汽车排放污染物的测量方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车排放污染物的测量方法
汽车排放污染物测试的发展方向——车载排放测试
由于底盘测功机应用的局限性,使得人们开始考虑使用更为先进的汽车排放污染物测试途径——便携式排放测量系统(PEMS, PortableEmission Measure System)。虽然目前世界上通过政府认证的PEMS还不多,而且很多国家都没有颁布对PEMS的认证制度。但是从全球范围内广泛使用通过美国和欧洲认证的PEMS的效果来看,这些便携式排放测量系统还是能够真实反映车辆排放情况,设备的精确性和可靠性还是能够满足我们进行道路排放测试的需要的。由于这些便携式排放测量系统主要是通过直接在车辆上进行安装、测试,所以也被称为车载排放测量系统。
一、车载排放测试技术简介
车载排放测试技术是近些年才日益快速发展的新技术。对于其研究是始于20世纪80年代。车载排放测试技术的发展是伴随着科技和工业水平的进步,以涌现的更新,更全,更精确,更强大的测试设备的出现为标志的。
便携式排放测量系统通过将排气尾管直接连接到车载气体污染物和微粒测
量装置上,对车辆尾气进行直采,实时测量整车排放的体积浓度和质量流量排量,得到气体污染物的质量排放量和微粒排放量。虽然PEMS采用的是直接采样的取样方法,但是在取样过程中没有对取样气进行冷却,这样就排除
样的。作为一个整体,PEMS按照图1所示的PEMS结构图,将各测量仪器集中到一起,利用PITOT管直采的方法,对尾气进行直接取样,分析各污染物的瞬时排放浓度。车辆排放的气体,在PEMS的各个分析仪内经过分析之后,和环境参数、GPS参数一起进入数据整合系统,之后输入到记录和存储数据的PC中。
安装PEMS也是相当容易的。对于乘用车和卡车,可以将系统安装在被测车辆的副驾座位上,这样就使监视屏幕和控制器面向驾驶员,并且所有的连接器面向副驾一侧的车门。系统也能安装在小轿车的后座上,小型厢式车的地板上,掀背式轿车或者皮卡的货箱里,或者车上其他任何安全、方便的地方。将该系统放置在座位上时,最好在座位上铺上保护垫或者油布,这样是为了防止对座位的损坏。当测试重型车辆时,可以将设备放置在对车辆运行和用户使用来说认为安全的地方。
二、各污染物分析原理及分析仪
(一)CO与CO2测量仪器
非透视红外线分析仪(NDIR,Nondispersive Infrared Analyzer)是目前用来试验和评价内燃机排气中有害排放物的一种广泛使用的标准仪器,这种仪器主要用来测定CO和CO2浓度。对于在红外线领域中具有吸收带的非对称气体分子,如HC,原则上也能进行测量。
非扩散红外分析仪是通过测定试样中对象成分的红外光的吸收能,来测定它的成分浓度。它的基本构造如图2所示。它由两个相同的红外光源、试样室、
比较室、检测室、截光室,以及信号放大器和记录仪器等部分组成。
在图2中,比较室中充满了惰性气体(通常为N2),这种气体不吸收待测气体波长的红外线能,不会影响测量结果。两个红外光源辐射出的红外线分别是经过试样室和比较室进入由弹性膜片隔开的检测室的上下两个腔内,在检测室的两个腔内充入等量的纯待测气体,弹性膜片与金属电极共同组成可变电容器,其电量的大小与其间距离成正比变化。当红外线同时通过试样室和比较室时,由于试样室的气体吸收红外光能,而比较室的气体不吸收红外光能,结果使检测室的两个腔所受的红外能不同,由此造成两个腔内温度变化的不同,使左右两个腔内压力不等而使膜片发生位移,于是电容电量发生变化。根据电容量的变化即可确定待测气体的浓度。
试样室中吸收的红外光能与被测气体浓度的关系可以按式1表示:
式中:E a—所吸收的能量
E i—入射能量
k—光能吸收系数
c—被测气体浓度
L—试样管长度
当浓度变化越大时,转换成检测室电容量变化越大,得到的电输出信号越大。NDIR就是根据输出电信号的大小得出样气中CO和CO2的浓度。
(二)HC测量仪器
虽然NDIR原则上可以测量HC,但是NDIR对烯烃和芳香族的敏感度很低,所以需要更为合适的测量仪器对尾气中HC浓度进行测量,主要用作测量碳氢化合物总量(THC)。目前,在CVS采样中普遍使用氢火焰离子化分析仪测量车辆尾气中的HC浓度。
氢火焰离子化分析仪(FID,Flame Ionization Detector)是用来测定内燃机排气中未燃碳氢化合物浓度的仪器之一。由于氢气与空气燃烧离子化作用非常小,但如果将有机碳氢化合物导入氢火焰中,在氢火焰的高温(2000℃)作用下,部分分子和原子就会离子化生成大量的自由离子,离子化的程度与碳氢化合物分子中碳原子数成正比关系。FID就是通过以上现象,外加适当电场,使自由离子形成离子电流并产生微电流信号,那么通过测量离子电流的大小即可确定试样气中碳氢化合物以碳原子计量的浓度。图3所示的就是FID结构示意图。
虽然FID对水蒸气的灵敏度很低,但是由于碳氢化合物中各组分的沸点不同,高沸点的碳氢化合物在直接采样过程中会产生吸附和凝聚,因此预防试样系统中HC的凝缩损失及水凝聚以避免毛细管堵塞仍然是很重要的。基于以上的原因,在使用FID之前,要对燃烧装置和采样管进行预热,当整个测试系统的温度保持在150℃~200℃以上时,排放样气中的HC一般不会出现
凝聚和吸附的现象。
(三)NO x测量仪器
对于氮氧化物的测量,虽然能够使用NDIR测量NO,用非扩散紫外分析仪(NDUV)测量NO2,然后作为NO x值。但是现在这两种方法都存在输出特性呈非线形关系及干扰组分影响大的缺点。而化学发光分析仪(CLD,Chemi luminescent Detector)具有线形范围宽(在10000ppm范围内输出特性呈线形关系)、灵敏度高、抗干扰能力强、能够连续测量等优点。所以现在主要使用CLD测量汽车排放中的NOx。
CLD测量的基本原理是让含有NO的被测样气和臭氧在反应室中相遇时,发生如式2和式3所示的化学反应,通过化学光测量NO x。即将O2送入臭氧发生器,转换成O3,使O3与NO产生化学反应产生NO2分子,在NO2分子由激发态衰减到基态的过程中时,会发出波长为0.6~3μm的光。由于发光强度与进入反应室的NO质量成正比,所以将光信号转换为电信号经信号放大器输出,这样就测量到NO的浓度;对于NO2,通过NO2→NO转换器将NO2还原为NO后进入反应室,再按上述方法进行测量,求得NO和NO x之和,这样就测到被测样气中氮氧化物的总和NO x。
式中,NO2为激发态NO2;h为普朗克常量;v为光量子频率。
(四)柴油机排气微粒测量系统
对于柴油机排放微粒的采集系统,现可分为两种,即全流式稀释风道采样系统和分流式稀释风道采样系统。前者将全部排气引入稀释风道里,测量精度高,但体积较大,价格昂贵;后者仅将部分排气引入稀释风道里,因而体积小。美国的轻、重型车用柴油机排放法规以及欧洲轻型车排放法规中,规定要用全流式稀释风道测量柴油机微粒排放;欧洲重型车用柴油机排放法规及我国2000年后的新排放法规中,对于以上两种系统都允许使用。在对微粒