南州)函数y=的自变量x的取值范围是x≥1 .【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.(3分)(2017•黔西南州)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15 .【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.【点评】本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.19.(3分)(2017•黔西南州)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB 边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.【考点】PB:翻折变换(折叠问题);LE:正方形的性质.【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF=6﹣x,在RT△AEF中,∵AE2+AF2=EF2,∴32+(6﹣x)2=x2,∴x=,∴AF=6﹣=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.20.(3分)(2017•黔西南州)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有①③④(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.【考点】H4:二次函数图象与系数的关系;O1:命题与定理.【分析】①由抛物线的开口向上、对称轴在y轴右侧、抛物线与y轴交于y轴负半轴,即可得出a>0、b<0、c<0,进而可得出abc>0,①正确;②由抛物线与x轴有两个不同的交点,可得出△=b2﹣4ac>0,b2>4ac,②错误;③由当x=﹣2时y>0,可得出4a﹣2b+c>0,③正确;④由抛物线对称轴的大致范围,可得出﹣2a<b<0,结合a>0、c<0可得出2a+b >0>c,④正确.综上即可得出结论.【解答】解:①∵抛物线开口向上,抛物线的对称轴在y轴右侧,抛物线与y轴交于y轴负半轴,∴a>0,﹣>0,c<0,∴b<0,abc>0,①正确;②∵抛物线与x轴有两个不同交点,∴△=b2﹣4ac>0,b2>4ac,②错误;③当x=﹣2时,y=4a﹣2b+c>0,③正确;④∵0<﹣<1,∴﹣2a<b<0,∴2a+b>0>c,④正确.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.三、(本大题12分)21.(12分)(2017•黔西南州)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.【考点】B3:解分式方程;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2=2+3﹣﹣2×+1+=2+3﹣﹣+1+4=8;(2)+=1整理得﹣=11﹣x=x﹣3解得x=2经检验:x=2是分式方程的解.【点评】本题主要考查了实数的运算以及解分式方程,解题时注意:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.解分式方程时,一定要检验.四、(本大题12分)22.(12分)(2017•黔西南州)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【分析】(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.【解答】(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵D是弧BC的中点,∴=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG==2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.【点评】此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.五、(本大题14分)23.(14分)(2017•黔西南州)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A、B、D三种粽子的人数可得爱吃C的人数,然后再根据人数计算出百分比即可;(3)求出D占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C粽的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:180+60+120+240=600(人);(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,则P(C粽)==,答:他第二个吃到的恰好是C粽的概率是.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.六、(本大题14分)24.(14分)(2017•黔西南州)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【考点】FH:一次函数的应用.【分析】(1)根据函数图象即可得出起点A与终点B之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得甲龙舟队的y与x函数关系式;设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得乙龙舟队的y与x函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.【解答】解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得,解得,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米【点评】本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.七、(本大题12分)25.(12分)(2017•黔西南州)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1= 1 ,sin2A2+cos2A2= 1 ,sin2A3+cos2A3= 1 ;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A= 1 ;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.【考点】T7:解直角三角形.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sinA=、cosA=且a2+b2=c2知sin2A+cos2A=()2+()2===1;(4)根据直角三角形中sin2A+cos2A=1知()2+cosA2=1,据此可得答案.【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin2A3+cos2A3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1,故答案为:1;(3)在图2中,∵sinA=,cosA=,且a2+b2=c2,则sin2A+cos2A=()2+()2=+===1,即sin2A+cos2A=1;(4)在△ABC中,∠A+∠B=90°,∴∠C=90°,∵sin2A+cos2A=1,∴()2+cosA2=1,解得:cosA=或cosA=﹣(舍),∴cosA=.【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.八、(本大题16分)26.(16分)(2017•黔西南州)如图1,抛物线y=ax2+bx+,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M,是S△ABM=S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).【考点】HF:二次函数综合题.【分析】(1)将点A(1,0),B(7,0)代入抛物线的解析式得到关于a、b方程组,解关于a、b的方程组求得a、b的值即可;(2)过点C作CK⊥x轴,垂足为K.依据等边三角形的性质可求得CK=3,然后依据三角形的面积公式结合已知条件可求得S△ABM的面积,设M(a,a2﹣2a+),然后依据三角形的面积公式可得到关于a的方程,从而可得到点M的坐标;(3)①首先证明△BEC≌△AFB,依据全等三角形的性质可知:AF=BE,∠CBE=∠BAF,然后通过等量代换可得到∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°,最后依据三角形的内角和定理可求得∠APB;②当AE≠BF时,由①可知点P在以AB为直径的圆上,过点M作ME⊥AB,垂足为E.先求得⊙M的半径,然后依据弧长公式可求得点P运动的路径;当AE=BF时,点P在AB的垂直平分线上时,过点C作CK⊥AB,则点P运动的路径=CK的长.【解答】解:(1)将点A(1,0),B(7,0)代入抛物线的解析式得:,解得:a=,b=﹣2.∴抛物线的解析式为y=x2﹣2x+.(2)存在点M,使得S△ABM=S△ABC.理由:如图所示:过点C作CK⊥x轴,垂足为K.∵△ABC为等边三角形,∴AB=BC=AC=6,∠ACB=60°.∵CK⊥AB,∴KA=BK=3,∠ACK=30°.∴CK=3.∴S△ABC=AB•CK=×6×3=9.∴S△ABM=×9=12.设M(a,a2﹣2a+).∴AB•|y|=12,即×6×(a2﹣2a+)=12,解得:a1=9,a2=﹣1.∴点M的坐标为(9,4)或(﹣1,4).(3)①结论:AF=BE,∠APB=120°.∵△ABC为等边三角形,∴BC=AB,∠C=∠ABF.∵在△BEC和△AFB中∠∠,∴△BEC≌△AFB.∴AF=BE,∠CBE=∠BAF.∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.∴∠APB=180°﹣60°=120°.②当AE≠BF时,由①可知点P在以M为圆心,在以AB为弦的圆上,过点M作MK⊥AB,垂足为k.∵∠APB=120°,∴∠N=60°.∴∠AMB=120°.又∵MK⊥AB,垂足为K,∴AK=BK=3,∠AMK=60°.∴AK=2.∴点P运动的路径==.当AE=BF时,点P在AB的垂直平分线上时,如图所示:过点C作CK⊥AB,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=3.∴点P运动的路径为3.综上所述,点P运动的路径为3或.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等边三角形的性质、全等三角形的性质和判定、扇形的弧长公式,判断出点P 运动的轨迹生成的图形的形状是解题的关键.。
2017年贵州省黔西南州中考数学试卷(解析版)
2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()绩的方差S甲A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个5.(4分)下列各式正确的是()A.(a﹣b)2=﹣(b﹣a)2B.=x﹣3C.=a+1 D.x6÷x2=x36.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.B.C.D.7.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.19.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.8910.(4分)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(每小题3分,共30分)11.(3分)计算:(﹣)2=.12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为(精确到百万位).13.(3分)不等式组的解集是.14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是.15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=度.17.(3分)函数y=的自变量x的取值范围是.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.三、(本大题12分)21.(12分)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.四、(本大题12分)22.(12分)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC 中,∠A +∠B=90°,且sinA=,求cosA .八、(本大题16分)26.(16分)如图1,抛物线y=ax 2+bx +,经过A (1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC . (1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M ,是S △ABM =S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P .①若CE=BF ,试猜想AF 与BE 的数量关系及∠APB 的度数,并说明理由; ②若AF=BE ,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()绩的方差S甲A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(4分)下列各式正确的是()A.(a﹣b)2=﹣(b﹣a)2B.=x﹣3C.=a+1 D.x6÷x2=x3【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答.【解答】解:A、(a﹣b)2=(b﹣a)2,故错误;B、正确;C、不能再化简,故错误;D、x6÷x2=x4,故错误;故选:B.【点评】本题考查了完全平分公式、负整数指数幂、同底数幂的除法,解决本题的关键是熟记完全平分公式、负整数指数幂、同底数幂的除法的法则.6.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.B.C.D.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是=,故选:B.【点评】本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.【解答】解:如图,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.10.(4分)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=(x>0)上的一个动点,∴可设A(x,),∴OC=x,AC=,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴===,∴OD=2AC=,BD=2OC=2x,∴B(﹣,2x),∵点B反比例函数y=图象上,∴k=﹣•2x=﹣4,故选A.【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A点坐标表示出B点坐标是解题的关键.二、填空题(每小题3分,共30分)11.(3分)计算:(﹣)2=.【分析】本题考查有理数的乘方运算,(﹣)2表示2个(﹣)的乘积.【解答】解:(﹣)2=.故答案为:.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 2.0×107(精确到百万位).【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107,故答案为:2.0×107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,应当看末位数字实际在哪一位是解题的关键.13.(3分)不等式组的解集是﹣1<x≤3.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求【解答】解:,解不等式①得x>﹣1,解不等式②得x≤3.故不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是4.【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5×5,解得x=4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为4.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数的定义.15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是m<1.【分析】由方程没有实数根结合根的判别式,即可得出△=4m﹣4<0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0没有实数根,∴△=22+4(m﹣2)=4m﹣4<0,解得:m<1.故答案为:m<1.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=25度.【分析】要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.【解答】解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.【点评】本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.17.(3分)函数y=的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15.【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.【点评】本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF=6﹣x,在RT△AEF中,∵AE2+AF2=EF2,∴32+(6﹣x)2=x2,∴x=,∴AF=6﹣=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有①③④(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.【分析】①由抛物线的开口向上、对称轴在y轴右侧、抛物线与y轴交于y轴负半轴,即可得出a>0、b<0、c<0,进而可得出abc>0,①正确;②由抛物线与x轴有两个不同的交点,可得出△=b2﹣4ac>0,b2>4ac,②错误;③由当x=﹣2时y>0,可得出4a﹣2b+c>0,③正确;④由抛物线对称轴的大致范围,可得出﹣2a<b<0,结合a>0、c<0可得出2a+b>0>c,④正确.综上即可得出结论.【解答】解:①∵抛物线开口向上,抛物线的对称轴在y轴右侧,抛物线与y轴交于y轴负半轴,∴a>0,﹣>0,c<0,∴b<0,abc>0,①正确;②∵抛物线与x轴有两个不同交点,∴△=b2﹣4ac>0,b2>4ac,②错误;③当x=﹣2时,y=4a﹣2b+c>0,③正确;④∵0<﹣<1,∴﹣2a<b<0,∴2a+b>0>c,④正确.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.三、(本大题12分)21.(12分)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2=2+3﹣﹣2×+1+=2+3﹣﹣+1+4=8;(2)+=1整理得﹣=11﹣x=x﹣3解得x=2经检验:x=2是分式方程的解.【点评】本题主要考查了实数的运算以及解分式方程,解题时注意:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.解分式方程时,一定要检验.四、(本大题12分)22.(12分)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【分析】(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O 的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.【解答】(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵D是弧BC的中点,∴=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG==2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.【点评】此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【分析】(1)根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A、B、D三种粽子的人数可得爱吃C的人数,然后再根据人数计算出百分比即可;(3)求出D占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C粽的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:180+60+120+240=600(人);(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,则P(C粽)==,答:他第二个吃到的恰好是C粽的概率是.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【分析】(1)根据函数图象即可得出起点A与终点B之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得甲龙舟队的y与x函数关系式;设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得乙龙舟队的y与x函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.【解答】解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得,解得,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米【点评】本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=1,sin2A2+cos2A2=1,sin2A3+cos2A3=1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sinA=、cosA=且a2+b2=c2知sin2A+cos2A=()2+()2===1;(4)根据直角三角形中sin2A+cos2A=1知()2+cosA2=1,据此可得答案.【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin 2A 3+cos 2A 3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A=1, 故答案为:1;(3)在图2中,∵sinA=,cosA=,且a 2+b 2=c 2, 则sin 2A +cos 2A=()2+()2=+===1,即sin 2A +cos 2A=1;(4)在△ABC 中,∠A +∠B=90°, ∴∠C=90°, ∵sin 2A +cos 2A=1, ∴()2+cosA 2=1,解得:cosA=或cosA=﹣(舍),∴cosA=.【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.八、(本大题16分)26.(16分)如图1,抛物线y=ax 2+bx +,经过A (1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC . (1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M ,是S △ABM =S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P.①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).【分析】(1)将点A(1,0),B(7,0)代入抛物线的解析式得到关于a、b方程组,解关于a、b的方程组求得a、b的值即可;(2)过点C作CK⊥x轴,垂足为K.依据等边三角形的性质可求得CK=3,然的面积,设M(a,a2﹣后依据三角形的面积公式结合已知条件可求得S△ABM2a+),然后依据三角形的面积公式可得到关于a的方程,从而可得到点M的坐标;(3)①首先证明△BEC≌△AFB,依据全等三角形的性质可知:AF=BE,∠CBE=∠BAF,然后通过等量代换可得到∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°,最后依据三角形的内角和定理可求得∠APB;②当AE≠BF时,由①可知点P在以AB为直径的圆上,过点M作ME⊥AB,垂足为E.先求得⊙M的半径,然后依据弧长公式可求得点P运动的路径;当AE=BF 时,点P在AB的垂直平分线上时,过点C作CK⊥AB,则点P运动的路径=CK的长.【解答】解:(1)将点A(1,0),B(7,0)代入抛物线的解析式得:,解得:a=,b=﹣2.∴抛物线的解析式为y=x2﹣2x+.(2)存在点M ,使得S △ABM =S △ABC .理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形, ∴AB=BC=AC=6,∠ACB=60°. ∵CK ⊥AB ,∴KA=BK=3,∠ACK=30°. ∴CK=3.∴S △ABC =AB•CK=×6×3=9.∴S △ABM =×9=12.设M (a ,a 2﹣2a +).∴AB•|y |=12,即×6×(a 2﹣2a +)=12, 解得:a 1=9,a 2=﹣1.∴点M 的坐标为(9,4)或(﹣1,4).(3)①结论:AF=BE ,∠APB=120°. ∵△ABC 为等边三角形, ∴BC=AB ,∠C=∠ABF . ∵在△BEC 和△AFB 中,∴△BEC ≌△AFB . ∴AF=BE ,∠CBE=∠BAF .∴∠FAB +∠ABP=∠ABP +∠CBE=∠ABC=60°.∴∠APB=180°﹣60°=120°.②当AE≠BF时,由①可知点P在以M为圆心,在以AB为弦的圆上,过点M作MK⊥AB,垂足为k.∵∠APB=120°,∴∠N=60°.∴∠AMB=120°.又∵MK⊥AB,垂足为K,∴AK=BK=3,∠AMK=60°.∴AK=2.∴点P运动的路径==.当AE=BF时,点P在AB的垂直平分线上时,如图所示:过点C作CK⊥AB,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=3.∴点P运动的路径为3.综上所述,点P运动的路径为3或.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等边三角形的性质、全等三角形的性质和判定、扇形的弧长公式,判断出点P运动的轨迹生成的图形的形状是解题的关键.。
2017年贵州省黔南州中考数学试卷(含答案解析)
2017年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2017年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2017•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2017•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2017•黔南州)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2017•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2017•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2017•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2017•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2017•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2017•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2017•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2017•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2017•黔南州)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2017•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2017•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2017•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2017•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。
2017年贵州省黔西南州中考数学试卷
2017年贵州省黔西南州中考数学试卷一、选择题:每小题4分,共40分1.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.82.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°3.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36°B.72°C.108°D.118°4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC5.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE~△ABC D.S△ADE=S△ABC6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()A.14,9 B.9,9 C.9,8 D.8,98.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.9.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2 B.4 C.5 D.810.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A.2﹣B.C.D.﹣1二、填空题:每小题3分,共30分11.计算:(﹣2ab)2=.12.0.0000156用科学记数法表示为.13.分解因式:x3﹣4x=.14.一个多边形的内角和为1080°,则这个多边形的边数是.15.函数y=中,自变量x的取值范围为.16.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为.17.关于x的两个方程x2﹣x﹣6=0与=有一个解相同,则m=.18.已知⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,圆心距O1O2=,则两圆的位置关系为.19.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.20.阅读材料并解决问题:求1+2+22+23+…+22017的值,令S=1+2+22+23+…+22017等式两边同时乘以2,则2S=2+22+23+…+22017+22017两式相减:得2S﹣S=22017﹣1所以,S=22017﹣1依据以上计算方法,计算1+3+32+33+…+32017=.三、本题共12分21.(1)计算:|﹣|﹣2cos45°﹣()﹣1+(tan80°﹣)0+(2)化简:(﹣2)÷﹣2x,再代入一个合适的x求值.四.本题共12分22.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.五.本题共14分23.2017年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=,b=,c=(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表六.本题共14分24.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?七.阅读材料题.25.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.八.本题共16分26.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.计算﹣42的结果等于()A.﹣8 B.﹣16 C.16 D.8【考点】有理数的乘方.【分析】乘方就是求几个相同因数积的运算,﹣42=﹣(4×4)=16.【解答】解:﹣42=﹣16故选:B【点评】本题考查有理数乘方的法则.正数的任何次方都是正数;负数的奇次方为负,负数的偶次方为正;0的正整数次幂为0.2.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A.18°B.36°C.60°D.72°【考点】圆周角定理.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠BOC=2∠A=72°.故选D.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.3.如图,AB∥CD,CB∥DE,若∠B=72°,则∠D的度数为()A.36°B.72°C.108°D.118°【考点】平行线的性质.【分析】由平行线的性质得出∠C=∠B=72°,∠D+∠C=180°,即可求出结果.【解答】解:∵AB∥CD,CB∥DE,∠B=72°,∴∠C=∠B=72°,∠D+∠C=180°,∴∠D=180°﹣72°=108°;故选:C.【点评】本题主要考查平行线的性质;熟练掌握平行线的性质是解决问题的关键.4.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC【考点】全等三角形的判定.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.5.如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B.=C.△ADE~△ABC D.S△ADE=S△ABC【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理、相似三角形的性质解答即可.【解答】解:∵BD=2AD,∴AB=3AD,∵DE∥BC,∴==,∴BC=3DE,A结论正确;∵DE∥BC,∴=,B结论正确;∵DE∥BC,∴△ADE~△ABC,C结论正确;∵DE∥BC,AB=3AD,∴S△ADE=S△ABC,D结论错误,故选:D.【点评】本题考查的是平行线分线段成比例定理和相似三角形的性质,灵活运用平行线分线段成比例定理、掌握相似三角形的面积比等于相似比的平方是解题的关键.6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是()A.14,9 B.9,9 C.9,8 D.8,9【考点】众数;统计表;中位数.【分析】依据众数和中位数的定义求解即可.【解答】解:∵时间为9小时的人数最多为19人数,∴众数为9.∵将这组数据按照由大到小的顺序排列,第25个和第26个数据的均为8,∴中位数为8.故选:C.【点评】本题主要考查的是众数和中位数的定义,明确表格中数据的意义是解题的关键.8.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图从左到右说出每一行小正方形的个数和位置即可.【解答】解:左视图从左到右有三列,左边一列有2个正方体,中间一列三个,右边有一个正方体,故选D.【点评】此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.9.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2 B.4 C.5 D.8【考点】反比例函数系数k的几何意义.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【解答】解:∵y=,∴OA•OD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【点评】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.10.如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A.2﹣B.C.D.﹣1【考点】旋转的性质;矩形的性质.【分析】先求出∠CBD,根据旋转角,判断出点C1在矩形对角线BD上,求出BD,再求出∠DBF,从而判断出DF=BD,即可.【解答】解:连接BD,如图所示:在矩形ABCD中,∠C=90°,CD=AB=1,在Rt△BCD中,CD=1,BC=,∴tan∠CBD==,BD=2,∴∠CBD=30°,∠ABD=60°,由旋转得,∠CBC1=∠ABA1=30°,∴点C1在BD上,连接BF,由旋转得,AB=A1B,∵矩形A1BC1D1是矩形ABCD旋转所得,∴∠BA1F=∠BAF=90°,∵AF=AF,∴△A1BF≌△ABF,∴∠A1BF=∠ABF,∵∠ABA1=30°,∴∠ABF=∠ABA1=15°,∵∠ABD=60°,∴∠DBF=75°,∵AD∥BC,∴∠ADB=∠CBD=30°,∴∠BFD=75°,∴DF=BD=2,∴AF=DF﹣AD=2﹣,故选:A.【点评】本题考查了旋转的性质、矩形的性质、全等三角形的判定与性质、等腰三角形的判定、三角函数;熟练掌握旋转的性质和矩形的性质,并能进行推理计算是解决问题的关键.二、填空题:每小题3分,共30分11.计算:(﹣2ab)2=4a2b2.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则求出答案.【解答】解:(﹣2ab)2=4a2b2.故答案为:4a2b2.【点评】此题主要考查了积的乘方运算与幂的乘方运算,正确掌握运算法则是解题关键.12.0.0000156用科学记数法表示为1.56×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000156=1.56×10﹣5,故答案为:1.56×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.一个多边形的内角和为1080°,则这个多边形的边数是8.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.函数y=中,自变量x的取值范围为x<1.【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式1﹣x>0,解不等式即可.【解答】解:根据题意得:1﹣x>0,解可得x<1;故答案为x<1.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为10.【考点】垂径定理.【专题】计算题;推理填空题.【分析】首先连接OD,并设OD=x,然后在△ODE中,由勾股定理,求出OD的长,即可求出⊙O 的直径为多少.【解答】解:如图,,∵AB是⊙O的直径,而且CD⊥AB于E,∴DE=CE=12÷2=6,在Rt△ODE中,x2=(x﹣1)2+32,解得x=5,∵5×2=10,∴⊙O的直径为10.故答案为:10.【点评】此题主要考查了垂径定理以及勾股定理的应用,要熟练掌握,解答此题的关键是求出OD 的长度是多少.17.关于x的两个方程x2﹣x﹣6=0与=有一个解相同,则m=﹣8.【考点】分式方程的解;解一元二次方程-因式分解法.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;先解方程x2﹣x﹣6=0,将它的根分别代入方程=,去掉不符合题意的根,求出m的值.【解答】解:解方程x2﹣x﹣6=0得:x=﹣2或3;把x=﹣2或3分别代入方程=,当x=﹣2时,得到=,解得m=﹣8.故答案为:﹣8.【点评】本题考查的是一元二次方程的根即方程的解的定义;本题注意分式方程中分母不为0.18.已知⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,圆心距O1O2=,则两圆的位置关系为相交.【考点】圆与圆的位置关系;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】直接利用偶次方的性质以及二次根式的性质得出m,n的值,再利用圆与圆的位置关系判断方法得出答案.【解答】解:∵⊙O1和⊙O2的半径分别为m、n,且m、n满足+(n﹣2)2=0,∴m﹣1=0,n﹣2=0,解得:m=1,n=2,∴m+n=3,∵圆心距O1O2=,∴两圆的位置关系为:相交.故答案为:相交.【点评】此题主要考查了偶次方的性质以及二次根式的性质以及圆与圆的位置关系,正确把握两圆位置关系判断方法是解题关键.19.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省4元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OB和射线EB的函数解析式,然后可求出一次购买8个笔记本的价钱和分8次购买每次购买1个的花费,进而可得答案.【解答】解:由线段OB的图象可知,当0<x<时,y=5x,1千克苹果的价钱为:y=5,设射线EB的解析式为y=kx+b(x≥2),把(4,20),(10,44)代入得,解得:,∴射线EB的解析式为y=4x+4,当x=8时,y=4×8+4=36,5×8﹣36=4(元),故答案为:4.【点评】本题考查了一次函数的应用,解决本题的关键是掌握待定系数法求一次函数解析式.20.阅读材料并解决问题:求1+2+22+23+…+22017的值,令S=1+2+22+23+…+22017等式两边同时乘以2,则2S=2+22+23+…+22017+22017两式相减:得2S﹣S=22017﹣1所以,S=22017﹣1依据以上计算方法,计算1+3+32+33+…+32017=.【考点】规律型:数字的变化类.【分析】令s=1+3+32+33+…+32017,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.【解答】解:令s=1+3+32+33+ (32017)等式两边同时乘以3得:3s=3+32+33+ (32017)两式相减得:2s=32017﹣1.所以S=.【点评】本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、本题共12分21.(1)计算:|﹣|﹣2cos45°﹣()﹣1+(tan80°﹣)0+(2)化简:(﹣2)÷﹣2x,再代入一个合适的x求值.【考点】分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)根据特殊角的三角函数值、负整数整数幂和零指数幂的意义计算.(2)先把括号内通分,再把除法运算化为乘法运算,然后约分后合并得到原式=2﹣x,再根据分式有意义的条件把x=10代入计算即可.【解答】解:(1)原式=﹣2×﹣2+1+2=2﹣1;(2)原式=•﹣2x=•﹣2x=x+2﹣2x=2﹣x,当x=10时,原式=2﹣10=﹣8.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四.本题共12分22.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.【考点】切线的判定.【分析】(1)连接OC,根据等腰三角形的性质:等边对等角,以及直径所对的圆周角是直角,利用等量代换证得∠ACO=90°,据此即可证得;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.【解答】解:(1)连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,又∵BD是直径,∴∠BCD=90°,∴∠ACO=90°,又C在⊙O上,∴AC是⊙O的切线;(2)由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=2,在直角△BCD中,BC===2.又AC=BC,∴AC=2.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,∴S△ABC=AB•CE=×6×=3.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.五.本题共14分23.2017年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数分布表中a=0.24,b=18,c=4(2)补全频数分布直方图(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.频数分布表【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频数、频率和样本容量的关系可分别求得a、b、c;(2)由(1)中求得的b、c的值可补全图形;(3)由题可知超过90分的学生人数有4人,再利用树状图可求得概率.【解答】解:(1)a==0.24,∵=0.36,=0.08,∴b=50×0.36=18,c=50×0.08=4,故答案为:0.24;18;4;(2)由(1)可知70~80的人数为18人,90~100的人数为4人,则可补全图形如图1;(3)由(1)可知超过90分的学生人数有4人,用A、B、C、D分别表示小亮、小华及另外两名同学,树状图如图2,所有可能出现的结果是:(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C),由树状图可知,从超过90分的四人中选出2人共有12种可能,而小亮和小华同时被选上的有两种可能,∴P(恰好同时选上小亮、小华)==.【点评】本题主要考查列表法或树状图法求概率以及条形统计图的知识,用到的知识点为:概率=所求情况数与总情况数之比.六.本题共14分24.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据“购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m的一元一次不等式,解不等式即可得出m的取值范围;(3)设购买鱼苗的总费用为w元,根据“总费用=甲种鱼苗的单价×购买数量+乙种鱼苗的单价×购买数量”即可得出w关于m的函数关系式,根据一次函数的性质结合m的取值范围,即可解决最值问题.【解答】解:(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条.(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据题意得:90%m+80%(600﹣m)≥85%×600,解得:m≥300,答:购买乙种鱼苗至少300条.(3)设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,∵4>0,∴w随m的增大而增大,又∵m≥300,=4×300+9600=10800(元).∴当m=300时,w取最小值,w最小值答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元.【点评】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的性质以及一次函数的性质,解题的关键是:(1)根据数量关系得出关于x、y的二元一次方程组;(2)根据数量关系得出关于m的一元一次不等式;(3)根据数量关系得出w关于m的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系得出不等式(方程组或函数关系式)是关键.七.阅读材料题.25.求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.【考点】有理数的混合运算.【分析】(1)根据题目,首先弄懂题意,然后根据例子写出答案即可;(2)可以先求出104与78的最大公约数为26,再利用辗转相除法,我们可以求出26 与143的最大公约数为13,进而得到答案.【解答】解:(1)108﹣45=63,63﹣45=18,27﹣18=9,18﹣9=9,所以108与45的最大公约数是9;(2)先求104与78的最大公约数,104﹣78=26,78﹣26=52,52﹣26=26,所以104与78的最大公约数是26;再求26与143的最大公约数,143﹣26=117,117﹣26=91,91﹣26=65,65﹣26=39,39﹣26=13,26﹣13=13,所以,26与143的最大公约数是13,∴78、104、143的最大公约数是13.【点评】本题考查的知识点是辗转相除法与更相减损术,求三个或三个以上数的最大公约数,可以先求前两个数的最大公约数,再求所得最大公约数与第三个数的最大公约数最后得到答案.八.本题共16分26.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=14﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∴S四边形PBQC∵0<t<4,=16∴当t=2时,S四边形PBQC最大【点评】此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.。
贵州省黔南州2017年中考数学试题(含解析)
2017年贵州黔南中考数学试题(本试卷满分150分,考试时间120分钟)一、单项选择题(每小题4分,共13题,满分52分)1.计算﹣(﹣5)等于【 】A .5B .﹣5C .15 D .﹣15【答案】A 。
解析:本题考查的是实数的符号的化简。
2.下列多项式中,能用公式法分解因式的是【 】A .2x xy -B .2x +xyC .22x y -D .22x +y【答案】C 。
解析:本题考查的是多项式分解因式中公式法的应用。
3.把不等式x+24>的解表示在数轴上,正确的是【 】 A . B .C .D .【答案】B 。
解析:本题考查的是不等式的解法、用数轴表示不等式的解集。
4.如图,直线AB 对应的函数表达式是【 】A .3y=x+32-B .3y=x+32C .2y=x+33-D .2y=x+33【答案】 A 。
解析:本题考查的是待定系数法求一次函数解析式。
5.下列运算正确的是【 】A .()222a+b =a +b B .426a a =a ⋅ C .623a a =a ÷ D .2a+3b=5ab【答案】B 。
解析:本题考查的是同底数幂的乘法及除法计算、多项式中完全平方公式、多项式中合并同类项。
6.如图,已知直线AB ∥CD ,BE 平分∠ABC ,交CD 于D ,∠CDE =1500,则∠C 的度数是【 】A .1500B .1300C .1200D .1000【答案】C 。
解析:本题考查的是平行线的性质定理、角平分线的性质。
7.如图,将正方体的平面展开图重新折成正方体后,“祝”字对面的字是【 】A .中B .考C .成D .功【答案】C 。
解析:本题考查的是正方体的展开图。
8.已知抛物线2y=x x 1--与x 轴的交点为(m ,0),则代数式2m m+2011-的值为【】 A .2009 B .2017 C .2017 D .2017【答案】B 。
解析:本题考查的是二次函数点的坐标的计算。
年贵州省黔西南州中考数学试卷
2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)﹣2017的相反数是()A.﹣2017ﻩB.2017 C.﹣ D.2.(4分)在下列四个交通标志图中,是轴对称图形的是()A.ﻩB.C.ﻩD.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()方差S甲A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个 C.3个ﻩD.4个5.(4分)下列各式正确的是( )A.(a﹣b)2=﹣(b﹣a)2ﻩB.=x﹣3C.=a+1ﻩD.x6÷x2=x36.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是() A.B.ﻩC.ﻩD.7.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠BD.对角线互相平分8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3ﻩB.2.5C.2ﻩD.19.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A.71 B.78ﻩC.85 D.8910.(4分)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4ﻩB.4ﻩC.﹣2ﻩD.2二、填空题(每小题3分,共30分)11.(3分)计算:(﹣)2=.12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为(精确到百万位).13.(3分)不等式组的解集是.14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是. 15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 度.17.(3分)函数y=的自变量x的取值范围是.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.三、(本大题12分)21.(12分)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.四、(本大题12分)22.(12分)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.八、(本大题16分)26.(16分)如图1,抛物线y=ax 2+b x+,经过A(1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC . (1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M,是S△ABM =S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E是线段AC 上的动点,F是线段BC 上的动点,AF 与BE相交于点P . ①若CE=BF ,试猜想AF与BE 的数量关系及∠APB 的度数,并说明理由;②若A F=B E,当点E 由A 运动到C 时,请直接写出点P经过的路径长(不需要写过程).ﻬ2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分) 1.(4分)﹣2017的相反数是( ) A.﹣2017 B.2017 C .﹣ﻩD.【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:﹣2017的相反数是2017, 故选:B.2.(4分)在下列四个交通标志图中,是轴对称图形的是( )A.B. C.D.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.4.(4分)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个ﻩC.3个ﻩD.4个【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.5.(4分)下列各式正确的是( )A.(a﹣b)2=﹣(b﹣a)2ﻩB.=x﹣3C.=a+1D.x6÷x2=x3【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答.【解答】解:A、(a﹣b)2=(b﹣a)2,故错误;B、正确;C、不能再化简,故错误;D、x6÷x2=x4,故错误;故选:B.6.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是( )A.B.ﻩC.D.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是=,故选:B.7.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是( )A.∠A=∠CB.AD∥BCC.∠A=∠BﻩD.对角线互相平分【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.【解答】解:如图,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则C D的长是()A.3 B.2.5ﻩC.2 D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)9.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78ﻩC.85 D.89【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.10.(4分)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O 作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B 也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4ﻩC.﹣2 D.2【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=(x>0)上的一个动点,∴可设A(x,),∴OC=x,AC=,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴===,∴OD=2AC=,BD=2OC=2x,∴B(﹣,2x),∵点B反比例函数y=图象上,∴k=﹣•2x=﹣4,故选A.二、填空题(每小题3分,共30分)11.(3分)计算:(﹣)2= .【分析】本题考查有理数的乘方运算,(﹣)2表示2个(﹣)的乘积.【解答】解:(﹣)2=.故答案为:.12.(3分)人工智能AlphaGo,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为2.0×107(精确到百万位).【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107,故答案为:2.0×107.13.(3分)不等式组的解集是﹣1<x≤3 .【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解不等式①得x>﹣1,解不等式②得x≤3.故不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.14.(3分)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是 4 .【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5×5,解得x=4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为4.15.(3分)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是m<1.【分析】由方程没有实数根结合根的判别式,即可得出△=4m﹣4<0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0没有实数根,∴△=22+4(m﹣2)=4m﹣4<0,解得:m<1.故答案为:m<1.16.(3分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=25度.【分析】要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.【解答】解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.17.(3分)函数y=的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15 .【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.19.(3分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF=6﹣x,在RT△AEF中,∵AE2+AF2=EF2,∴32+(6﹣x)2=x2,∴x=,∴AF=6﹣=cm,故答案为.20.(3分)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有①③④(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.【分析】①由抛物线的开口向上、对称轴在y轴右侧、抛物线与y轴交于y轴负半轴,即可得出a>0、b<0、c<0,进而可得出abc>0,①正确;②由抛物线与x轴有两个不同的交点,可得出△=b2﹣4ac>0,b2>4ac,②错误;③由当x =﹣2时y>0,可得出4a﹣2b+c>0,③正确;④由抛物线对称轴的大致范围,可得出﹣2a<b<0,结合a>0、c<0可得出2a+b>0>c,④正确.综上即可得出结论.【解答】解:①∵抛物线开口向上,抛物线的对称轴在y轴右侧,抛物线与y轴交于y轴负半轴,∴a>0,﹣>0,c<0,∴b<0,abc>0,①正确;②∵抛物线与x轴有两个不同交点,∴△=b2﹣4ac>0,b2>4ac,②错误;③当x=﹣2时,y=4a﹣2b+c>0,③正确;④∵0<﹣<1,∴﹣2a<b<0,∴2a+b>0>c,④正确.故答案为:①③④.三、(本大题12分)21.(12分)(1)计算:+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2(2)解方程:+=1.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)+|3﹣|﹣2sin60°+(2017﹣π)0+()﹣2=2+3﹣﹣2×+1+=2+3﹣﹣+1+4=8;(2)+=1整理得﹣=11﹣x=x﹣3解得x=2经检验:x=2是分式方程的解.四、(本大题12分)22.(12分)如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【分析】(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.【解答】(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵D是弧BC的中点,∴=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG==2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【分析】(1)根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A、B、D三种粽子的人数可得爱吃C的人数,然后再根据人数计算出百分比即可;(3)求出D占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C粽的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:180+60+120+240=600(人);(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,则P(C粽)==,答:他第二个吃到的恰好是C粽的概率是.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【分析】(1)根据函数图象即可得出起点A与终点B之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得甲龙舟队的y与x函数关系式;设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得乙龙舟队的y与x函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.【解答】解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得,解得,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1= 1 ,sin2A2+cos2A2= 1,sin2A3+cos2A3= 1 ;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sinA=、cosA=且a2+b2=c2知sin2A+cos2A=()2+()2===1;(4)根据直角三角形中sin2A+cos2A=1知()2+cosA2=1,据此可得答案.【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin2A3+cos2A3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1,故答案为:1;(3)在图2中,∵sinA=,cosA=,且a2+b2=c 2,则sin2A +c os 2A=()2+()2=+===1,即sin 2A +co s2A =1;(4)在△ABC 中,∠A +∠B=90°,∴∠C=90°,∵si n2A +c os 2A=1,∴()2+co sA 2=1,解得:c osA=或co sA=﹣(舍), ∴cosA=.八、(本大题16分)26.(16分)如图1,抛物线y=ax 2+bx +,经过A (1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M,是S△ABM =S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P . ①若CE=B F,试猜想AF与BE 的数量关系及∠APB 的度数,并说明理由;②若AF=B E,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).【分析】(1)将点A(1,0),B(7,0)代入抛物线的解析式得到关于a、b方程组,解关于a、b的方程组求得a、b的值即可;(2)过点C作CK⊥x轴,垂足为K.依据等边三角形的性质可求得CK=3,然后的面积,设M(a,a2﹣2a+),依据三角形的面积公式结合已知条件可求得S△ABM然后依据三角形的面积公式可得到关于a的方程,从而可得到点M的坐标;(3)①首先证明△BEC≌△AFB,依据全等三角形的性质可知:AF=BE,∠CBE=∠BAF,然后通过等量代换可得到∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°,最后依据三角形的内角和定理可求得∠APB;②当AE≠BF时,由①可知点P在以AB为直径的圆上,过点M作ME⊥AB,垂足为E.先求得⊙M的半径,然后依据弧长公式可求得点P运动的路径;当AE=BF 时,点P在AB的垂直平分线上时,过点C作CK⊥AB,则点P运动的路径=CK 的长.【解答】解:(1)将点A(1,0),B(7,0)代入抛物线的解析式得:,解得:a=,b=﹣2.∴抛物线的解析式为y=x2﹣2x+.(2)存在点M,使得S△ABM=S△ABC.理由:如图所示:过点C作CK⊥x轴,垂足为K.∵△ABC为等边三角形,∴AB=BC=AC=6,∠ACB=60°.∵CK⊥AB,∴KA=BK=3,∠ACK=30°.∴CK=3.=AB•CK=×6×3=9.∴S△ABC∴S=×9=12.△ABM设M(a,a2﹣2a+).∴AB•|y|=12,即×6×(a2﹣2a+)=12,解得:a=9,a2=﹣1.1∴点M的坐标为(9,4)或(﹣1,4).(3)①结论:AF=BE,∠APB=120°.∵△ABC为等边三角形,∴BC=AB,∠C=∠ABF.∵在△BEC和△AFB中,∴△BEC≌△AFB.∴AF=BE,∠CBE=∠BAF.∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.∴∠APB=180°﹣60°=120°.②当AE≠BF时,由①可知点P在以M为圆心,在以AB为弦的圆上,过点M作MK⊥AB,垂足为k.∵∠APB=120°,∴∠N=60°.∴∠AMB=120°.又∵MK⊥AB,垂足为K,∴AK=BK=3,∠AMK=60°.∴AK=2.∴点P运动的路径==.当AE=BF时,点P在AB的垂直平分线上时,如图所示:过点C作CK⊥AB,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=3.∴点P运动的路径为3.综上所述,点P运动的路径为3或.。
2017年贵州省黔南州中考数学试卷
2017年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2017年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2017•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2017•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2017•黔南州)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2017•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2017•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2017•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2017•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2017•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2017•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2017•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2017•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2017•黔南州)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2017•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2017•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2017•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2017•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。
贵州黔东南州 2017年中考真题数学(解析版)
2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣22.故选B.2.如图,∠120°,∠20°,则∠A的度数是()A.120°B.90°C.100° D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠∠﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣2 B.(a﹣b)22﹣b2C.62÷(﹣2)=﹣3b D.a()2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式2﹣22,不符合题意;C、原式=﹣3b,符合题意;D、原式2,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径垂直于弦,垂足为E,∠15°,半径为2,则弦的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;:勾股定理;M2:垂径定理.【分析】根据垂径定理得到,∠90°,根据圆周角定理得到∠30°,根据直角三角形的性质得到1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径垂直于弦,∴,∠90°,∵∠15°,∴∠30°,∵2,∴1,∴22,故选A.6.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣2【考点】:根与系数的关系.【分析】根据根与系数的关系得到x12=2,x1x2=﹣1,利用通分得到,然后利用整体代入的方法计算【解答】解:根据题意得x12=2,x1x2=﹣1,所以﹣2.故选D.7.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:32﹣3x,解得:﹣1或3,经检验﹣1是增根,分式方程的根为3,故选C8.如图,正方形中,E为中点,⊥,2,交于O,则∠的度数为()A.60°B.67.5°C.75°D.54°【考点】:正方形的性质.【分析】如图,连接、.如图,连接、.首先证明∠∠30°,再证明△≌△,推出∠∠15°,由此即可解决问题.【解答】解:如图,连接、.∵⊥,,∴,∵2,∴,∴△是等边三角形,∵,∴点A是△的外接圆的圆心,∴∠∠30°,∵四边形是正方形,∴,∠∠90°,∠∠45°,∴∠∠,∴△≌△,∴∠∠15°,∴∠∠∠60°.故选A.9.如图,抛物线2(a≠0)的对称轴为直线﹣1,给出下列结论:①b2=4;②>0;③a>c;④4a﹣2>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y 轴交点位置得到c>0,则可作判断;③利用﹣1时a﹣<0,然后把2a代入可判断;④利用抛物线的对称性得到﹣2和0时的函数值相等,即﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△2﹣4>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴>0,所以②正确;③∵﹣1时,y<0,即a﹣<0,∵对称轴为直线﹣1,∴﹣=﹣1,∴2a,∴a﹣2<0,即a>c,所以③正确;④∵抛物线的对称轴为直线﹣1,∴﹣2和0时的函数值相等,即﹣2时,y>0,∴4a﹣2>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和()n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算()20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出()20的展开式中第三项的系数;【解答】解:找规律发现()3的第三项系数为3=1+2;()4的第三项系数为6=1+2+3;()5的第三项系数为10=1+2+3+4;不难发现()n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴()20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知,∥,请你添加一个适当的条件∠∠D使得△≌△.【考点】:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠∠D.理由如下:∵,∴.又∵∥,∴∠∠.∴在△与△中,,∴△≌△().故答案是:∠∠D.13.在实数范围内因式分解:x5﹣4x(x2+3)()(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式(x4﹣22),(x2+2)(x2﹣2)(x2+2)()(x﹣),故答案是:x(x2+3)()(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800,由此估计该果农今年的“优质蓝莓”产量约是560.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段的中点,则k的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴﹣2;∵B点在反比例函数y2=的图象上,∴2a•24﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板的一条直角边与y轴重合且点A的坐标为(0,1),∠30°;第二块三角板的斜边1与第一块三角板的斜边垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,•60°=1×=,•60°()2=3,1•60°=()3,21…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣),故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2﹣(π﹣3.14)0﹣60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•﹣1,当1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<55,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中14,0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得50,∴50×0.28=14,0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:.所以P(两学生来自同一所班级)21.如图,已知直线与⊙O相切于点T,直线与⊙O相交于A,B两点.(1)求证:2•;(2)若,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;:切线的性质;:扇形面积的计算.【分析】(1)连接,只要证明△∽△,可得=,由此即可解决问题;(2)首先证明△是等边三角形,根据S阴扇形﹣S△计算即可;【解答】(1)证明:连接.∵是⊙O的切线,∴⊥,∴∠90°,∴∠∠90°,∵是直径,∴∠90°,∴∠∠90°,∵,∴∠∠,∴∠∠B,∵∠∠P,∴△∽△,∴=,∴2•.(2)∵,∴∠∠∠,∵∠∠∠,∵∠∠90°,∴∠60°,∠30°,∴,∴1,∵,∠60°,∴△是等边三角形,∴S阴扇形﹣S△﹣•12=﹣.22.如图,某校教学楼后方有一斜坡,已知斜坡的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:39°≈0.63,39°≈0.78,39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作⊥于点E,作D′E′⊥于点E′,根据锐角三角函数的定义求出、、′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作⊥于点E,作D′E′⊥于点E′,∵12米,∠60°,∴•60°=12×=6米,•60°=12×=6米.∵⊥,D′E′⊥,′∥′,∴四边形′D′是矩形,∴′E′=6米.∴′=≈≈12.8,∴′′﹣12.8﹣6=6.8(米).答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【考点】:一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x天,乙队单独完成需要y天.列出分式方程组即可解决问题;(2)设乙先工作x天,再与甲合作正好如期完成.则1,解得6.由此可得m的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则1,解得6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:﹣4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且与直线l垂直,垂足为E,∥y轴,交直线l于点F,是否存在这样的点P,使△的面积最小?若存在,请求出此时点P的坐标及△面积的最小值;若不存在,请说明理由.【考点】:二次函数综合题.【分析】(1)设抛物线的解析式为(x﹣2)(4),将点M的坐标代入可求得a 的值,从而得到抛物线的解析式;(2)连接,过点M作⊥,垂足为G.先求得点A和点B的坐标,可求得,可得到、、、的长,然后利用锐角三角函数的定义可证明∠∠,故此可证明⊥;(3))先证明∠∠.则:::2:1.则△的面积2,设点P的坐标为(x,﹣x2﹣),则F(x,﹣4).然后可得到与x的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为(x﹣2)(4),将点M的坐标代入得:﹣92,解得:﹣.∴抛物线的解析式为﹣x2﹣.(2)连接,过点M作⊥,垂足为G.把0代入﹣4得:4,∴A(0,4).将0代入得:0=﹣4,解得8,∴B(8,0).∴4,8.∵M(﹣1,2),A(0,4),∴1,2.∴∠∠.∴∠∠.∵∠∠90°,∴∠∠90°,即∠90°.∴l是⊙M的切线.(3)∵∠∠90°,∠∠90°,∴∠∠.∴∠.∴:::2:1.∴△的面积•×•2.∴当最小时,△的面积最小.设点P的坐标为(x,﹣x2﹣),则F(x,﹣4).∴(﹣4)﹣(﹣x2﹣)=﹣42﹣2﹣(x﹣)2+.∴当时,有最小值,的最小值为.∴P(,).∴△的面积的最小值为=×()2=.2017年7月2日。
2017年黔西南州中考数学试卷(解析版)
2017年黔西南州中考数学试卷(解析版)一、选择题(每小题4分,共40分)1.﹣2017的相反数是()A.﹣2017B.2017C.﹣12017D.12017【答案】B.【解析】试题分析:﹣2017的相反数是2017,故选B.考点:相反数.2.在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B.【解析】考点:轴对称图形.3.已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【答案】A.【解析】试题分析:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.考点:方差;算术平均数.4.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个 【答案】D . 【解析】试题分析:①正方体的主视图与左视图都是正方形; ②球的主视图与左视图都是圆; ③圆锥主视图与左视图都是三角形; ④圆柱的主视图和左视图都是长方形; 故选D .考点:简单几何体的三视图. 5.下列各式正确的是( ) A .22()()a b b a -=-- B .331x x -= C .2111a a a +=++ D .623x x x ÷=【答案】B . 【解析】考点:完全平方公式;同底数幂的除法;约分;负整数指数幂.6.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.23B.110C.15D.14【答案】B.【解析】试题分析:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是220=110,故选B.考点:概率公式.7.四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分【答案】C.【解析】考点:全等三角形的判定与性质;平行四边形的判定与性质.8.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1【答案】C.【解析】试题分析:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2,∴x=2,∴CD=2,故选C.考点:垂径定理.9.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71B.78C.85D.89【答案】D.【解析】考点:规律型:图形的变化类.10.如图,点A是反比例函数1yx=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数kyx=图象上移动,则k的值为()A .﹣4B .4C .﹣2D .2 【答案】A . 【解析】试题分析:∵点A 是反比例函数1y x =(x >0)上的一个动点,∴可设A (x ,1x),∴OC =x ,AC =1x,∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°,∴∠BOD =∠OAC ,且∠BDO =∠ACO ,∴△AOC ∽△OBD ,∵OB =2OA ,∴12AC OC AO OD BD BO ===,∴OD =2AC =2x,BD =2OC =2x ,∴B (﹣2x ,2x ),∵点B 反比例函数k y x =图象上,∴k =﹣2x•2x =﹣4,故选A .考点:反比例函数图象上点的坐标特征.二、填空题(每小题3分,共30分)11.计算:21()2-= .【答案】14. 【解析】考点:有理数的乘方.12.人工智能AlphaGo ,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 (精确到百万位). 【答案】2.0×107. 【解析】试题分析:“两千万”精确到百万位,用科学记数法表示为2.0×107,故答案为:2.0×107. 考点:科学记数法与有效数字.13.不等式组21218x x x+>⎧⎨-≤-⎩的解集是 .【答案】﹣1<x ≤3. 【解析】试题分析:2 1 218x x x +>⎧⎨-≤-⎩①②,解不等式①得x >﹣1,解不等式②得x ≤3.故不等式组的解集为﹣1<x ≤3. 故答案为:﹣1<x ≤3. 考点:解一元一次不等式组.14.若一组数据3,4,x ,6,8的平均数为5,则这组数据的众数是 . 【答案】4. 【解析】试题分析:根据题意得(3+4+x +6+8)=5×5,解得x =4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为:4. 考点:众数;算术平均数.15.已知关于x 的方程22(2)0x x m +--=没有实数根,则m 的取值范围是 . 【答案】m <1. 【解析】考点:根的判别式.16.如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD = 度.【答案】25. 【解析】试题分析:∵在Rt △ABC 中,∠BAC =65°,∴∠ABC =90°﹣∠BAC =90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.故答案为:25.考点:平行线的性质;三角形内角和定理.17.函数y=x的取值范围是.【答案】x≥1.【解析】试题分析:根据题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.考点:函数自变量的取值范围.18.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.【答案】15.【解析】考点:等腰三角形的性质;三角形三边关系;分类讨论.19.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是cm.【答案】94.【解析】试题分析:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF =6﹣x ,在RT △AEF 中,∵AE 2+AF 2=EF 2,∴32+(6﹣x )2=x 2,∴x =154,∴AF =6﹣154=94cm ,故答案为:94. 考点:翻折变换(折叠问题);正方形的性质.20.如图,图中二次函数解析式为2y ax bx c =++(a ≠0)则下列命题中正确的有 (填序号)①abc >0;②b 2<4ac ;③4a ﹣2b +c >0;④2a +b >c .【答案】①③④. 【解析】考点:二次函数图象与系数的关系;命题与定理.三、解答题(本大题12分)21.(102132sin 60(2017)()2π-+-+.(2)解方程:21133x x x-+=--. 【答案】(1)8;(2)x =2. 【解析】试题分析:(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.试题解析:(1)原式=213211()2-++=314+=8; (2)整理得:21133x x x --=--,去分母得:1﹣x =x ﹣3,解得x =2.经检验:x =2是分式方程的解.考点:解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.四、解答题(本大题12分)22.如图,已知AB 为⊙O 直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F . (1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE =4,⊙O 的半径为5,求tan ∠F 的值.【答案】(1)证明见解析;(2)2. 【解析】试题分析:(1)连接BC 、OD ,由D 是弧BC 的中点,可知:OD ⊥BC ;由OB 为⊙O 的直径,可得:BC ⊥AC ,根据DE ⊥AC ,可证OD ⊥DE ,从而可证DE 是⊙O 的切线; (2)直接利用勾股定理得出GO 的长,再利用锐角三角函数关系得出tan ∠F 的值.考点:切线的判定与性质;垂径定理;解直角三角形.五、解答题(本大题14分)23.今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)作图见解析;(3)3200;(4)14.【解析】(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,则P(C粽)=312=14.答:他第二个吃到的恰好是C粽的概率是14.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.六、(本大题14分)24.赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【答案】(1)3000;(2)甲龙舟队先出发,乙龙舟队先到达终点;(3)甲:y=120x(0≤x≤25);乙:y=200x﹣1000(5≤x≤20);(4)甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米.【解析】设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得乙龙舟队的y与x函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=703(符合题意);综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米.考点:一次函数的应用;分类讨论.七、解答题(本大题12分)25.把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A= ;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sin A=1213,求cos A.【答案】(1)1、1、1;(2)1;(3)证明见解析;(4)5 13.【解析】试题分析:(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sin A=ac、cos A=bc且a2+b2=c2知sin2A+cos2A=(ac)2+(bc)2=222a bc+=22cc=1;(4)根据直角三角形中sin2A+cos2A=1知(1213)2+cos A2=1,据此可得答案.考点:解直角三角形.八、解答题(本大题16分)26.如图1,抛物线27 4y ax bx=++,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M,是S△ABM△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P . ①若CE =BF ,试猜想AF 与BE 的数量关系及∠APB 的度数,并说明理由;②若AF =BE ,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).【答案】(1)217244y x x =-+;(2)点M 的坐标为(9,4)或(﹣1,4);(3)①AF =BE ,∠APB =120°;②. 【解析】试题解析:(1)将点A (1,0),B (7,0)代入抛物线的解析式得:749704704a b a b ⎧++=⎪⎪⎨⎪++=⎪⎩,解得:a =14,b =﹣2,∴抛物线的解析式为217244y x x =-+. (2)存在点M ,使得S △ABM=9S △ABC . 理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形,∴AB =BC =AC =6,∠ACB =60°.②当AE ≠BF 时,由①可知点P 在以AB 为直径的圆上,过点M 作ME ⊥AB ,垂足为E .∵∠APB =120°,∴∠N =60°,∴∠AMB =120°.又∵ME ⊥AB ,垂足为E ,∴AE =BE =3,∠AME =60°,∴AM =P 运动的路径=120180π⨯=3.当AE =BF 时,点P 在AB 的垂直平分线上时,如图所示:过点C 作CK ⊥AB ,则点P 运动的路径=CK 的长.∵AC=6,∠CAK=60°,∴KC=P运动的路径为综上所述,点P运动的路径为.3考点:二次函数综合题;探究型;动点型;存在型;分类讨论;压轴题.。
2017年贵州省黔东南州中考数学试题(解析版)
2017年贵州省黔东南州中考数学试卷满分:150分 版本:人教版 第I 卷(选择题,共40分)一、选择题(每小题4分,共10小题,合计40分) 1. |-2|的值是A .-2B .2C .21D .21 答案:B ,解析:根据“负数的绝对值等于它的相反数”可得,|-2|=2. 2.如图,∠ACD =120°,∠B =20°,则∠A 的度数是A .120°B .90°C .100°D .30°答案:C ,解析:∵∠ACD =120°,∠B =20°,∴∠A =∠ACD -∠B =120°-20°=100°.3.下列运算结果正确的是A .3a -a = 2B .(a -b )2 = a 2-b 2C .6ab 2 ÷(-2ab ) = -3bD .a (a +b ) = a 2+b答案:C ,解析:3a -a = 2a ,A 错;(a -b )2 = a 2-2ab +b 2 ,B 错;a (a +b ) = a 2+ab , D 错;∴答案为C .4.如图所示,所给的三视图表示的几何体是A .圆锥B .正三棱锥C .正四棱锥D .正三棱柱答案:D ,解析:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个正三角形,∴此几何体为正三棱柱.5. 如图,⊙O 的直径 AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2 ,则CD 的长为A .2B .-1C .2D .4答案:A ,解析:∵∠A =15°,∴∠BOC =2∠A =30°,∵⊙O 的直径AB 垂直于弦CD , ∴CE =DE=21OC =1,∴CD =2CE =2. 6.已知一元二次方程x2-2x -1=0的两根分别为x 1,x 2,则2111x x +的值为 A .2 B .-1 C. 21- D .-2 答案:D ,解析:由根与系数的关系:x 1+x 2=a b -=2,x 1 • x 2=ac=-1,∴21211212121-=-=+=+x x x x x x .7.分式方程()13113+-=+x x x 的根为 A .-1或3 B .-1 C .3 D .1或-3 答案:C ,解析:()13113+-=+x x x ,()1213+-=+x x x x ,方程两边同时乘以x (x +1)得3=x (x -2),解得x 1=-1,x 2=3,当x =-1时,x (x +1)=0,所以x=3是原分式方程的解.8.如图,正方形ABCD 中,E 为AB 中点,FE ⊥AB ,AF =2AE ,FC 交BD 于O ,则∠DOC 的度数 为A .60°B .67.5°C .75°D .54°答案:A ,解析:连接BF ,∵E 为AB 中点,FE ⊥AB ,∴EF 垂直平分AB ,∴AF =B F .∵AF =2AE ∴AF =AB ,∴AF =B F =AB ,∴△ABF 为等边三角形,∴∠FBA =60°,BF =AB ,∴∠FCB = ∠BFC =15°,∵正方形ABCD,∴∠DBC =45°根据“三角形的外角等于与它不相邻的两个内角和”,∴∠DOC=15°+45°=60°9.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,给出下列结论:①b 2 = 4ac ; ②abc >0;③a >c ;④4a -2b +c >0,其中正确的个数有A .1个B .2个C .3个D .4个答案:C ,解析:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①错误;由开口方向得a >0,又对称轴为直线x=-1,即ab2-=-1,∴b >0,当x =0时,c >0,所以abc >0,选项②正确;由ab2-=-1可得b =2a ,当x =-1时,a -b +c <0,可得a >c ,选项③正确;当x =-2时,4a -2b +c >0,选项④正确.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数宁家杨辉(约13世纪)所著的《详解九章算术》 —书中,用下图的三角形解释二项和(a +b )n 的展开式的各項系数,此三角形称为“杨辉三角”.(a +b )0 …………… ① (a +b )1 ……………① ① (a +b )2 …………① ② ① (a +b )3 ……… ① ③ ③ ① (a +b )4……① ④ ⑥ ④ ① (a +b )5…① ⑤ ⑩ ⑩ ⑤ ① …… ……根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为A .2017B .2016C .191D .190答案:D ,解析:观察可得(a +b )n 的展开式中第三项的系数为2)1(-n n ,因此,可得(a +b )20的展开式中第三项的系数为190.第II 卷(非选择题,共84分)二、填空题(每小题4分,共6小题,合计24分)11.在平面直角坐标系中有一点A (-2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 .答案:(1,-1),解析:(-2,1)横坐标加3,纵坐标减2得(1,-1).12.如图,点B ,F ,C ,E 在一条直线上,已知FB =CE ,AC //DF ,请你添加一个适当的条件 使得△ABC ≌△DEF .答案:答案不唯一,例如AC =FD ,∠B =∠E ,解析:证明三角形全等的方法有多种,选择合适的即可.所添条件,可以直接证全等也可间接得出结论证明全等.13.在实数范围内因式分解:x 5-4x = .答案:)2)(2)(2(2-++x x x x ,解析:题目要求在实数范围内,∴x 5-4x=x (x 4-4)=x (x 2+2)(x 2-2)=)2)(2)(2(2-++x x x x .14.黔东南下司“篮莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中柚取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产约量800kg .由此估计该果农今年的“优质蓝莓”产量约是 kg .答案:560,解析:根据“用样本来估计总体”估计该果农今年的“优质蓝莓”产量约是0.7⨯800=560(kg).15.如图,已知点A ,B 分别在反比例函数x y 21-=和xky =2的图象上,若点A 是线段OB 的中点,则k 的值为 .答案:-8,解析:过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,∴△ABC ∽△DEF ,∵点A 是线段OB 的中点,∴2===OAOBOC OD AC BD ,|k |=BD ⨯OD =2AC ⨯2OC =4AC ⨯OC =4⨯2=8,∵图像位于一、三象限,∴k =-8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y 轴重合且点A 的坐标为(0,1),∠ABO =30°;第二块三角板的斜边BB 1与第一块三角板的斜边AB 垂直且交y 轴于点B 1 ;第三块三角板的斜边B 1B 2与第二块三角板的斜边BB 1垂直且交x 轴于点B 2 ;第四块三角板的斜边B 2B 3第三块三角板的斜边B 1B 2垂直且交y 轴于点B 3;……按此规律继续下去,则点B 2017的坐标为 .答案:(0,-31009),解析:由“含30°角的直角三角形三边关系”可得B 的坐标为(3-,0),则依次可得出B 1(0,-3),B 2(33,0),B 3(0,9),B 4(39-,0),B 5(0,-27),…观察这组数据,不难发现坐标以4个为一周期,B 2017位于周期中的第一个位置,这个位置的坐标规律为B n (0,1)3(+-n ),所以B 2017(0,-31009).三、解答题 (本大题共8小题,合计86分) 17.(本小题满分8分)计算:-1-2+32--+(π-3.14)0-tan60°+8 . 解:原式=-1+223132+-++=23. 18.(本小题满分8分)先化简,再求值xx x x x x +-÷⎪⎭⎫ ⎝⎛---22111 ,其中x=3+1 . 解:原式==-++⨯---)1)(1()1()1()1(x x x x x x x x 1)1)(1()1()1(2-=-++⨯-x x x x x x x 当x=3+1 时,原式=3+1-1=3 .19.(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧+<-≥--21512423x x x x ,并将它的解集在数轴上表示出来.解:()⎪⎩⎪⎨⎧+<-≥--②①21512423x x x x 由①得x -3x +6≥4,x ≤1,由②得4x -2<5x +5,x >-7,∴-7< x ≤1.数轴表示如下:20.(本小题满分12分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整; (2)在这次测量中两班男生身高的中位数在: 范围内;(3)在身高≥167cm 的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校旗护卫队中,请用列表法和画树状图的方法,求出这两人都来自相同班级的概率. 解:(1) m=14,n=0.26 ; 补全统计图如图所示.(2) 161≤ x <164(3)设甲班两名学生为A ,B ,乙班两名学生为C ,D ,则画树状图如下:∵共有12种可能的结果,这两人都来自相同班级的有4种情况,∴这两人都来自相同班级身高分组 频数 频率 152≤ x <155 3 0.06 155≤ x <158 7 0.14 158≤ x <161 m 0.28 161≤ x <164 13 n 164≤ x <167 9 0.18 167≤ x <170 3 0.06 170≤ x <17310.02的概率为:P =124=31. 21.(本小题满分10分)如图,已知直线PT 与⊙O 相切于点T ,直线P O 与 ⊙O 相交于A ,B 两点. (1)求证:PT 2=PA ·PB ;(2)若PT =TB=3,求图中阴影部分的面积.思路分析:(1)①连接OT ;②证明∠PTA =∠B ;③利用△PTA 和△PBT 相似证明PT 2=PA ·PB ; (2)①证明∠PTA =∠P =∠B ;②证明∠TAB =2∠B ;③利用“直角三角形两锐角互余”证明∠B =30°;④计算出AT =1,证明△AOT 是等边三角形;⑤根据扇形AOT 面积减去△AOT 的面积可得图中阴影部分的面积为436-π.解:(1)①连接OT ,∵直线PT 与⊙O 相切于点T ,∴∠PTO = 90°,即∠PTA +∠ATO = 90°, ∵AB 是⊙O 的直径,∴∠ATB = 90°,即∠BTO +∠ATO = 90°, ∴∠PTA =∠BTO.∵OB =OT ,∴∠BTO =∠B ,∴∠PTA =∠B , 又∵∠P =∠P ,∴△PTA ∽△PBT , ∴PTPAPB PT =,即PT 2=PA ·PB ; (2)∵PT =TB=3,∴∠P =∠B , 由(1)知∠PTA =∠B ,∴∠P =∠PTA =∠B , ∴∠TAB=∠P +∠PTA =2∠B.∵AB 是⊙O 的直径,∴∠ATB = 90°,∴∠TAB +∠B = 90°,∴∠B = 30°. ∴AT =BT ⋅sin30°= 1,∠AOT = 60°,又 ∵OA =OT ,∴△AOT 是等边三角形,∴OA =OT =AT =1. ∴436212313601602-=⨯⨯-⨯=-=∆ππAOTAOT S S S 扇形阴影.22.(本小题满分12分)如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12 米,坡角α为60°,根据有关部门的规定∠α≤39°时,才能不避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,2≈1.41,3≈1.73,5≈2.24 )思路分析:①假设至少要把坡顶D 向后水平移动到点F 才能保证教学楼的安全,过点D 作DE ⊥AC 于点E ,过点F 作FG ⊥AC 于点G ;②在Rt △CDE 中,根据“锐角三角函数”求得DE ,CE ;③根据“矩形的性质”求得FG ;④在Rt △CFG 中,根据“锐角三角函数”求得C G ; ⑤易得DF =EG ≈7.解:假设至少要把坡顶D 向后水平移动到点F 才能保证教学楼的安全,过点D 作DE ⊥AC 于点E ,过点F 作FG ⊥AC 于点G , ∵在Rt △CDE 中,CD =12,∠α=60°, sin α=CD DE ,cos α=CDCE, ∴DE =CD ⋅ sin α=1223⨯≈10.4,CE =CD ⋅ co s α=1221⨯=6, 易证四边形DEGF 是矩形,∴FG =DE =10.4, ∵在Rt △CFG 中,tan ∠FCG =CG FG ,∴CG =FCG FG ∠tan ≈81.04.10≈12.8. ∴EG =CG -CE =12.8-6≈7 ∴DF =EG ≈723.(本小题满分12分)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修.现学校招用了甲、乙两个工程队,若两队合作,8天就可完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓完成.若完成该工程甲队工作m 天,乙队工作n 天,求学校需支付的总工资w (元)与甲队工作天数m (天)的函数关系式,并求出m 的取值范围及w 的最小值.思路分析:(1)①设甲的工作效率为x ,则得出乙的工作效率为(81-x );②根据两队完成总工程单位1来列方程;(2)①先找出m 与n 之间的关系,用含m 的式子表示n ;②列出工资w (元)与甲队工作天数m (天)的关系式;③由两队的工作时间都不超过12天来得出m 的取值范围;④结合关系式得到w 的最小值.解:(1)设甲的工作效率为x ,那么乙的工作效率为(81-x ).则3x +18(81-x )=1,解得x =121.所以甲工程队的每天能完成总工程的121,那么乙工程队的每天能完成总工程的241. (2)12412=+nm ,则n =24-2m ,w =3000m +1400n =3000m +1400(24-2m )=33600+200m . 又∵0≤m ≤12,0≤24-2m ≤12,∴6≤m ≤12. 当m =6时,w 最小=33600+200⨯6=34800(元) 24.(本小题满分14分)如图,⊙M 的圆心M (-1,2),⊙M 经过坐标原点O ,与y 轴交于点A ,经过点A 的一条直线l 解析式为:421+-=x y 与x 轴交于点B ,以M 为顶点的抛物线经过x 轴上点D (2,0)和点C (-4,0).(1)求抛物线的解析式; (2)求证:直线l 是⊙M 的切线;(3)点P 为抛物线上一动点,且PE 与直线l 垂直,垂足为E ;PF// y 轴,交直线l 于点F .是否存在这样的点P ,使△PEF 的面积最小,若存在,请求出此时点P 的坐标及△PEF 面积的最小值;若不存在,请说明理由.思路分析:(1)设交点式y =a (x -2)(x +4),将M 点坐标代入y =a (x -2)(x +4)中,求出a 的值; (2)①连接AM ;②根据A ,B ,M 的坐标求出AM ,AB ,BM ;③根据“勾股定理的逆定理”证明∠MAB=90°;(3)要使△PEF 的面积最小,即要使PF 线段最短. 思路一:①设F (m ,m 21-+4),P (m ,92-(m +1)2+2) ∴PF =m 21-+4-[92-(m +1)2+2];②根据“二次函数的相关知识”求出PF 的最小值③利用△PFE 和△AOB 相似,即可求得.思路二:①设直线y =x 21-+b 与y =92-(x +1)2+2相切;②联立方程组⎪⎪⎩⎪⎪⎨⎧++-=+-=2)1(92212x y b x y 可得x 21-+b =92-(x +1)2+2;③令△=0求得b ,其中(4-b )即为PF 的最小值;④利用△PFE 和△AOB 相似,即可求得.解:(1)设抛物线的解析式为y =a (x -2)(x +4),将M (-1,2)代入y =a (x -2)(x +4)得a =92-, ∴y =92-(x -2)(x +4),∴化简得y =92-(x +1)2+2; (2)连接AM ,∵421+-=x y 过点A ,点B ,∴当x =0时,y =4,即A (0,4),当y =0时,x =4,即B (8,0). 又∵M (-1,2),∴AM =5,AB =80,BM =85, ∴AM 2+AB 2 =BM 2,∴∠MAB = 90°, ∴直线l 是⊙M 的切线;(3)要使△PEF 的面积最小,即要使PF 线段最短.思路一:设F (m ,m 21-+4),P (m ,92-(m +1)2+2) ∴PF =m 21-+4-[92-(m +1)2+2]=327181922+⎪⎭⎫ ⎝⎛-m ,∴当m =81时,PF 最小=3271,∵PF// y 轴,∴∠OAB =∠EFP ,又∵∠AOB =∠FEP ,∴△AOB ∽△FEP ,∴EF :EP :FP =1:2:5, ∴EF =53271,EP =51671,∴S △PEF =21EF ⋅EP=21⨯53271⨯51671=51205041.∴存在点P ,使△PEF 的面积最小,此时P ⎪⎭⎫ ⎝⎛3255,81,S △PEF =51205041. 思路二:设直线y =x 21-+b 与y =92-(x +1)2+2相切 ∴⎪⎪⎩⎪⎪⎨⎧++-=+-=2)1(92212x y b x y 即x 21-+b =92-(x +1)2+2, 化简得4x 2+x -32+18b =0,令△=0,可得b=3257,此时PF 最小=4-b=4-3257=3271, ∵PF// y 轴,∴∠OAB =∠EFP ,又∵∠AOB =∠FEP ,∴△AOB ∽△FEP ,∴EF :EP :FP =1:2:5, ∴EF =53271,EP =51671,∴S △PEF =21EF ⋅EP=21⨯53271⨯51671=51205041. ∴存在点P ,使△PEF 的面积最小,此时P ⎪⎭⎫ ⎝⎛3255,81,S △PEF =51205041.。
2017年贵州省黔西南州中考数学试卷及解析
2017年贵州省黔西南州中考数学试卷、选择题(每小题4分,共40 分)(4分)-2017的相反数是(A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较4. (4分)下列四个几何体中,主视图与左视图相同的几何体有()7. (4分)四边形ABCD中,AB=CD, AB// CD,则下列结论中错误的是()A.∠ A= ∠ CB. AD/ BCA. -2017B. 2017 C•—ID-(4分)在下列四个交通标志图中,是轴对称图形的是(A.B A(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S 2甲=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035 ,则(A. 1个B. 2个C. 3个D. 4个5. (4分)下列各式正确的是( )2 2 1 -3 /+1A. (a—b) =-( b - a)B. —■- =XC. =a+1V J a+1D. 6 2 3X ÷ X=X6. (4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A.1 1B- CD.C.D.①正方休②球④国柱C.∠ A= ∠ BD.对角线互相平分& (4分)如图,在Θ O 中,半径 OC 与弦AB 垂直于点 D ,且AB=8, 0C=5,贝U CD 的长是A .- 4 B. 4 C.- 2 D . 2二、填空题(每小题 3分,共30分)I. 211. (3 分)计算:(-=)= _________12. (3分)人工智能AIPhaGo ,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声 名显赫,它具有自我对弈的学习能力, 决战前已做了两千万局的训练(等同于一个近千年的A . 3 B. 2.5 C. 2 D . 19. (4分)如图,用相同的小正方形按照某种规律进行摆放,则第 数是()8个图形中小正方形的个□ □□□□ □ □□ □□□□ □□□ □ □□□□ □ □□□□ π □π□□ π □□□□□□□□□□□□ □□□□ □□□□ □ □□□□ □□□A . 71B. 78C. 85 D . 8910. (4分)如图,点A 是反比例函数 y= ( x > 0)上的一个动点,连接 OA ,过点0作OB丄OA ,并且使OB=2OA,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比k 的值为(20.( 3分)如图,图中二次函数解析式为 y=aχ2+bx+(a ≠ 0)则下列命题中正确的有 序号)①abc >0:②b 2v 4ac ;③4a -2b+c >0;④ 2a+b >c .、(本大题12分)(2)解方程:「+ [“训练量)此处两千万”用科学记数法表示为 (精确到百万位)•13. (3 分)14. (3 分) ∖+2≥lA , . _ HM的解集是l Ξχ-l≤8-χ若一组数据3, 4, x , 6, 集疋 8的平均数为5 ,则这组数据的众数是2已知关于X 的方程X +2x - (m - 2) =O 没有实数根,则m 的取值范围是∠ BAC=65°,贝U ∠ BCD=度.18. (3分)函数y=pp 的自变量X 的取值范围是(3分)已知一个等腰三角形的两边长分别为 3和6,则该等腰三角形的周长是(3分)如图,将边长为6cm 的正方形纸片 ABCD 折叠,使点D 落在AB 边中点E 处,点cm .(填21. (12 分)(1)计算: L +∣3- _;|-2sin60 + (2017 - ∏) 0+ (寺)(3分)15. 17.AC ⊥ BC,19.FH,则线段AF 的长是四、(本大题12分)22. (12分)如图,已知AB为Θ O直径,D是、’的中点,DE⊥ AC交AC的延长线于E,ΘO 的切线交AD的延长线于F.(1)求证:直线DE与Θ O相切;(2)已知DG⊥ AB且DE=4,Θ O的半径为5 ,求tan ∠ F的值.五、(本大题14分)23. (14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B C、D粽各一个,煮熟后,小韦吃了两个•用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.六、(本大题14分)24. (14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y (米)与时间X (分钟)的对应关系如图所示,请结合图象解答下列问题:(1) 起点A与终点B之间相距多远?(2) 哪支龙舟队先出发?哪支龙舟队先到达终点?(3) 分别求甲、乙两支龙舟队的y与X函数关系式;200 米?七、(本大题12分)25. (12分)把(Sin α 2记作Sin2a,根据图1和图2完成下列各题.2 2 2 2 2 2(1)____________________ SinA1+cosA1= _______ , SinA2+cosA2= _______ , SinA3+cosA3= ________________________ ;(2)观察上述等式猜想:在__________________________ Rt A ABC中,∠ C=90,总有Sin2A+COS2A=(3)如图2,在Rt A ABC中证明(2)题中的猜想:八、(本大题16分)26. (16分)如图1 ,抛物线y=aχ2+bx+丄,经过A (1, 0)、B (7, 0)两点,交y轴于D点,4以AB为边在X轴上方作等边△ ABC.(1)求抛物线的解析式;(2)在X轴上方的抛物线上是否存在点坐标;若不存在,请说明理由;(3)如图2, E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.①若CE=BF试猜想AF与BE的数量关系及∠ APB的度数,并说明理由;(4)已知在△ ABC中,∠ A+∠ B=90M,是SAABM J SAAB C?若存在,请求出点,且SinA= ,求cosA.2017 年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题 4 分,共40分)1.(4 分)【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:-2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2 .(4 分)【考点】P3:轴对称图形.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3. (4 分)【考点】W7 :方差;W1 :算术平均数.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大, 稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:•••甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S2=0.006 ,乙同学1分钟跳绳成绩的方差S乙2=0.035,甲∙∙∙ S 甲2V S乙2=0.035 ,•••甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4. (4 分)【考点】U1:简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形•分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5. (4 分)【考点】4C:完全平方公式;48:同底数幕的除法;66:约分;6F:负整数指数幕.【分析】根据完全平分公式、负整数指数幕、同底数幕的除法,即可解答.【解答】解:A、( a- b) 2= ( b - a) 2,故错误;B、正确;2+ιaC 不能再化简,故错误;a+1D、χ6÷ x2=χ4,故错误;故选:B.【点评】本题考查了完全平分公式、负整数指数幕、同底数幕的除法,解决本题的关键是熟记完全平分公式、负整数指数幕、同底数幕的除法的法则.6. (4 分)【考点】X4:概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:I 20个球中红球有2个,任意摸出一个球是红球的概率是一一=,Ξ0 IO故选:B.【点评】本题考查的是随机事件概率的求法. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P ( A) =E.7. (4 分)【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【分析】由AB=CD, AB// CD,推出四边形ABCD是平行四边形,推出∠ DAB=∠ DCB AD//BG OA=OC, OB=OD,由此即可判断.【解答】解:如图,I AB=CD, AB// CD,•••四边形ABCD是平行四边形,∙∙∙∠DAB=∠ DCB AD // BC, OA=OG OB=OD,•选项A、B D正确,故选CA________ RD----------------- X t【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.& (4 分)【考点】M2 :垂径定理.【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=XV OA=OC=5,• 0D=5- x,V OC⊥AB,•由垂径定理可知:AB=4,由勾股定理可知:52=42+ (5- X)2• x=2,• CD=2,故选(C)第11页(共23页)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理, 本题属于基础题型. 9. (4 分)【考点】38:规律型:图形的变化类.【分析】观察图形可知,第1个图形共有小正方形的个数为 2× 2+1;第2个图形共有小正 方形的个数为3× 3+2;第3个图形共有小正方形的个数为 4× 4+3;…;则第n 个图形共有 小正方形的个数为(n +1) 2+n ,进而得出答案.【解答】 解:第1个图形共有小正方形的个数为 2× 2+1;第2个图形共有小正方形的个数为 3× 3+2; 第3个图形共有小正方形的个数为4× 4+3;则第n 个图形共有小正方形的个数为(n +1) 2+n , 所以第8个图形共有小正方形的个数为: 9 × 9+8=89.故选D .【点评】本题考查了规律型:图形的变化类, 解决这类问题首先要从简单图形入手,抓住随 着 编号”或序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的 变化,找出数量上的变化规律,从而推出一般性的结论. 10. (4 分)【考点】G6:反比例函数图象上点的坐标特征.【分析】 过A 作AC ⊥X 轴于点C ,过B 作BD ⊥ X 轴于点D ,可设A (x ,丄),由条件证得△ AOC^△ OBD,从而可表示出 B 点坐标,则可求得得到关于 k 的方程,可求得k 的值. 【解答】解:T 点A 是反比例函数y= ■ (x >0)上的一个动点,•••可设 A (x,二),X∙°∙ OC=x, AC= ■,∙∙9B⊥ OA,∙∠BOD+∠ AOC=∠ AOC+∠ OAC=90 ,∙∠BOD=∠ OAC,且∠ BDO=∠ ACQ•△ AOC^△ OBD,∙∙9B=20A,•二厂=〒 = '「「…=苛=讪_二,∙∙∙0D=2AC=Z, BD=2OC=2χK•B(- —, 2x),K•••点B反比例函数y」图象上,X9∙k= ?2x=— 4 ,【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B点坐标是解题的关键.二、填空题(每小题3分,共30分)11. (3 分)【考点】1E:有理数的乘方.【分析】本题考查有理数的乘方运算,(-丄)2表示2个(-丄)的乘积.22【解答】解:(-)2='.2 4故答案为:■.4【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行. 负数的奇数次幕是负第11页(共23页)数,负数的偶数次幕是正数.12. (3 分)【考点】1L:科学记数法与有效数字. 菁优网版权所有【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:两千万”精确到百万位,用科学记数法表示为 2.0 × 107,故答案为:2.0 × 107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,应当看末位数字实际在哪一位是解题的关键.13. (3分)不等式组/+2>f 的解集是—1vχ≤3 .Ξχ-l≤8-χL【考点】CB:解一元一次不等式组.菁优网版权所有【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:严2乍①C [2χ-l≤8-χ ②解不等式①得χ>- 1,解不等式②得x≤3.故不等式组的解集为-1V x≤3.故答案为:-1 V x≤3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14. (3 分)【考点】W5 :众数;W1 :算术平均数.【分析】先根据平均数的计算方法求出X,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5 × 5,解得x=4,则这组数据为3, 4, 4, 6, 8的平均数为5,所以这组数据的众数是4.故答案为4.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数. 也考查了平均数的定义. 15.(3 分)第14页(共23页)【考点】AA:根的判别式.【分析】由方程没有实数根结合根的判别式,即可得出△=4m- 4V0,解之即可得出m的取值范围.【解答】解:τ关于X的方程X2+2X-( m - 2)=0没有实数根,/•△=22+4 (m - 2)=4m - 4 V 0,解得:m V 1.故答案为:m V 1.【点评】本题考查了根的判别式,牢记当△< 0时,方程无实数根”是解题的关键.16.(3 分)【考点】JA:平行线的性质;K7:三角形内角和定理.【分析】要求∠ BCD的度数,只需根据平行线的性质求得∠B的度数•显然根据三角形的内角和定理就可求解.【解答】解:I在Rt A ABC中,∠ BAC=65 ,∙∙∙∠ABC=90 -∠ BAC=90 - 65°25°∙∙∙ AB // CD,∠ BCD=∠ ABC=25 •【点评】本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.17.(3 分)【考点】E4:函数自变量的取值范围. 菁优网版权所有【分析】根据被开方数大于等于0 列式计算即可得解.【解答】解:根据题意得, x- 1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.(3 分)【考点】KH:等腰三角形的性质;K6:三角形三边关系. 菁优网版权所有【分析】分腰为3 和腰为 6 两种情况考虑,先根据三角形的三边关系确定三角形是否存在, 再根据三角形的周长公式求值即可.∙3、3、6 不能组成三角形;第15 页(共23 页)【解答】解:当腰为 3 时, 3+3=6,第16页(共23页)∙ 3、3、6 不能组成三角形;第 17 页(共 23 页)当腰为6时,3+6=9>6, ••• 3、6、6能组成三角形, 该三角形的周长为=3+6+6=15 . 故答案为:15.【点评】本题考查了等腰三角形的性质以及三角形三边关系, 的三条边长为解题的关键. 19. (3 分)【考点】PB:翻折变换(折叠问题);LE 正方形的性质.【分析】 设EF=FD=X 在RT A AEF 中利用勾股定理即可解决问题. 【解答】解:如图:•••四边形ABCD 是正方形, • AB=BC=CD=AD=6∙∙∙ AE=EB=3 EF=FD 设 EF=DF=X 贝U AF=6- X , 在 RT A AEF 中,I AE 2+AF 2=E F 2, • 32+ (6 - x ) 2=χ2, • ∙ X= ,4∙ AF=6- =Cm ,4 4q 故答案为 .4【点评】本题考查翻折变换、正方形的性质、 勾股定理等知识,解题的关键是设未知数利用 勾股定理列出方程解决问题,属于中考常考题型. 20. (3 分)【考点】H4:二次函数图象与系数的关系; 01:命题与定理.【分析】①由抛物线的开口向上、对称轴在 y 轴右侧、抛物线与y 轴交于y 轴负半轴,即可由三角形三边关系确定三角形得出a>0、b v 0、C V 0,进而可得出abc>0,①正确;②由抛物线与X轴有两个不同的交点,可得出厶=b2-4ac> 0, b2>4ac,②错误;③由当X= - 2时y>0,可得出4a-2b+c> 0, ③正确;④由抛物线对称轴的大致范围,可得出- 2a V b V0,结合a>0、C V 0可得出2a+b> 0 > c,④正确.综上即可得出结论.【解答】解:①•••抛物线开口向上,抛物线的对称轴在y轴右侧,抛物线与y轴交于y轴负半轴,∙∙∙ a > 0,- > 0, C V 0,2a∙b V 0, abc>0,①正确;②•••抛物线与X轴有两个不同交点,•••△ =b2- 4ac>0, b2>4ac,②错误;③当X= - 2时,y=4a- 2b+c> 0 ,③正确;④∙∙∙ 0V- —V 1,2a∙- 2a V b V 0,• 2a+b> 0> c,④正确.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.三、(本大题12分)21. (12 分)【考点】B3:解分式方程;2C:实数的运算;6E:零指数幕;6F:负整数指数幕;T5:特殊角的三角函数值.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)JΠ+∣3-√31 - 2sin60 + (2017 - ∏)0+ (丄)-22=2 >3- ■- 2 X^-L+1+ .=2 _;+3 - 「;- _;+1+4=8;第18页(共23页)求出所求的概率.第仃页(共23页)整理得 '「=1x -3 x -32-¾-l _ κ-31 — X=X — 3解得x=2 经检验:x=2是分式方程的解.【点评】本题主要考查了实数的运算以及解分式方程,解题时注意:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方•解分式方程时,一定要 检验.四、(本大题12分) 22. (12 分)【考点】ME :切线的判定与性质; M2 :垂径定理;T7:解直角三角形.【分析】(1 )连接BC OD ,由D 是弧BC 的中点,可知:0D ⊥ BC;由OB 为Θ O 的直径, 可得:BC ⊥ AC,根据DE ⊥ AC ,可证0D ⊥ DE,从而可证 DE 是Θ O 的切线; (2)直接利用勾股定理得出 GO 的长,再利用锐角三角函数关系得出 tan ∠ F 的值.【解答】(1)证明:连接OD , BC, ∙∙∙D 是弧BC 的中点, ∙∙∙0D 垂直平分BC, ∙∙∙ AB 为Θ O 的直径, ∙ AC ⊥ BC, ∙∙∙0D // AE. ∙∙∙DE ⊥ AC, ∙∙∙0D 丄 DE , ∙∙∙0D 为Θ O 的半径, ∙ DE 是Θ 0的切线;(2)解:I D 是弧BC 的中点, •••「’= ∣., ∙∙∙∠ EAD=∠BAD,∙∙∙DE⊥ AC, DG⊥ AB 且DE=4,• DE=DG=4,∙∙∙D0=5,• GO=3,• AG=8,• tan ∠ ADG= =2,4∙∙∙ BF是Θ O的切线,∙∠ABF=90 ,• DG// BF,• tan ∠ F=tan ∠ ADG=2.【点评】此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG, DG的长是解题关键.五、(本大题14分)23. (14 分)【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1 )根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A、B、D三种粽子的人数可得爱吃C的人数,然后再根据人数计算出百分比即可;(3)求出D占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C粽的情况数,即可第20页(共23页)【解答】解:(1)根据题意得:180+60+120+240=600 (人);(2)如图所示;(3)根据题意得:40%× 8000=3200 (人);(4)如图,Λ Δ Δ ΛBCDACDABDABC得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,R 1则P( C 粽)==,12 4答:他第二个吃到的恰好是C粽的概率是丄【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.六、(本大题14分)24. (14 分)【考点】FH: —次函数的应用.【分析】(1 )根据函数图象即可得出起点A与终点B之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与X函数关系式为y=kx,把(25, 3000)代入,可得甲龙舟队的y与X函数关系式;设乙龙舟队的y与X函数关系式为y=ax+b ,把(5, 0), (20, 3000)代入,可得乙龙舟队的y与X函数关系式;开始求出所求的概率.(3)由■ 1;(4)分四种情况进行讨论,根据两支龙舟队相距 200米分别列方程求解即可.【解答】 解:(1)由图可得,起点 A 与终点B 之间相距3000米; (2) 由图可得,甲龙舟队先出发,乙龙舟队先到达终点; (3) 设甲龙舟队的y 与X 函数关系式为y=kx , 把(25, 3000)代入,可得 3000=25k , 解得k=120,甲龙舟队的y 与X 函数关系式为y=120x (0≤x ≤ 25), 设乙龙舟队的y 与X 函数关系式为y=ax+b , 把(5, 0), (20, 3000)代入,可得∕0=5a+b∖3QOO=2θa+b ,解得卜二2QQ ,t b=-1000•乙龙舟队的y 与X 函数关系式为y=200x - 1000 ( 5≤ x ≤ 20); (4) 令 120x=200x - 1000,可得 x=12.5, 即当x=12.5时,两龙舟队相遇,当X V 5时,令120x=200 ,则X=—(符合题意);当 5≤ X V 12.5 时,令 120x -( 200x - 1000) =200,则 x=10 (符合题意); 当 12.5 V x ≤ 20 时,令 200x - 1000 - 120x=200,则 x=15 (符合题意); 当 20V X ≤ 25 时,令 3000 - 120x=200 ,则 X=(符合题意);3综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距 200米33【点评】本题主要考查了一次函数的应用, 解决问题的关键是掌握待定系数法求函数解析式 的方法,解题时注意数形结合思想以及分类思想的运用. 七、(本大题12分) 25.(12 分)【考点】T7:解直角三角形.【分析】(1 )根据正弦函数和余弦函数的定义分别计算可得; (2)由(1)中的结论可猜想 Sin 2A+cos 2A=1; SinA=—、 CoSA=亘且 a 2+b 2=c 2 知 Sin 2A+cos 2A=(亠)2+ C ) C C C C(4)根据直角三角形中 Sin 2A+cos 2A=1知(丄—)2+cosA 2=i ,据此可得答案.13 【解答】解:(1) Sin 2A ι+cos 2A ι = (T 2+(; 2…=12 24 4'sin —J 2+(:) 2= +=1,故答案为:1、1、1;(2)观察上述等式猜想:在 Rt A ABC 中,∠ C=90,总有Sin 2A+cos 2A=1, 故答案为:1;(3) 在图 2 中,T SinA=「, cosA=',且 a 2+b 2=c 2,CCk 2 κ2 2,u Ξ 2则 Sin A+cos A= ( ) + ( ) =+ ===1,r r 2 2 2 2 C CCCCCryr ∖即 Sin A+cos A=1;(4) 在厶 ABC 中,∠ A+∠ B=90°, ∙∙∙∠ C=90,2 OT Sin A+cos A=1, ∙∙∙( J) 2+cosA 2=1解得:cosA= 或 cosA=- --------- (舍),13 13∙ cosA= .13【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键. 八、(本大题16分) 26. (16 分)【考点】HF :二次函数综合题.【分析】(1)将点A (1, 0), B (7, 0)代入抛物线的解析式得到关于 a 、b 方程组,解关于a 、b 的方程组求得a 、b 的值即可;(2)过点C 作CK ⊥ X 轴,垂足为K .依据等边三角形的性质可求得CK=3乙,然后依据三角2 2Sin A 2+cos A 2=2…戶,形的面积公式结合已知条件可求得& ABM的面积,设M ( a,丄a2-2a+工),然后依据三角形44的面积公式可得到关于a的方程,从而可得到点M的坐标;(3)①首先证明△ BEC^△ AFB,依据全等三角形的性质可知:AF=BE ∠ CBE=/ BAF,然后通过等量代换可得到∠ FA申∠ ABP=∠ ABP+∠ CBE=Z ABC=60 ,最后依据三角形的内角和定理可求得∠ APB;②当AE≠ BF时,由①可知点P在以AB为直径的圆上,过点M作ME⊥ AB,垂足为E先求得Θ M的半径,然后依据弧长公式可求得点P运动的路径;当AE=BF时,点P在AB的垂直平分线上时,过点C作CK⊥ AB,则点P运动的路径=CK的长.【解答】解:(1)将点A (1, 0), B ( 7, 0)代入抛物线的解析式得:解得:a= - , b=- 2.4抛物线的解析式为y= x2- 2x+ .44(2)存在点M,使得&ABM=「一'ABC-理由:如图所示:过点C作CK⊥X轴,垂足为K.•••△ ABC为等边三角形,∙∙∙ AB=BC=AC=6 ∠ ACB=60 .∙∙∙CK⊥ AB,∙KA=BK=3,∠ ACK=30 .∙CK=3 二.∙S ABC^—AB?CKF- × 6 × 3=9 ;∙∙∙ S SBM= ' × 9 7=12.9设M (a,—a2- 2a+ ).49a+7b+γ=0a+b+-^-=O4 4•••_lAB?|y| =12,即厶× 6×(-L a2-2a+丄)=12,2 2 4 4解得:a1=9, a2= - 1.•••点M的坐标为(9, 4)或(-1, 4).(3)①结论:AF=BE ∠ APB=120 .•••△ ABC为等边三角形,• BC=AB,∠ C=∠ ABF.f BC=AB•••在厶BEC和^ AFB 中* ZC=ZABF,CE=BFI•••△ BEC^△ AFB.• AF=BE ∠ CBE=Z BAF.∙∠FAB F∠ ABP=∠ ABP+∠ CBE=Z ABC=60 .∙∠APB=180 - 60°=120o.②当AE≠ BF时,由①可知点P在以M为圆心,在以AB为弦的圆上,过点M作MK⊥ AB, 垂足为k.图2 Vτ∠APB=120 ,∙∠N=60 .∙∠AMB=120 .又∙∙∙MK丄AB,垂足为K,∙∙∙ AK=BK=3,∠ AMK=60 . ∙∙∙ AK=2 二.∙点P 运动的路径=】:.「=■=•〔 ^^ .180 3P 在AB 的垂直平分线上时,如图所示:过点 C 作CK ⊥ AB ,则点P 运动的X∙∙∙ AC=6,∠ CAK=60 , ∙ KC=3 二.∙点P 运动的路径为3 ";.综上所述,点P 运动的路径为3「或'— ^l3【点评】本题主要考查的是二次函数的综合应用, 解答本题主要应用了待定系数法求二次函 数的解析式、等边三角形的性质、全等三角形的性质和判定、扇形的弧长公式,判断出点 P运动的轨迹生成的图形的形状是解题的关键.当AE=BF 时,点 路径=CK 的长.。
2017贵州黔西南州中考数学解析
2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(2017贵州黔西南州,1,4)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣12017D.12017【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2017贵州黔西南州,2,4)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3.(2017贵州黔西南州,3,4)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4.(2017贵州黔西南州,4,4)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(2017贵州黔西南州,5,4)下列各式正确的是()A .(a ﹣b )2=﹣(b ﹣a )2B .1x =x ﹣3C .a 2+1a+1=a +1 D .x 6÷x 2=x 3【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答.【解答】解:A 、(a ﹣b )2=(b ﹣a )2,故错误; B 、正确;C 、a 2+1a+1不能再化简,故错误;D 、x 6÷x 2=x 4,故错误;故选:B .【点评】本题考查了完全平分公式、负整数指数幂、同底数幂的除法,解决本题的关键是熟记完全平分公式、负整数指数幂、同底数幂的除法的法则.6.(2017贵州黔西南州,6,4)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是( )A .23B .110 C .15 D .14【分析】让红球的个数除以球的总数即为摸到红球的概率. 【解答】解:∵20个球中红球有2个, ∴任意摸出一个球是红球的概率是220=110, 故选:B .【点评】本题考查的是随机事件概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.7.(2017贵州黔西南州,7,4)四边形ABCD 中,AB=CD ,AB ∥CD ,则下列结论中错误的是( ) A .∠A=∠C B .AD ∥BCC .∠A=∠BD .对角线互相平分【分析】由AB=CD ,AB ∥CD ,推出四边形ABCD 是平行四边形,推出∠DAB=∠DCB ,AD ∥BC ,OA=OC ,OB=OD ,由此即可判断. 【解答】解:如图,∵AB=CD ,AB ∥CD ,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2017贵州黔西南州,8,4)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.(2017贵州黔西南州,9,4)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.10.(2017贵州黔西南州,10,4)如图,点A是反比例函数y=1x(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=kx图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,1x),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=1x(x>0)上的一个动点,∴可设A(x,1x ),∴OC=x,AC=1 x ,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴ACOD =OCBD=AOBO=12,∴OD=2AC=2x,BD=2OC=2x,∴B(﹣2x,2x),∵点B反比例函数y=kx图象上,∴k=﹣2x•2x=﹣4,故选A .【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B 点坐标是解题的关键.二、填空题(每小题3分,共30分)11.(2017贵州黔西南州,11,3)计算:(﹣12)2= 14 .【分析】本题考查有理数的乘方运算,(﹣12)2表示2个(﹣12)的乘积.【解答】解:(﹣12)2=14.故答案为:14.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.12.(2017贵州黔西南州,12,3)人工智能AlphaGo ,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 2.0×107 (精确到百万位).【分析】近似数精确到哪一位,应当看末位数字实际在哪一位. 【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107, 故答案为:2.0×107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,应当看末位数字实际在哪一位是解题的关键.13.(2017贵州黔西南州,13,3)不等式组{x+2>12x−1≤8−x的解集是﹣1<x ≤3.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:{x+2>1①2x−1≤8−x②,解不等式①得x>﹣1,解不等式②得x≤3.故不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(2017贵州黔西南州,14,3)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是4.【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5×5,解得x=4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为4.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数的定义.15.(2017贵州黔西南州,15,3)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是m<1.【分析】由方程没有实数根结合根的判别式,即可得出△=4m﹣4<0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0没有实数根,∴△=22+4(m﹣2)=4m﹣4<0,解得:m<1.故答案为:m<1.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.16.(2017贵州黔西南州,16,3)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=25度.【分析】要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.【解答】解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.【点评】本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.17.(2017贵州黔西南州,17,3)函数y=√x−1的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.(2017贵州黔西南州,18,3)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15.【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.【点评】本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.19.(2017贵州黔西南州,19,3)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是94cm.【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.【解答】解:如图:∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD,设EF=DF=x.则AF=6﹣x,在RT△AEF中,∵AE2+AF2=EF2,∴32+(6﹣x )2=x 2,∴x=154, ∴AF=6﹣154=94cm ,故答案为94.【点评】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.20.(2017贵州黔西南州,20,3)如图,图中二次函数解析式为y=ax 2+bx +c (a ≠0)则下列命题中正确的有 ①③④ (填序号) ①abc >0;②b 2<4ac ;③4a ﹣2b +c >0;④2a +b >c .【分析】①由抛物线的开口向上、对称轴在y 轴右侧、抛物线与y 轴交于y 轴负半轴,即可得出a >0、b <0、c <0,进而可得出abc >0,①正确;②由抛物线与x 轴有两个不同的交点,可得出△=b 2﹣4ac >0,b 2>4ac ,②错误;③由当x=﹣2时y >0,可得出4a ﹣2b +c >0,③正确;④由抛物线对称轴的大致范围,可得出﹣2a <b <0,结合a >0、c <0可得出2a +b >0>c ,④正确.综上即可得出结论.【解答】解:①∵抛物线开口向上,抛物线的对称轴在y 轴右侧,抛物线与y 轴交于y 轴负半轴, ∴a >0,﹣b 2a>0,c <0,∴b <0,abc >0,①正确;②∵抛物线与x 轴有两个不同交点, ∴△=b 2﹣4ac >0,b 2>4ac ,②错误; ③当x=﹣2时,y=4a ﹣2b +c >0,③正确;④∵0<﹣b 2a<1,∴﹣2a <b <0,∴2a +b >0>c ,④正确. 故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.三、(本大题12分)21.(2017贵州黔西南州,21,12)(1)计算:√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2(2)解方程:2−x x−3+13−x=1.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2=2√3+3﹣√3﹣2×√32+1+1(12)2=2√3+3﹣√3﹣√3+1+4 =8;(2)2−xx−3+13−x =1 整理得2−x x−3﹣1x−3=12−x −1=11﹣x=x ﹣3 解得x=2经检验:x=2是分式方程的解.【点评】本题主要考查了实数的运算以及解分式方程,解题时注意:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.解分式方程时,一定要检验.四、(本大题12分)22.(2017贵州黔西南州,22,12分)如图,已知AB为⊙O直径,D是BĈ的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【分析】(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O 的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.【解答】(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵D 是弧BC 的中点,∴DĈ=DB ̂, ∴∠EAD=∠BAD ,∵DE ⊥AC ,DG ⊥AB 且DE=4, ∴DE=DG=4, ∵DO=5, ∴GO=3, ∴AG=8,∴tan ∠ADG=84=2,∵BF 是⊙O 的切线, ∴∠ABF=90°, ∴DG ∥BF ,∴tan ∠F=tan ∠ADG=2.【点评】此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG ,DG 的长是解题关键.五、(本大题14分)23.(2017贵州黔西南州,23,14)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【分析】(1)根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A、B、D三种粽子的人数可得爱吃C的人数,然后再根据人数计算出百分比即可;(3)求出D占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C粽的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:180+60+120+240=600(人);(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C粽的情况有3种,则P(C粽)=312=14,答:他第二个吃到的恰好是C 粽的概率是14.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.六、(本大题14分)24.(2017贵州黔西南州,24,14)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y (米)与时间x (分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点? (3)分别求甲、乙两支龙舟队的y 与x 函数关系式; (4)甲龙舟队出发多长时间时两支龙舟队相距200米?【分析】(1)根据函数图象即可得出起点A 与终点B 之间的距离; (2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y 与x 函数关系式为y=kx ,把(25,3000)代入,可得甲龙舟队的y 与x 函数关系式;设乙龙舟队的y 与x 函数关系式为y=ax +b ,把(5,0),(20,3000)代入,可得乙龙舟队的y 与x 函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可. 【解答】解:(1)由图可得,起点A 与终点B 之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点; (3)设甲龙舟队的y 与x 函数关系式为y=kx , 把(25,3000)代入,可得3000=25k , 解得k=120,∴甲龙舟队的y 与x 函数关系式为y=120x (0≤x ≤25), 设乙龙舟队的y 与x 函数关系式为y=ax +b , 把(5,0),(20,3000)代入,可得{0=5a +b3000=20a +b,解得{a =200b =−1000,∴乙龙舟队的y 与x 函数关系式为y=200x ﹣1000(5≤x ≤20); (4)令120x=200x ﹣1000,可得x=12.5, 即当x=12.5时,两龙舟队相遇,当x <5时,令120x=200,则x=53(符合题意);当5≤x <12.5时,令120x ﹣(200x ﹣1000)=200,则x=10(符合题意); 当12.5<x ≤20时,令200x ﹣1000﹣120x=200,则x=15(符合题意);当20<x ≤25时,令3000﹣120x=200,则x=703(符合题意);综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米【点评】本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.七、(本大题12分)25.(2017贵州黔西南州,25,12)把(sinα)2记作sin 2α,根据图1和图2完成下列各题.(1)sin 2A 1+cos 2A 1= 1 ,sin 2A 2+cos 2A 2= 1 ,sin 2A 3+cos 2A 3= 1 ; (2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A= 1 ; (3)如图2,在Rt △ABC 中证明(2)题中的猜想: (4)已知在△ABC 中,∠A +∠B=90°,且sinA=1213,求cosA .【分析】(1)根据正弦函数和余弦函数的定义分别计算可得; (2)由(1)中的结论可猜想sin 2A +cos 2A=1;(3)由sinA=a c 、cosA=b c 且a 2+b 2=c 2知sin 2A +cos 2A=(a c )2+(b c )2=a2+b 2c =c 2c=1;(4)根据直角三角形中sin 2A +cos 2A=1知(1213)2+cosA 2=1,据此可得答案.【解答】解:(1)sin 2A 1+cos 2A 1=(12)2+(√32)2=14+34=1, sin 2A 2+cos 2A 2=(√2)2+(√2)2=12+12=1,sin 2A 3+cos 2A 3=(35)2+(45)2=925+1625=1, 故答案为:1、1、1;(2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A=1, 故答案为:1;(3)在图2中,∵sinA=a c ,cosA=bc,且a 2+b 2=c 2,则sin 2A +cos 2A=(a c )2+(b c )2=a2c 2+b 2c 2=a 2+b 2c 2=c 2c2=1,即sin 2A +cos 2A=1;(4)在△ABC 中,∠A +∠B=90°, ∴∠C=90°, ∵sin 2A +cos 2A=1,∴(1213)2+cosA 2=1,解得:cosA=513或cosA=﹣513(舍),∴cosA=513. 【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.八、(本大题16分)26.(2017贵州黔西南州,26,16)如图1,抛物线y=ax 2+bx +74,经过A (1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC . (1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M ,是S △ABM =4√39S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P .①若CE=BF ,试猜想AF 与BE 的数量关系及∠APB 的度数,并说明理由; ②若AF=BE ,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).【分析】(1)将点A (1,0),B (7,0)代入抛物线的解析式得到关于a 、b 方程组,解关于a 、b 的方程组求得a 、b 的值即可;(2)过点C 作CK ⊥x 轴,垂足为K .依据等边三角形的性质可求得CK=3√3,然后依据三角形的面积公式结合已知条件可求得S △ABM 的面积,设M (a ,14a 2﹣2a +74),然后依据三角形的面积公式可得到关于a 的方程,从而可得到点M 的坐标; (3)①首先证明△BEC ≌△AFB ,依据全等三角形的性质可知:AF=BE ,∠CBE=∠BAF ,然后通过等量代换可得到∠FAB +∠ABP=∠ABP +∠CBE=∠ABC=60°,最后依据三角形的内角和定理可求得∠APB ;②当AE ≠BF 时,由①可知点P 在以AB 为直径的圆上,过点M 作ME ⊥AB ,垂足为E .先求得⊙M 的半径,然后依据弧长公式可求得点P 运动的路径;当AE=BF 时,点P 在AB 的垂直平分线上时,过点C 作CK ⊥AB ,则点P 运动的路径=CK 的长.【解答】解:(1)将点A (1,0),B (7,0)代入抛物线的解析式得:{49a +7b +74=0a +b +74=0,解得:a=14,b=﹣2.∴抛物线的解析式为y=14x 2﹣2x +74.(2)存在点M ,使得S △ABM =4√39S △ABC .理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形, ∴AB=BC=AC=6,∠ACB=60°. ∵CK ⊥AB ,∴KA=BK=3,∠ACK=30°. ∴CK=3√3.∴S △ABC =12AB•CK=12×6×3=9√3.∴S △ABM =4√39×9√3=12.设M (a ,14a 2﹣2a +74).∴12AB•|y |=12,即12×6×(14a 2﹣2a +74)=12, 解得:a 1=9,a 2=﹣1.∴点M 的坐标为(9,4)或(﹣1,4).(3)①结论:AF=BE ,∠APB=120°.∵△ABC 为等边三角形,∴BC=AB ,∠C=∠ABF .∵在△BEC 和△AFB 中{BC =AB ∠C =∠ABF CE =BF,∴△BEC ≌△AFB .∴AF=BE ,∠CBE=∠BAF .∴∠FAB +∠ABP=∠ABP +∠CBE=∠ABC=60°.∴∠APB=180°﹣60°=120°.②当AE ≠BF 时,由①可知点P 在以M 为圆心,在以AB 为弦的圆上,过点M 作MK ⊥AB ,垂足为k .∵∠APB=120°,∴∠N=60°.∴∠AMB=120°.又∵MK ⊥AB ,垂足为K ,∴AK=BK=3,∠AMK=60°.∴AK=2√3.∴点P 运动的路径=120⋅π×2√3180=4√3π3. 当AE=BF 时,点P 在AB 的垂直平分线上时,如图所示:过点C 作CK ⊥AB ,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=3√3.∴点P运动的路径为3√3.综上所述,点P运动的路径为3√3或4√3π3.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等边三角形的性质、全等三角形的性质和判定、扇形的弧长公式,判断出点P运动的轨迹生成的图形的形状是解题的关键.。
(完整版)贵阳市2017年中考数学试卷及解析
2017年贵州省贵阳市中考数学试卷及解析一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1B.1与﹣2C.3与﹣2D.﹣1与﹣2【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.2.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【考点】JA:平行线的性质.【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.3.生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.5.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.6.若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2B.4C.6D.8【考点】FF:两条直线相交或平行问题.【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.7.贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量(m3)家庭数(个)0.320.420.540.610.71那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5B.0.5和0.5C.0.47和4D.0.5和4【考点】W4:中位数;W2:加权平均数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接△CE,若CED的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴ABCD的周长=2×6=12;故选:B.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;>S S S②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、2、3,若S1=3,3=9,则S2的值为()A.12B.18C.24D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE=【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,=2,于是得到结论.∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE=∵BC=2AD,=2,∴BC=2BE =4∴S2=(4故选D.,)2=48,二、填空题(每小题4分,共20分)11.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2.【考点】C4:在数轴上表示不等式的解集.【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x≤2.故答案为:x≤2.12.方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【考点】A8:解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为3.【考点】MM:正多边形和圆.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×故答案为:3.=3;14.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有3个.【考点】X8:利用频率估计概率.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.15.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE=∵CE==,A′E=1,.∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x第一步=2xy+4x+1第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【考点】4A:单项式乘多项式;4C:完全平方公式.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.17.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=14,b=125;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;×100%≈95.6%,(3)首先求得2016年贵阳市空气质量优良的优良率为与今年前5个月贵阳市空气质量优良率比较即可.×3.83%=14,b=﹣14﹣225﹣1﹣1=125;【解答】解:(1)a=故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.19.2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【考点】X6:列表法与树状图法.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:123456 1(1,2)(1,3)(1,4)(1,5)(1,6)2 3(2,1)(3,1)(3,2)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)4 5(4,1)(4,2)(4,3)(5,1)(5,2)(5,3)(5,4)(4,5)(4,6)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选中)==.20.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A 点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【考点】T8:解直角三角形的应用.【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,米,在Rt△ACE中,tan∠CAE=∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE=,=,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.21.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【考点】B7:分式方程的应用.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x 米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,,∴S阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.23.如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;△BMN =×(|+)×n=﹣(n﹣3)2+,(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(∵0<n<6,∴<0,,n),∴S|+||)×n=×(﹣∴n=3时,△BMN的面积最大.24.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,B … B ∵∠EDF=∠BAE ,∴∠FDG=∠G ,∴FD=FG ,∴AB= CG= (CF +DF ).25.我们知道,经过原点的抛物线可以用y=ax 2+bx (a ≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线 y=﹣2x 上时,求 b 的值;(3)如图,现有一组这样的抛物线,它们的顶点 A 1、A 2、…,A n 在直线 y=﹣2x 上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n (n 为正整数,且 n ≤12),分别过每个顶点作 x 轴的垂线,垂足记为 B 1、 2, , n ,以线段 A n B n 为边向左作正方形 A n B n C n D n , 如果这组抛物线中的某一条经过点 D n ,求此时满足条件的正方形 A n B n C n D n 的边长.k【考点】HF :二次函数综合题.【分析】(1)把点(﹣2,0)和(﹣1,3)分别代入 y=ax 2+bx ,得到关于 a 、b的二元一次方程组,解方程组即可;(2)根据二次函数的性质,得出抛物线 y =ax 2+bx 的顶点坐标是(﹣,﹣ ),把顶点坐标代入 y=﹣2x ,得出﹣=﹣2×(﹣ ),即可求出 b 的值;(3)由于这组抛物线的顶点 A 1、A 2、…,A n 在直线 y=﹣2x 上,根据(2)的结论 可知,b=4 或 b=0.①当 b=0 时,不合题意舍去;②当 b=﹣4 时,抛物线的表达式为 y=ax 2﹣4x .由题意可知,第 n 条抛物线的顶点为 A n (﹣n ,2n ),则 D n (﹣3n ,2n ),因为以 A n 为顶点的抛物线不可能经过点 D n ,设第 n +k (k 为正整数)条抛 物线经过点 D n ,此时第 n +k 条抛物线的顶点坐标是 A n + (﹣n ﹣k ,2n +2k ),根据﹣=﹣n ﹣k ,得出 a= =﹣ ,即第 n +k 条抛物线的表达式为 y=﹣x 2﹣4x ,根据 D n (﹣3n ,2n )在第 n +k 条抛物线上,得到 2n=﹣×(﹣3n )2﹣4×(﹣3n ),解得 k= n ,进而求解即可.【解答】解:(1)∵抛物线 y=ax 2+bx 经过点(﹣2,0)和(﹣1,3),∴,解得 ,∴抛物线的表达式为 y=﹣3x 2﹣6x ;(2)∵抛物线 y=ax 2+bx 的顶点坐标是(﹣,﹣),且该点在直线 y=﹣2x 上,k ∴﹣ =﹣2×(﹣ ),∵a ≠0,∴﹣b 2=4b ,解得 b 1=﹣4,b 2=0;(3)这组抛物线的顶点 A 1、A 2、…,A n 在直线 y=﹣2x 上, 由(2)可知,b=4 或 b=0.①当 b=0 时,抛物线的顶点在坐标原点,不合题意,舍去;②当 b=﹣4 时,抛物线的表达式为 y=ax 2﹣4x . 由题意可知,第 n 条抛物线的顶点为 A n (﹣n ,2n ),则 D n (﹣3n ,2n ), ∵以 A n 为顶点的抛物线不可能经过点 D n ,设第 n +k (k 为正整数)条抛物线经过点 D n ,此时第 n +k 条抛物线的顶点坐标是 A n + (﹣n ﹣k ,2n +2k ),∴﹣ =﹣n ﹣k ,∴a= =﹣ ,∴第 n +k 条抛物线的表达式为 y=﹣ x 2﹣4x , ∵D n (﹣3n ,2n )在第 n +k 条抛物线上,∴2n=﹣ ×(﹣3n )2﹣4×(﹣3n ),解得 k= n , ∵n ,k 为正整数,且 n ≤12,∴n 1=5,n 2=10.当 n=5 时,k=4,n +k=9;当 n=10 时,k=8,n +k=18>12(舍去), ∴D 5(﹣15,10),∴正方形的边长是 10.21。
2017年各地中考试卷2017年贵州省黔南州中考数学试卷
2017年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2017年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2017•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2017•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2017•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2017•黔南州)2017年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2017•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2017•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2017•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2017•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2017•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2017•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2017•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2017•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2017•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2017•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2017•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2017•黔南州)(1)计算:|﹣1|+(﹣1)2017+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2017•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2017•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2017•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2017•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分) 1.(4分)﹣2017的相反数是( ) A .﹣2017 B .2017C .﹣12017 D .12017 2.(4分)在下列四个交通标志图中,是轴对称图形的是( )A .B .C .D .3.(4分)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S 甲2=0.006,乙同学1分钟跳绳成绩的方差S 乙2=0.035,则( ) A .甲的成绩比乙的成绩更稳定 B .乙的成绩比甲的成绩更稳定 C .甲、乙两人的成绩一样稳定 D .甲、乙两人的成绩稳定性不能比较4.(4分)下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个 5.(4分)下列各式正确的是( )A .(a ﹣b )2=﹣(b ﹣a )2B .1x 3=x ﹣3C .a2+1a+1=a +1 D .x 6÷x 2=x 36.(4分)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是( )A .23B .110 C .15D .147.(4分)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分8.(4分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.19.(4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.8910.(4分)如图,点A是反比例函数y=1x(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=kx图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(每小题3分,共30分)11.(3分)计算:(﹣12)2= .12.(3分)人工智能AlphaGo ,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 (精确到百万位).13.(3分)不等式组{x +2>12x −1≤8−x的解集是 .14.(3分)若一组数据3,4,x ,6,8的平均数为5,则这组数据的众数是 . 15.(3分)已知关于x 的方程x 2+2x ﹣(m ﹣2)=0没有实数根,则m 的取值范围是 .16.(3分)如图,AB ∥CD ,AC ⊥BC ,∠BAC=65°,则∠BCD= 度.17.(3分)函数y=√x −1的自变量x 的取值范围是 .18.(3分)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是 .19.(3分)如图,将边长为6cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .20.(3分)如图,图中二次函数解析式为y=ax 2+bx +c (a ≠0)则下列命题中正确的有 (填序号)①abc >0;②b 2<4ac ;③4a ﹣2b +c >0;④2a +b >c .三、(本大题12分) 21.(12分)(1)计算:√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2 (2)解方程:2−xx−3+13−x=1.四、(本大题12分)22.(12分)如图,已知AB 为⊙O 直径,D 是BĈ的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F . (1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE=4,⊙O 的半径为5,求tan ∠F 的值.五、(本大题14分)23.(14分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.六、(本大题14分)24.(14分)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?七、(本大题12分)25.(12分)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC 中,∠A +∠B=90°,且sinA=1213,求cosA .八、(本大题16分) 26.(16分)如图1,抛物线y=ax 2+bx +74,经过A (1,0)、B (7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC . (1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M ,是S △ABM =4√39S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P .①若CE=BF ,试猜想AF 与BE 的数量关系及∠APB 的度数,并说明理由; ②若AF=BE ,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).2017年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2017•黔西南州)﹣2017的相反数是()A.﹣2017 B.2017 C.﹣12017D.12017【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2017•黔西南州)在下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义解答.【解答】解:“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”,符合这一要求的只有B.故选B.【点评】本题考查了轴对称图形的定义,要知道“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”.3.(4分)(2017•黔西南州)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较【考点】W7:方差;W1:算术平均数.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,∴S甲2<S乙2=0.035,∴甲的成绩比乙的成绩更稳定.故选A.【点评】本题考查方差、算术平均数等知识,解题的关键是理解方差的意义,记住方差越小稳定性越好.4.(4分)(2017•黔西南州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个 C.3个 D.4个【考点】U1:简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.【解答】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选:D.【点评】本题考查了简单几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.(4分)(2017•黔西南州)下列各式正确的是( )A .(a ﹣b )2=﹣(b ﹣a )2B .1x 3=x ﹣3C .a 2+1a+1=a +1 D .x 6÷x 2=x 3【考点】4C :完全平方公式;48:同底数幂的除法;66:约分;6F :负整数指数幂.【分析】根据完全平分公式、负整数指数幂、同底数幂的除法,即可解答. 【解答】解:A 、(a ﹣b )2=(b ﹣a )2,故错误; B 、正确;C 、a 2+1a+1不能再化简,故错误;D 、x 6÷x 2=x 4,故错误;故选:B .【点评】本题考查了完全平分公式、负整数指数幂、同底数幂的除法,解决本题的关键是熟记完全平分公式、负整数指数幂、同底数幂的除法的法则.6.(4分)(2017•黔西南州)一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是( )A .23B .110 C .15D .14【考点】X4:概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率. 【解答】解:∵20个球中红球有2个, ∴任意摸出一个球是红球的概率是220=110, 故选:B .【点评】本题考查的是随机事件概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.7.(4分)(2017•黔西南州)四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BCC.∠A=∠B D.对角线互相平分【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.【解答】解:如图,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C【点评】本题考查平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(4分)(2017•黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.1【考点】M2:垂径定理.【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.(4分)(2017•黔西南州)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【考点】38:规律型:图形的变化类.【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.10.(4分)(2017•黔西南州)如图,点A是反比例函数y=1x(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=kx图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可设A(x,1x),由条件证得△AOC∽△OBD,从而可表示出B点坐标,则可求得得到关于k的方程,可求得k的值.【解答】解:∵点A是反比例函数y=1x(x>0)上的一个动点,∴可设A(x,1x ),∴OC=x,AC=1 x ,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC ,且∠BDO=∠ACO , ∴△AOC ∽△OBD , ∵OB=2OA ,∴AC OD =OC BD =AO BO =12, ∴OD=2AC=2x ,BD=2OC=2x ,∴B (﹣2x,2x ),∵点B 反比例函数y=kx图象上,∴k=﹣2x•2x=﹣4,故选A .【点评】本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B 点坐标是解题的关键.二、填空题(每小题3分,共30分)11.(3分)(2017•黔西南州)计算:(﹣12)2= 14.【考点】1E :有理数的乘方.【分析】本题考查有理数的乘方运算,(﹣12)2表示2个(﹣12)的乘积.【解答】解:(﹣12)2=14.故答案为:14.【点评】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.12.(3分)(2017•黔西南州)人工智能AlphaGo ,因在人机大战中大胜韩国围棋手李世石和我国选手柯洁而声名显赫,它具有自我对弈的学习能力,决战前已做了两千万局的训练(等同于一个近千年的训练量)此处“两千万”用科学记数法表示为 2.0×107(精确到百万位).【考点】1L:科学记数法与有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:“两千万”精确到百万位,用科学记数法表示为2.0×107,故答案为:2.0×107.【点评】本题考查的是科学记数法的应用,掌握科学记数法的计数规律,理解近似数精确到哪一位,应当看末位数字实际在哪一位是解题的关键.13.(3分)(2017•黔西南州)不等式组{x+2>12x−1≤8−x的解集是﹣1<x≤3.【考点】CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:{x+2>1①2x−1≤8−x②,解不等式①得x>﹣1,解不等式②得x≤3.故不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(3分)(2017•黔西南州)若一组数据3,4,x,6,8的平均数为5,则这组数据的众数是4.【考点】W5:众数;W1:算术平均数.【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+4+x+6+8)=5×5,解得x=4,则这组数据为3,4,4,6,8的平均数为5,所以这组数据的众数是4.故答案为4.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数的定义.15.(3分)(2017•黔西南州)已知关于x的方程x2+2x﹣(m﹣2)=0没有实数根,则m的取值范围是m<1.【考点】AA:根的判别式.【分析】由方程没有实数根结合根的判别式,即可得出△=4m﹣4<0,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2+2x﹣(m﹣2)=0没有实数根,∴△=22+4(m﹣2)=4m﹣4<0,解得:m<1.故答案为:m<1.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.16.(3分)(2017•黔西南州)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD= 25度.【考点】JA:平行线的性质;K7:三角形内角和定理.【分析】要求∠BCD的度数,只需根据平行线的性质求得∠B的度数.显然根据三角形的内角和定理就可求解.【解答】解:∵在Rt△ABC中,∠BAC=65°,∴∠ABC=90°﹣∠BAC=90°﹣65°=25°.∵AB∥CD,∠BCD=∠ABC=25°.【点评】本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.17.(3分)(2017•黔西南州)函数y=√x−1的自变量x的取值范围是x≥1.【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点评】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.(3分)(2017•黔西南州)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15.【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.【点评】本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.19.(3分)(2017•黔西南州)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是9cm.4【考点】PB :翻折变换(折叠问题);LE :正方形的性质. 【分析】设EF=FD=x ,在RT △AEF 中利用勾股定理即可解决问题. 【解答】解:如图:∵四边形ABCD 是正方形, ∴AB=BC=CD=AD=6,∵AE=EB=3,EF=FD ,设EF=DF=x .则AF=6﹣x , 在RT △AEF 中,∵AE 2+AF 2=EF 2, ∴32+(6﹣x )2=x 2,∴x=154, ∴AF=6﹣154=94cm ,故答案为94.【点评】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.20.(3分)(2017•黔西南州)如图,图中二次函数解析式为y=ax 2+bx +c (a ≠0)则下列命题中正确的有 ①③④ (填序号) ①abc >0;②b 2<4ac ;③4a ﹣2b +c >0;④2a +b >c .【考点】H4:二次函数图象与系数的关系;O1:命题与定理.【分析】①由抛物线的开口向上、对称轴在y轴右侧、抛物线与y轴交于y轴负半轴,即可得出a>0、b<0、c<0,进而可得出abc>0,①正确;②由抛物线与x轴有两个不同的交点,可得出△=b2﹣4ac>0,b2>4ac,②错误;③由当x=﹣2时y>0,可得出4a﹣2b+c>0,③正确;④由抛物线对称轴的大致范围,可得出﹣2a<b<0,结合a>0、c<0可得出2a+b>0>c,④正确.综上即可得出结论.【解答】解:①∵抛物线开口向上,抛物线的对称轴在y轴右侧,抛物线与y轴交于y轴负半轴,∴a>0,﹣b2a>0,c<0,∴b<0,abc>0,①正确;②∵抛物线与x轴有两个不同交点,∴△=b2﹣4ac>0,b2>4ac,②错误;③当x=﹣2时,y=4a﹣2b+c>0,③正确;④∵0<﹣b2a<1,∴﹣2a<b<0,∴2a+b>0>c,④正确.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及命题与定理,观察函数图象,逐一分析四条结论的正误是解题的关键.三、(本大题12分)21.(12分)(2017•黔西南州)(1)计算:√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2 (2)解方程:2−xx−3+13−x=1. 【考点】B3:解分式方程;2C :实数的运算;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)√12+|3﹣√3|﹣2sin60°+(2017﹣π)0+(12)﹣2=2√3+3﹣√3﹣2×√32+1+1(12)2=2√3+3﹣√3﹣√3+1+4 =8;(2)2−x x−3+13−x =1整理得2−x x−3﹣1x−3=12−x −1x −3=11﹣x=x ﹣3 解得x=2经检验:x=2是分式方程的解.【点评】本题主要考查了实数的运算以及解分式方程,解题时注意:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.解分式方程时,一定要检验.四、(本大题12分)22.(12分)(2017•黔西南州)如图,已知AB 为⊙O 直径,D 是BĈ的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【分析】(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O 的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.【解答】(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:∵D是弧BC的中点,̂=DB̂,∴DC∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3, ∴AG=8,∴tan ∠ADG=84=2,∵BF 是⊙O 的切线, ∴∠ABF=90°, ∴DG ∥BF ,∴tan ∠F=tan ∠ADG=2.【点评】此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG ,DG 的长是解题关键.五、(本大题14分)23.(14分)(2017•黔西南州)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人? (2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数.(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【分析】(1)根据条形统计图中的数据求出调查的居民人数即可;(2)根据总人数减去爱吃A 、B 、D 三种粽子的人数可得爱吃C 的人数,然后再根据人数计算出百分比即可;(3)求出D 占的百分比,乘以8000即可得到结果;(4)画树状图得出所有等可能的情况数,找出他第二个吃到的恰好是C 粽的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:180+60+120+240=600(人);(2)如图所示;(3)根据题意得:40%×8000=3200(人);(4)如图,得到所有等可能的情况有12种,其中第二个吃到的恰好是C 粽的情况有3种,则P (C 粽)=312=14,答:他第二个吃到的恰好是C 粽的概率是14.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.六、(本大题14分)24.(14分)(2017•黔西南州)赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【考点】FH:一次函数的应用.【分析】(1)根据函数图象即可得出起点A与终点B之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得甲龙舟队的y与x函数关系式;设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得乙龙舟队的y与x函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.【解答】解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得{0=5a +b3000=20a +b,解得{a =200b =−1000,∴乙龙舟队的y 与x 函数关系式为y=200x ﹣1000(5≤x ≤20); (4)令120x=200x ﹣1000,可得x=12.5, 即当x=12.5时,两龙舟队相遇,当x <5时,令120x=200,则x=53(符合题意);当5≤x <12.5时,令120x ﹣(200x ﹣1000)=200,则x=10(符合题意);当12.5<x ≤20时,令200x ﹣1000﹣120x=200,则x=15(符合题意);当20<x ≤25时,令3000﹣120x=200,则x=703(符合题意);综上所述,甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米【点评】本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.七、(本大题12分)25.(12分)(2017•黔西南州)把(sinα)2记作sin 2α,根据图1和图2完成下列各题.(1)sin 2A 1+cos 2A 1= 1 ,sin 2A 2+cos 2A 2= 1 ,sin 2A 3+cos 2A 3= 1 ; (2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A= 1 ; (3)如图2,在Rt △ABC 中证明(2)题中的猜想:(4)已知在△ABC 中,∠A +∠B=90°,且sinA=1213,求cosA .【考点】T7:解直角三角形.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得; (2)由(1)中的结论可猜想sin 2A +cos 2A=1;(3)由sinA=a c 、cosA=b c 且a 2+b 2=c 2知sin 2A +cos 2A=(a c )2+(b c )2=a 2+b 2c 2=c 2c2=1;(4)根据直角三角形中sin 2A +cos 2A=1知(1213)2+cosA 2=1,据此可得答案.【解答】解:(1)sin 2A 1+cos 2A 1=(12)2+(√32)2=14+34=1,sin 2A 2+cos 2A 2=(√2)2+(√2)2=12+12=1,sin 2A 3+cos 2A 3=(35)2+(45)2=925+1625=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt △ABC 中,∠C=90°,总有sin 2A +cos 2A=1, 故答案为:1;(3)在图2中,∵sinA=a c ,cosA=bc,且a 2+b 2=c 2,则sin 2A +cos 2A=(a c )2+(b c )2=a2c 2+b 2c 2=a 2+b 2c 2=c 2c2=1,即sin 2A +cos 2A=1;(4)在△ABC 中,∠A +∠B=90°, ∴∠C=90°, ∵sin 2A +cos 2A=1,∴(1213)2+cosA 2=1,解得:cosA=513或cosA=﹣513(舍),∴cosA=513.【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.八、(本大题16分)26.(16分)(2017•黔西南州)如图1,抛物线y=ax 2+bx +74,经过A (1,0)、B(7,0)两点,交y 轴于D 点,以AB 为边在x 轴上方作等边△ABC .(1)求抛物线的解析式;(2)在x 轴上方的抛物线上是否存在点M ,是S △ABM =4√39S △ABC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图2,E 是线段AC 上的动点,F 是线段BC 上的动点,AF 与BE 相交于点P .①若CE=BF ,试猜想AF 与BE 的数量关系及∠APB 的度数,并说明理由; ②若AF=BE ,当点E 由A 运动到C 时,请直接写出点P 经过的路径长(不需要写过程).【考点】HF :二次函数综合题.【分析】(1)将点A (1,0),B (7,0)代入抛物线的解析式得到关于a 、b 方程组,解关于a 、b 的方程组求得a 、b 的值即可;(2)过点C 作CK ⊥x 轴,垂足为K .依据等边三角形的性质可求得CK=3√3,然后依据三角形的面积公式结合已知条件可求得S △ABM 的面积,设M (a ,14a 2﹣2a +74),然后依据三角形的面积公式可得到关于a 的方程,从而可得到点M 的坐标; (3)①首先证明△BEC ≌△AFB ,依据全等三角形的性质可知:AF=BE ,∠CBE=∠BAF ,然后通过等量代换可得到∠FAB +∠ABP=∠ABP +∠CBE=∠ABC=60°,最后依据三角形的内角和定理可求得∠APB ;②当AE ≠BF 时,由①可知点P 在以AB 为直径的圆上,过点M 作ME ⊥AB ,垂足为E .先求得⊙M 的半径,然后依据弧长公式可求得点P 运动的路径;当AE=BF 时,点P 在AB 的垂直平分线上时,过点C 作CK ⊥AB ,则点P 运动的路径=CK 的长.【解答】解:(1)将点A (1,0),B (7,0)代入抛物线的解析式得:{49a +7b +74=0a +b +74=0,解得:a=14,b=﹣2.∴抛物线的解析式为y=14x 2﹣2x +74.(2)存在点M ,使得S △ABM =4√39S △ABC . 理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形, ∴AB=BC=AC=6,∠ACB=60°. ∵CK ⊥AB ,∴KA=BK=3,∠ACK=30°. ∴CK=3√3.∴S △ABC =12AB•CK=12×6×3=9√3.∴S △ABM =4√39×9√3=12.设M (a ,14a 2﹣2a +74).∴12AB•|y |=12,即12×6×(14a 2﹣2a +74)=12, 解得:a 1=9,a 2=﹣1.∴点M 的坐标为(9,4)或(﹣1,4).(3)①结论:AF=BE ,∠APB=120°. ∵△ABC 为等边三角形, ∴BC=AB ,∠C=∠ABF .∵在△BEC 和△AFB 中{BC =AB∠C =∠ABF CE =BF,∴△BEC≌△AFB.∴AF=BE,∠CBE=∠BAF.∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.∴∠APB=180°﹣60°=120°.②当AE≠BF时,由①可知点P在以M为圆心,在以AB为弦的圆上,过点M作MK⊥AB,垂足为k.∵∠APB=120°,∴∠N=60°.∴∠AMB=120°.又∵MK⊥AB,垂足为K,∴AK=BK=3,∠AMK=60°.∴AK=2√3.∴点P运动的路径=120⋅π×2√3180=4√3π3.当AE=BF时,点P在AB的垂直平分线上时,如图所示:过点C作CK⊥AB,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=3√3.∴点P运动的路径为3√3.综上所述,点P运动的路径为3√3或4√3π3.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等边三角形的性质、全等三角形的性质和判定、扇形的弧长公式,判断出点P运动的轨迹生成的图形的形状是解题的关键.。