近世代数期末考试题库1
近世代数期末考试题库1
近世代数期末考试题库1世代数模拟试题⼀⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1、设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的( c ) A 、满射⽽⾮单射 B 、单射⽽⾮满射C 、⼀⼀映射D 、既⾮单射也⾮满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( d )个元素。
A 、2B 、5C 、7D 、103、在群G 中⽅程ax=b ,ya=b , a,b ∈G 都有解,这个解是(b )乘法来说A 、不是唯⼀B 、唯⼀的C 、不⼀定唯⼀的D 、相同的(两⽅程解⼀样)4、当G 为有限群,⼦群H 所含元的个数与任⼀左陪集aH 所含元的个数(c )A 、不相等B 、0C 、相等D 、不⼀定相等。
5、n 阶有限群G 的⼦群H 的阶必须是n 的(d )A 、倍数B 、次数C 、约数D 、指数⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B -1,0,1,-2,2。
2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的单位元。
3、环的乘法⼀般不交换。
如果环R 的乘法交换,则称R 是⼀个交换环。
4、偶数环是整数环的⼦环。
7、全体不等于0的有理数对于普通乘法来说作成⼀个群,则这个群的单位元是1,元a 的逆元是a-1。
8、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最⼤理想,那么---------。
9、⼀个除环的中⼼是⼀个-域-----。
三、解答题(本⼤题共3⼩题,每⼩题10分,共30分)1、设置换σ和τ分别为:=6417352812345678σ,??=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。
近世代数期末考试题库
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出得四个备选项中只有一个就就是符合题目要求得,请将其代码填写在题后得括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到B得映射:x→x+2,x∈R,则就就是从A到B得( )A、满射而非单射ﻩB、单射而非满射C、一一映射ﻩﻩﻩD、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B得积集合A×B中含有( )个元素。
A、2 ﻩﻩﻩB、5 C、7ﻩﻩﻩﻩD、103、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解就就是( )乘法来说A、不就就是唯一 B、唯一得 C、不一定唯一得D、相同得(两方程解一样) 4、当G为有限群,子群H所含元得个数与任一左陪集aH所含元得个数( )A、不相等B、0 C、相等 D、不一定相等。
5、n阶有限群G得子群H得阶必须就就是n得( )A、倍数B、次数C、约数 D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题得空格中填上正确答案。
错填、不填均无分。
1、设集合;,则有---------。
2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R得--------。
3、环得乘法一般不交换。
如果环R得乘法交换,则称R就就是一个------。
4、偶数环就就是---------得子环。
5、一个集合A得若干个--变换得乘法作成得群叫做A得一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0得有理数对于普通乘法来说作成一个群,则这个群得单位元就就是---,元a得逆元就就是-------。
8、设与就就是环得理想且,如果就就是得最大理想,那么---------。
9、一个除环得中心就就是一个-------。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换与分别为:,,判断与得奇偶性,并把与写成对换得乘积。
(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)
多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
( )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )7、如果环R 的阶2≥,那么R 的单位元01≠。
( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。
( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
近世代数期末考试试卷及答案
一、单项选择题一、单项选择题((本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
多选或未选均无分。
1、设G G 有有6个元素的循环群,个元素的循环群,a a 是生成元,则G 的子集(的子集( )是子群。
)是子群。
A 、{}aB B、、{}e a ,C C、、{}3,a eD D、、{}3,,a a e 2、下面的代数系统(、下面的代数系统(G G ,*)中,( )不是群)不是群)不是群A 、G 为整数集合,为整数集合,**为加法为加法B B B、、G 为偶数集合,为偶数集合,**为加法为加法C 、G 为有理数集合,为有理数集合,**为加法为加法D D D、、G 为有理数集合,为有理数集合,**为乘法为乘法 3、在自然数集N 上,下列哪种运算是可结合的?(上,下列哪种运算是可结合的?( )) A 、a*b=a-b B 、a*b=max{a,b} C a*b=max{a,b} C、、 a*b=a+2b D a*b=a+2b D、、a*b=|a-b|4、设1s 、2s 、3s 是三个置换,是三个置换,其中其中1s =(1212))(2323))(1313)),2s =(2424))(1414)),3s =(13241324)),则3s =( ))A 、12sB B、、1s 2sC C、、22sD D、、2s 1s5、任意一个具有2个或以上元的半群,它(个或以上元的半群,它( ))。
A 、不可能是群、不可能是群 B 、不一定是群、不一定是群 C 、一定是群、一定是群 D 、 是交换群是交换群二、二、填空题填空题填空题((本大题共10小题,小题,每空每空3分,分,共共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个、凯莱定理说:任一个子群都同一个------------------------------同构。
近世代数期末考试试卷及答案
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得10=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。
近世代数期末考试试题和答案解析
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、B 、C 、D 、{}a {}e a ,{}3,a e {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),1σ2σ3σ1σ2σ=(1324),则=( )3σ3σA 、 B 、 C 、 D 、12σ1σ2σ22σ2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群中的元素的阶等于50,则的阶等于------。
G a 4a 4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A∩B=-----。
6、若映射既是单射又是满射,则称为-----------------。
ϕϕ7、叫做域的一个代数元,如果存在的-----使得αF F n a a a ,,,10 。
010=+++n n a a a αα8、是代数系统的元素,对任何均成立,则称为-------a )0,(A A x ∈x a x = a --。
近世代数期末考试题库45962
近世代数模拟试题一一、 单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备 选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或 未选均无分。
1、 设A= B = R (实数集),如果A 到B 的映射:X 一X B 的()A 、满射而非单射B 、单射而非满射C -------- 映射D 、既非单射也非满射2、 设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合 AxB 中含有()个元素。
A 、22,X U R ,则是从A 到 D 、103、 在群G 中方程ax=b ,ya=b , a,b UG 都有解,这个解是()乘法来说A 、不是 唯一 B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、 当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数() A 、不相等B 、0 C 、相等D 、不一定相等。
5、 n 阶有限群G 的子群H 的阶必须是n 的()A 、倍数B 、次数C 、约数D 、指 数二、 填空题(本大题共W 小题,每空3分,共30分)请在每小题的空格中填上正 确答案。
错填、不填均无分。
1 '设集合5 ; B1.2 5则有B A .................... 。
2、 若有元素eU R 使每aU A ,都有ae=ea=a ,则e 称为环R 的。
3、 环的乘法一般不交换。
如果环R 的乘法交换,则称R 是4、 偶数环是 个集合A 的若干个“变换的乘法作成的群叫做A 的一个 。
6、 每一个有限群都有与一个置换群--。
7、 全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是元 a 的逆元是 。
8、 设I 和S 是环R 的理想且 Z 如果I 是R 的最大理想,那么 一个除环的中心是一个--。
、解答题(本大题共3小题,每小题W 分,共30分)1、设置撫和分别为:578 12345678g 和的奇彳禹性/并把和 写成对换的乘积。
近世代数期末考试卷与答案
近世代数期末考试卷与答案近世代数试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集()是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,()不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?()A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=() A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它()。
A 、不可能是群B 、不一定是群C 、一定是群D 、是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射?既是单射又是满射,则称?为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。
优秀的近世代数期末考试总复习
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A 到B的()A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有()个元素.A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b∈G都有解,这个解是()乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数( )A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的()A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、设集合;,则有——-----—-.2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的————--——.3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个———-——。
4、偶数环是—------—-的子环.5、一个集合A的若干个—-变换的乘法作成的群叫做A的一个-————-—-。
6、每一个有限群都有与一个置换群———-—-—-。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a的逆元是—--—-—-.8、设和是环的理想且,如果是的最大理想,那么-——————--。
9、一个除环的中心是一个--—-——-。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
(word版)近世代数期末考试题库(包括模拟卷和1套题)
多所高校近世代数题库一、〔2021年近世代数〕判断题〔以下命题你认为正确的在题后括号内打“√〞,错的打“×〞;每题1分,共10分〕1、设A与B都是非空集合,那么A B xx A且x B。
〔〕2、设A、B、D都是非空集合,那么AB到D的每个映射都叫作二元运算。
〔〕3、只要f是A到A的一一映射,那么必有唯一的逆映射G f1。
〔〕4G a中生成元a的阶是无限的,那么与整数加群同构。
〔〕、如果循环群5、如果群G的子群H是循环群,那么G也是循环群。
〔〕6、近世代数中,群G的子群H是不变子群的充要条件为gG,h H;g1Hg H。
〔〕7、如果环R的阶2,那么R的单位元10。
〔〕8、假设环R满足左消去律,那么R必定没有右零因子。
〔〕9、F(x)中满足条件p()0的多项式叫做元在域F上的极小多项式。
〔〕10、假设域E的特征是无限大,那么E含有一个与Z同构的子域,这里Z是整数环,p是由素数p生成的主理想。
p〔〕二、〔2021年近世代数〕单项选择题〔从以下各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每题f是1分,共10分〕、设12n和D 都是非空集合,而12An到D的一个映射,那么〔〕1A,A,,A AA①集合A1,A2,,A n,D中两两都不相同;②A1,A2,,A n的次序不能调换;③A1A2A n中不同的元对应的象必不相同;④一个元a1,a2, ,a n的象可以不唯一。
2、指出以下那些运算是二元运算〔〕①在整数集Z上,a b a b②在有理数集Q上,a b ab;;ab③在正实数集R上,ab alnb;④在集合n Zn0上,a ba b。
3、设是整数集Z上的二元运算,其中a b maxa,b 〔即取a与b中的最大者〕,那么在Z中〔〕①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。
4、设G,为群,其中G是实数集,而乘法:a b a b k,这里k为G中固定的常数。
近世代数期末考试题(卷)库
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( c ) A 、满射而非单射 B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( d )个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是(b )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数(c )A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的(d )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的单位元。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个变换全。
6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。
9、一个除环的中心是一个-域-----。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。
近世代数期末考试题库
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( c ) A 、满射而非单射 B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( d )个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是(b )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数(c )A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的(d )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的单位元。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个变换全。
6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。
9、一个除环的中心是一个-域-----。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。
近世代数期末考试试题和答案解析
近世代数期末考试试题和答案解析一、单项选择题(本大题共5小题,每小题 3 分,共15 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a是生成元,则G的子集()是子群。
A、a B 、a,e C 、e,a3D 、e,a,a32、下面的代数系统(G,*)中,()不是群A、G为整数集合,* 为加法 B 、G为偶数集合,* 为加法C、G为有理数集合,* 为加法 D 、G为有理数集合,* 为乘法3、在自然数集N 上,下列哪种运算是可结合的?()A、a*b=a-bB、a*b=max{a,b} C 、a*b=a+2b D 、a*b=|a-b|4、设1、2、3是三个置换,其中1=(12)(23)(13),2=(24)(14),3 =1324),则3=()22A、2 1 B 、 1 2 C 、2 2 D 、 2 15、任意一个具有2 个或以上元的半群,它()。
A、不可能是群B、不一定是群C、一定是群D、是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----- 同构。
2、一个有单位元的无零因子称为整环。
43、已知群G中的元素a的阶等于50,则a4的阶等于 -- 。
4、a 的阶若是一个有限整数n,那么G与-- 同构。
5、A={1.2.3} B={2.5.6} 那么A∩B= 。
6、若映射既是单射又是满射,则称为------------ 。
7、叫做域 F 的一个代数元,如果存在 F 的a0,a1, ,a n使得a0 a1a n n 08、a是代数系统( A,0)的元素,对任何x A均成立x a x,则称a为--- 。
9、有限群的另一定义:一个有乘法的有限非空集合G作成一个群,如果满足G 对于乘法封闭;结合律成立、------ 。
10、一个环R对于加法来作成一个循环群,则P 是---- 。
近世代数期末考试试题库
2、设E是所有偶数做成的集合,“ ”是数的乘法,则“ ”是E中的运算,(E, )是一个代数系统,问(E, )是不是群,为什么?
1、解:H的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )}
H的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )}
A、(1),(123),(132)B、12),(13),(23)
C、(1),(123)D、S3中的所有元素
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果 是 与 间的一一映射, 是 的一个元,则 ----a------。
D.整数集Z关于数的加法和新给定的乘法“ ”: m,n∈Z,m n=1
二、填空题(本大题共10小题,每空3分,共30分)
请在每小题的空格中填上正确答案。错填、不填均无分。
6.设“~”是集合A的一个关系,如果“~”满足___________,则称“~”是A的一个等价关系。
7.设(G,·)是一个群,那么,对于 a,b∈G,则ab∈G也是G中的可逆元,而且(ab)-1=
显然是R的一个商域 证毕。
近世代数模拟试题二
一、单项选择题
二、1、设G 有6个元素的循环群,a是生成元,则G的子集(c )是子群。
A、 B、 C、 D、
2、下面的代数系统(G,*)中,(d )不是群
优秀的近世代数期末考试总复习题
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到B的映射ϕ:x→x+2,∀x∈R,则ϕ是从A 到B的()A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有()个元素。
A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b∈G都有解,这个解是()乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数()A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的()A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A;{}2,1=B,则有=B---------。
⨯A2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的--------。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个------。
4、偶数环是---------的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。
9、一个除环的中心是一个-------。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:⎥⎦⎤⎢⎣⎡=6417352812345678σ,⎥⎦⎤⎢⎣⎡=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。
近世代数期末考试试卷及答案
近世代数期末考试试卷及答案⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1、设G 有6个元素的循环群,a 是⽣成元,则G 的⼦集(c )是⼦群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下⾯的代数系统(G ,*)中,( D )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在⾃然数集N 上,下列哪种运算是可结合的?( B )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意⼀个具有2个或以上元的半群,它( A )。
A 、不可能是群B 、不⼀定是群C 、⼀定是群D 、是交换群⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
1、凯莱定理说:任⼀个⼦群都同⼀个----变换群------同构。
2、⼀个有单位元的⽆零因⼦-交换环----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于----25--。
4、a 的阶若是⼀个有限整数n ,那么G 与---模n 剩余类加群----同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。
6、若映射?既是单射⼜是满射,则称?为----双射-------------。
7、α叫做域F 的⼀个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成⽴x a x = ,则称a 为---右单位元------。
多所高校近世代数期末考试题库[1]1
多所高校近世代数期末考试题库[1]1内容来自:文档资料库多所高校近世代数题库一、(2011 年近世代数)判断题(下列命题你认为正确的在题后括号内打“√” ,错的打“×” ;每小题1 分,共10 分)1、设A 与B 都是非空集合,那么A ∪ B = {x x ∈ A且x ∈ B}。
())))2、A 、B 、D 都是非空集合,A × B 到D 的每个映射都叫作二元运算。
设则(3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射f1。
(4、如果循环群G = (a ) 中生成元a 的阶是无限的,则G 与整数加群同构。
(5、如果群G 的子群H 是循环群,那么G 也是循环群。
()6 、近世代数中,群G 的子群H 是不变子群的充要条件为g ∈ G , h ∈ H ; g 1 Hg H 。
()(()))7、如果环R 的阶≥ 2 ,那么R 的单位元1 ≠ 0 。
8、若环R 满足左消去律,那么R 必定没有右零因子。
9、F ( x) 中满足条件p (α ) = 0 的多项式叫做元α 在域F 上的极小多项式。
(10、若域E 的特征是无限大,那么E 含有一个与Z( p ) 同构的子域,这里Z 是整()数环,( p ) 是由素数p 生成的主理想。
二、2011 年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确(答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1 分,共10 分)1、设A1 , A2 , L ,An 和D 都是非空集合,而f 是A1 × A2 × L × An 到D 的一个映射,那么()①集合A1 , A2 , L , An , D 中两两都不相同;② A1 , A2 , L , An 的次序不能调换;③ A1 × A2 × L × An 中不同的元对应的象必不相同;④一个元(a1 , a 2 , L , a n ) 的象可以不唯一。
近世代数期末考试题库(包括模拟卷和1套完整题)
多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
( )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )7、如果环R 的阶2≥,那么R 的单位元01≠。
( )8、若环R 满足左消去律,那么R 必定没有右零因子。
( )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换;③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abb a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数期末考试题库1世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到B的映射?:x→x+2,则?是从A到B的?x∈R,A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B 中含有个元素。
A、2B、5 C、7D、10 3、在群G中方程ax=b,ya=b,a,b∈G都有解,这个解是乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样) 4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数A、不相等B、0 C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1,2?,则有B?A?-1,0,1,-2,2。
1、设集合A???1,0,1?;B??2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A的若干个--变换的乘法作成的群叫做A的一个变换全。
6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。
8、设I和S是环R 的理想且I?S?R,如果I是R的最大理想,那么---------。
9、一个除环的中心是一个-域-----。
三、解答题?12345678??12345678???1、设置换和分别为:???,,判断?和?的奇偶性,并把?和???????64173528??23187654?写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
奇1、解:把?和?写成不相杂轮换的乘积:??(1653)(247)(8)??(123)(48) (57)(6) 可知?为奇置换,?为偶置换。
?和?可以写成如下对换的乘积:??(13)(15)(16)(24)(27)??(13)(1 2)(48)(57)B?11(A?A?)C?(A?A?)222解:设A是任意方阵,令,,则B是对称矩阵,而C 是反对称矩阵,且A?B?C。
若令有A?B1?C1,这里B1和C1分别为对称矩阵和反对称矩阵,则B?B1?C1?C,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:B?B1,C?C1,所以,表示法唯一。
1 3、设集合Mm?{0,1,2,??,m?1,m}(m?1),定义Mm中运算“?m”为a?mb=(a+b)(modm),则是不是群,为什么?四、证明题21、设G是群。
证明:如果对任意的x?G,有x?e,则G是交换群。
2、假定R是一个有两个以上的元的环,F是一个包含R 的域,那么F包含R的一个商域。
2?1?1?1(xy)?exy?(xy)?yx?yx。
2、证明在F里a(a,b?R,b?0)b ?a??Q??所有?(a,b?R,b?0)b??有意义,作F的子集ab?1?b?1a?Q显然是R的一个商域证毕。
? 近世代数模拟试题二一、单项选择题二、1、设G 有6个元素的循环群,a是生成元,则G的子集是子群。
33????aa,e??e,a?? e,a,aA、B、C、D、2、下面的代数系统中,不是群A、G 为整数集合,*为加法B、G为偶数集合,*为加法C、G为有理数集合,*为加法D、G为有理数集合,*为乘法3、在自然数集N上,下列哪种运算是可结合的?A、a*b=a-bB、a*b=max{a,b}C、a*b=a+2bD、a*b=|a-b| 4、设?1、?2、?3是三个置换,其中?1=,?2=,?3=,则?3= 22A、?1B、?1?2 C、?2 D、?2?1 5、任意一个具有2个或以上元的半群,它。
A、不可能是群B、不一定是群C、一定是群D、是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个---变换全-------同构。
2、一个有单位元的无零因子-交换环----称为整环。
43、已知群G中的元素a的阶等于50,则a的阶等于-25-----。
4、a的阶若是一个有限整数n,那么G与-------同构。
5、A={} B={} 那么A∩B=---2--。
6、若映射?既是单射又是满射,则称?为---双射--------------。
7、?叫做域F的一个代数元,如果存在F的--不都等于林---a0,a1,?,an使得 2 a0?a1????an?n?0。
8、a是代数系统(A,0)的元素,对任何x?A均成立x?a?x,则称a为----单位元-----。
9、有限群的另一定义:一个有乘法的有限非空集合G作成一个群,如果满足G对于乘法封闭;结合律成立、---------。
10、一个环R对于加法来作成一个循环群,则P是----------。
三、解答题1、设集合A={1,2,3}G是A上的置换群,H 是G的子群,H={I,(1 2)},写出H的所有陪集。
2、设E是所有偶数做成的集合,“?”是数的乘法,则“?”是E中的运算,是一个代数系统,问是不是群,为什么?1、解:H的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )} H的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )} 2、答:不是群,因为中无单位元。
3、解方法一、辗转相除法。
列以下算式:a=b+102 b=3×102+85 102=1×85+17 此得到(a,b)=17, [a,b]=a×b/17=11339。
然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b. 所以p=4, q=-5. 四、证明题1、证明设e是群的幺元。
令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b。
所以,x=a-1*b是a*x =b的解。
若x?∈G也是a*x=b 的解,则x?=e*x?=(a-1*a)*x?=a-1*(a*x?)=a-1*b=x。
所以,x=a-1*b 是a*x=b的惟一解。
2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合Z记为Zm,每个整数a所在的等价类记为[a]={x∈Z;m ︱x–a}或者也可记为a,称之为模m剩余类。
若m︱a–b也记为a≡b(m)。
当m=2时,Z2仅含2个元:[0]与[1]。
四、证明题1、若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=b。
2、设m是一个正整数,利用m定义整数集Z上的二元关系:a?b当且仅当m ︱a–b。
近世代数模拟试题三一、单项选择题1、6阶有限群的任何子群一定不是。
A、2阶B、3 阶C、4 阶D、6 阶2、设G是群,G有个元素,则不能肯定G是交换群。
A、4个B、5个C、6个D、7个 3 3、有限布尔代数的元素的个数一定等于。
4、下列哪个偏序集构成有界格A、偶数B、奇数C、4的倍数D、2的正整数次幂A、B、C、)D、(P(A),?) 5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
?1faAAA2、如果是与间的一一映射,是的一个元,则?f?a???----a------。
3、区间[1,2]上的运算a?b?{mina,b}的单位元是--2-----。
f4、可换群G中|a|=6,|x|=8,则|ax|=———24———————。
5、环Z8的零因子有-----------------------。
6、一个子群H的右、左陪集的个数---相等-------。
7、从同构的观点,每个群只能同构于他/它自己的-----商权----。
8、无零因子环R中所有非零元的共同的加法阶数称为R的---特征--------。
n9、设群G中元素a的阶为m,如果a?e,那么m与n存在整除关系为---mIn----。
三、解答题1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?2、S1,S2是A的子环,则S1∩S2也是子环。
S1+S2也是子环吗?3、设有置换??(1345)(1245),??(234)(456)?S6。
?11.求??和??;?12.确定置换??和??的奇偶性。
群论前我们没有一般的方法,只能用枚举法。
用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,?等等,可得总共8种。
2、证上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩S2:因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2 ,因而a-b, ab∈S1∩S2 ,所以S1∩S2是子环。
S1+S2不一定是子环。
在矩阵环中很容易找到反例:4 ?1???(1243)(56)?);3、解:1.,??(165242.两个都是偶置换。
四、证明题1、一个除环R只有两个理想就是零理想和单位理想。
2、M 为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。
?1a????0?1、证明:假定是R的一个理想而不是零理想,那么a,理想的定义a?1??,因而R的任意元b?b?1?? 这就是说?=R,证毕。
2、证必要性:将b代入即可得。
充分性:利用结合律作以下运算:ab=ab(ab2a)=(aba)b2a=ab2a=e,ba=(ab2a)ba=ab2 (aba)=ab2a=e,近世代数模拟试题四一、单项选择题(本大题共5小题,每小题3分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有个元素。
2.设A=B=R(实数集),如果A到B的映射?:x→x+2,?x∈R,则?是从A到B的 A.满射而非单射B.单射而非满射 C.一一映射 D.既非单射也非满射3.设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有A.(1),(123),(132) B.(12),(13),(23) C.(1),(123)中的所有元素4.设Z15是以15为模的剩余类加群,那么,Z15的子群共有个。