塑性变形力学基础
弹塑性_塑性力学基本方程和解法
在加载过程中物体各点处的偏应力分量 sij 保持比例不变。在工程允许精度下,也可推
广应用于稍为偏离简单加载的情况。
以上各种理论中涉及的一些假设,例如:塑性应变偏量的增在单一的函数关系等假设,都得到了常用金属材
料大量试验的验证。
z 强化规律 对于理想弹塑性材料,材料一旦屈服,其应力状态点在主应力空间中就落在屈服
变形, Hα 也不变,于是
∂f ∂σ ij
除等向强化外,有些强化材料表现为随动强化(图 7.7b),即,在强化过程中,屈
服面的大小和形状保持不变,只随塑性变形的发展而在应力空间中平移。还有些材料
在强化过程中随动强化与等向强化同时发生,称为混合强化。
由于在应力和强化参数空间中,表示应力状态的应力点只可能位于后继屈服面
(或加载面)上或其内,不可能位于曲面之外,若加载面是一个正则曲面,则有
⎯2⎯
研究生学位课弹塑性力学电子讲义
姚振汉
⎧ε = 0 ⎨⎩σ = σ s
当 σ <σs 当 ε >0
(2)
图 7.5 理想弹塑性和刚塑性
当考虑材料强化性质时,可在理想弹塑性模型的基础上加以改进,采用线性强化 弹塑性模型来近似:
⎧σ = Eε
⎨⎩σ = σ s +E1 (ε − εs )
当 ε ≤εs 当 ε >εs
(5)
⎯3⎯
第七章 塑性力学的基本方程与解法
其中 k 可由单向拉伸或其它材料试验测得的σ s 确定, k = σ s 2 。当不能确定主应力的 排序时,在以三个主应力为坐标轴的应力空间中,由特雷斯卡条件所包围的弹性状态 的应力空间为
σ1 −σ 2 ≤ 2k, σ 2 −σ 3 ≤ 2k, σ 3 −σ1 ≤ 2k
第一章 塑性变形的力学基础
第一章塑性变形的力学基础1、塑性加工时所受的外力金属在发生塑性变形时,作用在变形物体上的外力有两种:作用力和约束反力。
第二讲塑性变形的力学基础返回首页2、作用力通常把压力加工设备可动工具部分对变形金属所作用的力叫作用力或主动力。
用实际例子加以说明:(1)锻压时锤头对工件的压力(图1-1a中之P);(2)挤压加工时活塞对金属推挤的压力(图1-1b中之P);(3)拉拔加工时,工件所承受的拉力(图1-1c中之P)。
图1-1 基本压力加工过程的受力图和应力状态图(a)镦粗;(b)挤压;(c)拉拔;(d)轧制3、约束反力工件在主动力的作用下,其运动将受到工具阻碍而产生变形。
金属变形时,其质点的流动又会受到工件与工具接触面上摩擦力的制约,因此工件在主动力的作用下,其整体运动和质点流动受到工具的约束时就产生约束反力。
这样,在工件和工具的接触表面上的约束反力就有正压力和摩擦力。
(1)正压力沿工具和工件接触表面法线方向阻碍工件整体移动或金属流动的力,它的方向和接触面垂直,并指向工件,如图1-1中之N。
(2)摩擦力沿工具和工件接触面切线方向阻碍金属流动的力,它的方向和接触面平行,并与金属质点流动方向和流动趋势相反。
如图1-1中之T。
4、轧制压力轧件对轧辊总的正压力和摩擦力的合力值等于轧辊对轧件的总压力,我们把轧件对轧辊总压力的垂直分力叫轧制压力,也就是轧机压下螺丝承受的力。
5、内力的概念和内力产生的原因(1)内力的概念:当物体在外力作用下,并且物体的运动受到阻碍时,为了平衡外力而在物体内部产生的力叫内力(2)内力产生的原因:为了平衡外部的机械作用所产生的内力。
在生产加工(轧制)过程中,由于不均匀变形、不均匀加热或冷却(物理过程)及金属内的相变(物理-化学过程)等,都可以促使金属内部产生内力。
6、应力、应力集中(1)应力的概念:内力的强度称为应力,或者说是内力的大小以应力来度量,即以单位面积上所作用的内力大小表示之。
塑性成形理论基础
内力和应力
当所加外力使工件内部原子间距发生变化时,原子间便出现 相应的内力与外力平衡。
内力的强度(大小)称为应力。 如图,工件受若干外力 F1 …….Fn作用。在其内 一点Q处 截取一微小面素dA ,由于平衡, 面素两侧的应力相等dFA= dFB = dF则:
23 2 3
2
31 3 1
2
12 2 1
2
根据主应力的排序规则,最大切应力为:
max 1 3
2
球应力张量与偏差应力张量
应力张量可作如下分解:
xx xy xz xx m xy
xz m 0 0
ij yx
yy
yz
yx
yy m
yz
0
m
0
zx zy zz zx
材料成形原理
第四章 塑性成形理论基础 (物理基础、力学基础)
塑性加工原理的内容
力 1. 塑性加工力学条件
学 基
2. 塑性加工中的摩擦与涧滑
础 3. 不均匀变形
4. 塑性变形机制
物 理
5. 塑性变形中组织性能演变
基 础
6. 金属的塑性与变形抗力
7. 塑性变形中组织性能控制
塑性加工/成形原理
力学基础(塑性力学基础)
应力、应变分析,屈服准则 本构关系,塑性问题
物理基础(金属学基础)
变形机制、组织性能演变、塑性与 变形抗力
材料科学与工程学科基础课
塑性成形理论基础
之
力学基础
应力、应变分析,屈服准则 本构关系,塑性问题
材料成形原理
一、应力分析
塑性成形/加工中工件所受外力
主要有作用力和约束反力。
塑性力学 ppt课件
或者
l l n ij i j S n ij l i 2 S n n
2 n
(求和约定的缩写形式)
一点的应力状态及应力张量
一点的应力状态:是指通过变形体内某点的单元体所有 截面上的应力的有无、大小、方向等情况。 一点的应力状态的描述: 数值表达:x=50MPa,xz=35MPa 图示表达:在单元体的三个正交面上标出(如图 1-2) 张量表达: (i,j=x,y,z) x xy xz
1 2 2 3 3 1
x
I3 . .
xy xz y yz . z
23 1
讨论:
1. 2. 3. 4. 5. 6. 可以证明,在应力空间,主应力平面是存在的; 三个主平面是相互正交的; 三个主应力均为实根,不可能为虚根; 应力特征方程的解是唯一的; 对于给定的应力状态,应力不变量也具有唯一性; 应力第一不变量I1反映变形体体积变形的剧烈程 度,与塑性变形无关;I3也与塑性变形无关; I2与塑性 变形有关。 7. 应力不变量不随坐标而改变,是点的确定性的判据。
弹性、塑性变形的力学特征
可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 与加载路径的关系:弹性——无关;塑性——有关 对组织和性能的影响:弹性变形——无影响;塑性变形—— 影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理:弹性变形——原子间距的变化; 塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。
金属塑性加工原理
第3章金属塑性变形的力学基础之屈服准则
变形体单位体积内的总弹性变形能
1 1 m
m
3
1 An = ij ij 2
体积变化引起的单位体积弹性变形能
2
3 AV = m m 2
2 m m
m
3
m
18
3.6 形状变化引起的单位体积弹性变形能
3.6 Deformation energy per unit volume induced by shape change
max min s 2 K
10
2.3 任意应力状态下的Tresca屈服准则
2.3 Tresca yield criterion of any stress state
x xy xz yx y yz zx zy z
形状变化引起的单位体积弹性变形能
NWPU 广义胡克定律
A An AV
1 3 = ij ij m m 2 2
1 A [( x y )2 ( y z )2 ( z x )2 6( xy 2 yz 2 zx 2 )] 12G 1 2 1 2 1 E J2 G 19 2G 2 1 6G 3E
第四节 屈服准则
Part 4. Yield Criterion
P105-P116
1
本节主要内容 Contents
NWPU
1. 2.
基本概念★ ★Concepts 屈雷斯加屈服准则★ ★ ★ Tresca yield criterion
掌握标准 ★ ★ ★要求熟练掌 握并能应用 ★ ★要求熟练掌握 ★ 要求了解
等倾线定义 任意应力矢量
弹塑性力学基础理论与应用
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
第三章 金属塑性变形的物理基础
(1)塑性的基本概念
什么是塑性? 塑性是金属在外力作用下产生永久变形 而不破坏其完整性的能力。
塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
塑性与柔软性的对立统一
铅---------------塑性好,变形抗力小
不锈钢--------塑性好,但变形抗力高 白口铸铁----塑性差,变形抗力高
塑性指标的测量方法
拉伸试验法 压缩试验法 扭转试验法 轧制模拟试验法
拉伸试验法
Lh L0 100%
L0 F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
%
晶粒5 晶粒4 晶粒3
晶粒2
晶粒1
位置,mm
图5-6 多晶铝的几个晶粒各处的应变量。 垂直虚线是晶界,线上的数字为总变形量
四、合金的塑性变形
单相固溶体合金的变形 多相合金的变形
§3. 2 金属塑性加工中组织和性能变化 的基本规律
一、冷塑性变形时金属组织和性能的变化 二、热塑性变形时金属组织和性能的变化
2200
N/mm2
图4-6 正压力对摩擦系数的影响
0.5
μ
0.4
0.3
0.4
0.2 0.2
0.1
0
℃
200
400
600
800
图4-7 温度对钢的摩擦系数的影响
0
400
600
800 ℃
图4-8 温度对铜的摩擦系数的影响
测定摩擦系数的方法
夹钳轧制法 楔形件压缩法 塑性加工常用摩擦系数 圆环镦粗法
Lesson07 第17章 金属塑性变形的力学基础 2.4 材料本构关系-材料班
2.4 材料本构关系
本构关系(Constitutive Relations):材料变形过程中应力与应变之间 的关系。
这种关系的数学表达式称为本构方程,也叫物理方程。 塑性应力应变关系和屈服准则都是求解塑性变形问题的基本方程。
2.4.1.材料真实应力-应变曲线 2.4.2.弹性与塑性变形时应力应变关系的特点 2.4.3.增量理论 2.4.4.全量理论 2.4.5.实验:绘制拉伸真实应力应变曲线
x
1 E
[
x
( y
z )];
y
1 E
[
y
( z
x )];
z
1 E
[ z
( x
y )];
yz
yz
2G
zx
zx
2G
xy
xy
2G
p358式17-1
~18~
《塑性成形原理》
机械工程系 张海涛
2.4 材料本构关系
2.4.2.弹性与塑性变形时应力应变关系的特点
通过变换,我们可以得到:
~20~
《塑性成形原理》
机械工程系 张海涛
2.4 材料本构关系
2.4.2.弹性与塑性变形时应力应变关系的特点
这些式子表明, 弹性应力应变关系有如下特点: 1、应力与应变成线性关系,应力主轴与应变主轴重合。 2)弹性变形是可逆的,应力应变关系是单值对应的。 3)弹性变形时,应力球张量使物体产生体积变化,泊松 比ν<0.5。
~14~
《塑性成形原理》
2.4 材料本构关系
2.4.1.材料真实应力-应变曲线 ● 材料模型示例
机械工程系 张海涛
低碳钢在不同温度下的静载压缩时的真实应力-应变曲线
第二章 金属塑性变形的物理基础
26
锻造温度区间的制定
27
2、锻合内部缺陷 3、打碎并改善碳化物和非金属夹杂物在钢 中的分布 4、形成纤维组织 5、改善偏析
28
塑性变形过程中晶粒的变化
29
第三节 金属的超塑性变形
一、超塑性的概念和种类 概念:金属和合金具有的超常的均匀变形 能力。
大伸长率、无颈缩、低流动应力、易成形、无加工硬化
另一个取向,故晶界处原子排列处于过渡状态。
4、晶界不同于晶内性质:
3
一、变形机理
晶内变形 1、滑移 2、孪生 晶间变形 晶粒之间的相互转动和滑动 注意: 晶间变形的情况受温度的影响
4
1、滑移面和滑移方向的确定
确定滑移面:原子排 列密度最大的晶面 确定滑移方向:原子 排列密度最大的方向
5
金属的主要滑移方向、滑移面、滑移系
种类:
细晶超塑性:在一定的恒温下,在应变速率和晶粒度都满 足要求的条件下所呈现出的超塑性。 相变超塑性:具有相变或同素异构转变的金属,在其转变 温度附近以一定的频率反复加热、冷却。在外力的作用下 所呈现出的超塑性。
30
二、细晶超塑性变形的力学特征
无加工硬化
31
三、影响细晶超塑性的主要因素
应变速率
20
21
二、性能的变化 (力学性能) 加工硬化 成因:位错交互作用,难以运动 应用:强化(奥氏体钢) 避免:多次塑性加工中加入退火工序
22
第二节 金属热态下的塑性变形
热塑性变形:再结晶温度以上进行的塑性 变形 一、塑性变形时的软化过程 1、动态回复、动态再结晶 2、静态回复、静态再结晶、亚动钢中的碳和杂质元素的影响 碳 磷 硫 氮 氢 氧
37
2、合金元素对钢的塑性的影响 合金元素的加入,会使钢的塑性降低、变 形抗力提高 原因见课本p43
金属塑性成形原理---第二章_金属塑性变形的物理基础
位错的攀移
❖ 螺型位错无攀移
❖ 正攀移——正刃型位错位错线上移
负刃型位错位错线下移
编辑课件
位错的交割
❖ 两根刃型位错线都在各自的滑移面上移动,
则在相遇后交截分别形成各界,形成割阶后
仍分别在各自的平面内运动。
❖ 刃型位错和螺型位错交割时,在各自的位错
线上形成刃型割阶,位错线也能继续滑移。
❖ 螺型位错和螺型位错交割时,相交后形成的
❖ 假设:理想晶体两排原子相距为a,同排原子间距
为b。原子在平衡位置时,能量处于最低的位置。
在外力τ作用下,原子偏离平衡位置时,能量上升,
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以上。
编辑课件
典型的晶胞结构
编辑课件
典型的晶胞结构
编辑课件
三种晶胞的晶格结构
编辑课件
一、塑性变形机理
实际金属的晶体结构
❖ 单晶体:各方向上的原子密度不同——各向
异性
❖ 多晶体:晶粒方向性互相抵消——各向同性
❖ 塑性成形所用的金属材料绝大多数为多晶
体,其变形过程比单晶体复杂的多。
编辑课件
多晶体塑性变形的分类
加工中,会使变形力显著增
加,对成形工件和模具都有
III.抛物线硬化阶段:
一定的损害作用;但利用金
与位错的交滑移过程有关,
θ3
随应变增加而降低,应力应变
属加工硬化的性质,对材料
曲线变为抛物线。
进行预处理,会使其力学性
能提高
编辑课件
2.2 金属热态下的塑性变形
塑性力学基础知识ppt课件
• 根据不同应力路径所进行的实验,可 以定出从弹性阶段进入塑性阶段的各 个界限。这个分界面即称为屈服面, 而描述这个屈服面的数学表达式称为 屈服函数或称为屈服条件。
12
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
19
简单弹塑性力学问题 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。
• 梁的弯曲 • 圆柱体的扭转 • 旋转圆盘 • 受内压或外压作用的厚壁筒和
厚壁球体
20
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
塑性力学的任务
• 当作用在物体上的外力取消后,物 体的变形不完全恢复,而产生一部 分永久变形时,我们称这种变形为 塑性变形,研究这种变形和作用力 之间的关系,以及在塑性变形后物 体内部应力分布规律的学科称为塑 性力学。
2
本标准适 用于已 投入商 业运行 的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
屈服条件的概念,
• 屈服条件又称塑性条件,它是判断 材料处于弹性阶段还是处于塑性阶 段的准则。.
弹性与塑性力学基础 第六章 塑性力学解题方法及应用举例
§6-3 滑移线场概念及其在平冲头镦粗半无限体中的应用
6.3.1 滑移线的定义与滑移线法
➢ 滑移线的基本概念
作用于最大剪应力面上的正应力13恰等于平均应力m或中间主应
力2 ,即
1 3 m 2 1 2 (13 ) 1 2 (xy)
任一点应力状态可用静水压(平均
应力)与最大剪切力K相叠加来表
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
§6-3 滑移线场概念及其在平冲头镦粗半无限体中的应用
6.3.1 滑移线的定义与滑移线法 ➢ 滑移线的基本概念 塑性变形体(或变形区)内任一点的应力状态如图所示
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
压力容器、管道、挤压凹模等) 2020/10/16轴对称平面问题
应力分析:
rz、θr为零 θ 、 r为主应力,仅随 r 变化; 平衡微分方程:
dr r 0 (6-1)
dr r
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
§6-1 平衡微分方程和屈服准则联立求解及其应用
6.1.2 受内压塑性圆筒及受内拉的塑性圆环应力计算
弹性与塑性力学基础
第六章
塑性力学解题方法及应用举例
2020/10/16
弹性与塑性
力 学 基 础 第六章 塑性力学解题方法及应用举例
1、塑性力学问题求解现状
(1) 在塑性状态物体内应力的大小与分布求解比较弹性状态困难; (2) 非线性塑性应力应变关系方程; (3) 联解平衡方程和屈服准则,补充必要的物理方程和几何方程,在
代入式(6-12)得
z =s
塑性力学
l
由平衡条件
P σ 1 = σ 3 = ( − σ s ) /(2cos θ ) A
2
2σ 1 cos θ + σ 2 = P / A
ε1 = ε 2 cos θ
2
(1)
1. 弹性阶段
ε1 = σ 1 / E
P = 0 ~ Pe
ε2 = σ2 / E
1
2
3
l
与(1)联立,得
1 P σ2 = 1 + 2cos3 θ A
cos θ P σ1 = σ 3 = 1 + 2cos3 θ A
硬化模型 理想塑性 软化模型
线性硬化 κ = H | ε p|
代入
σ
⇒ κ = H ∫ | ε p | dt
σs
E′ E
ε p = λ sign(σ )
ε
−σ s
κ = Hλ
切线弹塑性模量
-硬化变量与流动参数有直接联系
σ = Eε e = E (ε − ε p )
确定塑性应变增量与总应变增量之关系 加载一致性条件
ε p = λ sign(σ )
弹性和塑性加载、卸载的判断: 加卸载条件
⎧= 0 σ dσ ⎨ ⎩< 0
加载 卸载
— 流动法则
⎧= 0 σ sign(σ ) ⎨ ⎩< 0
⎧λ > 0 ⎨ ⎩λ = 0
⎧= 0 加载 df σ = σ sign(σ ) ⎨ f (σ ) = dσ ⎩< 0 卸载
比较得
σa
σ σ
σl = 0
σl
- 单轴压缩
σl
σ l = σ a - 等向压缩
低碳钢的拉伸
A
d0 l0
一般力学与力学基础的弹塑性分析方法
一般力学与力学基础的弹塑性分析方法弹塑性分析方法是一般力学和力学基础中重要的研究领域之一。
本文将介绍弹塑性分析方法的基本概念、应用领域以及常用的数学模型和计算方法。
一、弹塑性分析方法的基本概念弹塑性分析方法是一种综合运用弹性力学和塑性力学理论的方法,用于描述材料在外力作用下的弹性变形和塑性变形过程。
在弹塑性分析中,材料会先发生弹性变形,当应力达到一定临界值时,开始发生塑性变形。
弹塑性分析方法可以更准确地预测材料的变形和破坏行为。
二、弹塑性分析方法的应用领域弹塑性分析方法广泛应用于工程结构、土力学、岩石力学等领域。
例如,在工程结构的设计中,使用弹塑性分析方法可以预测结构在外载荷作用下的变形和破坏行为,从而确定结构的合理尺寸和材料强度要求。
在土力学和岩石力学中,弹塑性分析方法可以用于预测土体和岩石的变形和破坏特性,为工程施工和地质灾害的预测提供依据。
三、弹塑性分析的数学模型弹塑性分析方法使用了多种数学模型来描述材料的力学行为。
其中常用的模型包括线性弹性模型、单一参数塑性模型和本构模型等。
1. 线性弹性模型:线性弹性模型假设材料的应力与应变之间呈线性关系,常用于描述小应变范围内的材料行为。
2. 单一参数塑性模型:单一参数塑性模型假设材料的塑性行为由一个参数来描述,常用于描述中等应变范围内的材料行为。
3. 本构模型:本构模型是更为复杂的数学模型,可用于描述广泛的材料行为。
常见的本构模型包括弹塑性本构模型、弹塑性本构模型、弹粘塑性本构模型等。
四、弹塑性分析的计算方法弹塑性分析方法使用了多种计算方法来求解材料的变形和应力分布。
其中常用的计算方法包括有限元法、边界元法和等。
这些方法可以将实际结构离散成有限个子区域,通过求解子区域的变形和应力,得到整个结构的变形和应力分布。
这些计算方法具有高精度和较强的通用性,广泛应用于工程和科学研究领域。
综上所述,弹塑性分析方法是一般力学和力学基础中重要的研究领域,用于描述材料在外力作用下的弹性变形和塑性变形过程。
塑性力学知识点13
《塑性力学及成形原理》知识点汇总第一章绪论1.塑性的基本概念2.了解塑性成形的特点第二章金属塑性变形的物理基础1.塑性和柔软性的区别和联系2.塑性指标的表示方法和测量方法3.磷、硫、氮、氢、氧等杂质元素对金属塑性的影响4.变形温度对塑性的影响;超低温脆区、蓝脆区、热脆区、高温脆区的温度范围补充扩展:1.随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低的现象称为:加工硬化2.塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标为:伸长率和断面收缩率3.影响金属塑性的因素主要有:化学成分和组织、变形温度、应变速率、应力状态(变形力学条件)4.晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好5.应力状态对于塑性的影响可描述为(静水压力越大):主应力状态下压应力个数越多,数值越大时,金属的塑性越好6.通过试验方法绘制的塑性——温度曲线,成为塑性图第三章金属塑性变形的力学基础第一节应力分析1.塑性力学的基本假设2.应力的概念和点的应力状态表示方法3.张量的基本性质4.应力张量的分解;应力球张量和应力偏张量的物理意义;应力偏张量与应变的关系5.主应力的概念和计算;主应力简图的画法公式(...3.-.14..)应力张量不变量的计算...........122222223()2() x y zx y y z z x xy yz zx x y z xy yz zx x yz y zx z xyJ J Jσσσσσσσσστττσσστττστστστ=++=-+++++=+-++公式(...3.-.15..)应力状态特征方程.........321230J J J σσσ---= (当已知一个面上的应力为主应力时,另外两个主应力可以采用简便计算公式(...3.-.35..).的形式计算)6.主切应力和最大切应力的概念计算公式..(.3.-.25..).最大切应力.....)(21min max max σστ-= 7.等效应力的概念、特点和计算主轴坐标系中......公式..(.3.-.31..).8σ=== 任意坐标系中......公式..(.3.-.31a ...).σ=8.单元体应力的标注;应力莫尔圆的基本概念、画法和微分面的标注 9.应力平衡微分方程 第二节 应变分析1.塑性变形时的应变张量和应变偏张量的关系及其原因 2.应变张量的分解,应变球张量和应变偏张量的物理意义 2.对数应变的定义、计算和特点,对数应变与相对线应变的关系 3.主应变简图的画法 3.体积不变条件公式(...3.-.55..).用线应变....0x y z θεεε=++=;用对数应变.....(主轴坐标系中)........0321=∈+∈+∈ 4.小应变几何方程公式(...3.-.66..).1;()21;()21;()2x xy yx y yzzy z zx xz u u v x y x v v w y z yw w u z x zεγγεγγεγγ∂∂∂===+∂∂∂∂∂∂===+∂∂∂∂∂∂===+∂∂∂ 第三节 平面问题和轴对称问题1.平面应变状态的应力特点;纯切应力状态的应力特点、单元体及莫尔圆公式(...3.-.8.6.).12132()z m σσσσσ==+= 第四节 屈服准则1.四种材料的真实应力应变曲线 2.屈雷斯加屈服准则 公式(...3.-.96..).max 2s K στ== 3.米塞斯屈服准则公式(...3.-.10..1.).2222222262)(6)()()(K s zx yz xy x z z y y x ==+++-+-+-στττσσσσσσ 2221323222162)()()(K s ==-+-+-σσσσσσσ公式(...3.-.102...).s sσσσσ==== 4.两个屈服准则的相同点和差别点5.13s σσβσ-=,表达式中的系数β的取值范围 第五节 塑性变形时应力应变关系 1.塑性变形时应力应变关系特点 2.应变增量的概念,增量理论公式(...3.-.125...).'ij ij d d εσλ= 公式(...3.-.129...).)](21[z y x x d d σσσσεε+-=;xy xy d d τσεγ23= )](21[z x y y d d σσσσεε+-=;yz yz d d τσεγ23=)](21[y x z z d d σσσσεε+-=;zx zx d d τσεγ23=3.比例加载的定义及比例加载须满足的条件 第六节 塑性变形时应力应变关系 1.真实应力应变曲线的类型第四章 金属塑性成形中的摩擦1.塑性成形时摩擦的特点和分类;摩擦机理有哪些?影响摩擦系数的主要因素 2.两个摩擦条件的表达式3.塑性成形中对润滑剂的要求;塑性成形时常用的润滑方法 第五章 塑性成形件质量的定性分析 1.塑性成形件中的产生裂纹的两个方面2.晶粒度的概念;影响晶粒大小的主要因素及细化晶粒的主要途径 3.塑性成形件中折叠的特征 第六章 滑移线场理论简介1.滑移线与滑移线场的基本概念;滑移线的方向角和正、负号的确定 2.平面应变应力莫尔圆中应力的计算;公式(...7.-.1.).ωτωσσωσσ2cos 2sin 2sin K K K xy m y m x =+=-= 3.滑移线的主要特性;亨盖应力方程公式(...7.-.5.).2ma mb ab K σσω-=± 4.塑性区的应力边界条件;滑移线场的建立练习题一、应力1、绘制⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=410140002ij σ的单元体和应力莫尔圆,并标注微分面。
弹塑性力学 第六章 塑性力学基本概念
理想刚塑形模型???
2、线性硬化模型:硬化阶段曲线为线性
将硬化阶段的曲线简化为一条直线,即连续的应力-应 变关系曲线OAA’C简化为两条直线组成的折线OAC。 第一条直线OA代表线 弹性变形性质,其斜 率为E ;第二条直线 AC代表强化性质 ,其 斜率为Et。
b B
s
C
s,
s,
• 影响材料性质的其它几个因素: 1. 温度。当温度上升,材料屈服应力降低、塑性变形 能力提高。高温下,会有蠕变、应力松弛现象。 2. 应变速率。如果在实验时加载速度提高几个数量级, 则屈服应力会相应地提高,塑性变形能力会降低。一 般加载速度不考虑这个因素。高速撞击载荷或爆炸载 荷需要考虑。
§6.3 单轴应力-应变关系的简化模型
屈服条件(加载条件)
s
p
A
*
将累积塑性变形量作为内变量
H O E
k ( dε ) 0
p
*
k函数称为硬化函数,初值:
k (0) s
B‘
• (2)随动硬化模型: • 对一些材料有包辛 格效应的材料,应 变硬化提高了材料 的拉伸屈服应力, 在反向加载(压缩) 时,压缩屈服应力 降低。 • 这种硬化特征称为 随动硬化。
6.2 材料实验结果
一、单轴拉伸实验 • 材料塑形变形性质通过试验研究获得。
• 最简单实验是室温单轴拉压实验: •材料:金属多晶体材料 •试件如图
•名义应力和名义应变定义为
P / A0
A0
l l0 / l0
l0
--材料的单轴拉伸实验曲线有如图所示两种形态。
conditional yield limit 条件屈服极限
金属塑性成形原理第三章金属塑性成形的力学基础第二节应变分析-无动画版
四、点的应变状态与应力状态的比较
6.主应变图
主应变图是定性判断塑性变形类型的图示方法。主应变图只 可能有三种形式
广义拉伸:挤压和拉拔 广义剪切:宽板弯曲、无限长板镦粗、纯剪切和轧制板带 广义压缩:展宽的轧制和自由镦粗;
一、位移和应变
对应的各阶段的相对应变为
l1 l0 01 l0
显然
l2 l1 12 l1
l3 l2 23 l2
03 01 12 23
一、位移和应变
③对数应变为可比应变,工程应变为不可比应变。
假设将试样拉长一倍,再压缩一半,则物体的变形程 L 度相同。 拉长一倍时 压缩一半时
因此,工程应变为不可比应变。
二、应变状态和应变张量
现设变形体内任一点 a(x,y,z)应变分量为
ε 。由a引一任意方向
ij
线元ab,长度为r, 方向余弦为l,m,n。 小变形前,b可视为a点无 限接近的一点,其坐标为 (x+dx,y+dy,z+dz)
四、点的应变状态与应力状态的比较
一、位移和应变
=
+
单元体变形
=
纯切应变
+
刚体转动
切应变及刚性转动 设实际偏转角为αxy,αyx,
xy yx xy xy yx xy
1 2
xy xy z yx yz z 1 z ( yx xy ) 2
四、点的应变状态与应力状态的比较
将八面体剪应变γ8 乘以系数 ,可得等效应变(广 2 义应变、应变强度)