分数、百分数总复习
分数混合运算与百分数复习题
一、计算(能简算的要简算)(3/4+1/2-5/6)÷1/24 5/9×27/10+4/9÷10/27 5/9×14/3÷28/3 13/6÷26/5×24/77/8÷3/5+1/8÷3/52—3/4×5/3÷4/532×12.5%×25% (5/4-2×3/8)÷12.5% 1.57×3/8+5/8×157% (3/4-2/3)×12÷10% 87.5%×23+7/8 (5/8×6/5-3/5)÷7/10 8.5×0.75+7.5×75% 99%+91×(2/13-1/7)二、解方程χ-75%χ=1.2 2.5×40%χ-3/5χ=1/4 3/4χ—1/2=1/8 2/5×10/11÷χ=6/115/7χ×1/14=1/3 3/5χ=1/2×8/9 2/3χ—9/10=3/5 1/3—1/6+1/4χ=7/8 5χ—3/4=1/8χ÷(1+1/7)=280 χ+30%χ=3.9 3/4-0.5χ=12.5% 10%χ+1/15χ=1 62.5%χ-1/4χ=1.2 χ÷3/4=18χ+1/4χ=364 (1-1/9)χ=9/8 3/5χ=20×3/42/3χ-2/5χ=12 7χ-5/12=2/3 χ-1/4χ=1/91/5χ=8/25+2/5 χ+1/7χ=72 (1+3/8)χ=11/16 χ+2/3χ=6/7 χ-2/3χ=6/7 2/3χ+3/5χ=4/15三、填空1. 0.2=4( )=( )40=( )%=( )÷15 2. 0.6=15( ) =( )15=( )÷10=( )折 3. 3÷4=( )( ) =( )100=( )% 4. 2/5=( )%=( )(小数) 9÷6=( )( )=( )%=( )(小数) 5. 3米是4米的( )( ) 3米比4米少的是4米的( )( )4米比3米多( )( )6. 黑兔的只数是灰兔的5/6,灰兔的只数是黑兔的( )( )黑兔比灰兔少( )( )7. 78%的分数单位是( ),再添上( )个这样的单位就是18. 百分之二十八点八写作( ),0.95%读作( )9. 百分之二十三点七写作( ),73.56%读做( )10. 15是12的( )%,12是15的( )%,12比15少( )%11. 五年1班男生人数占全班人数的53%,女生人数占全班的( )%12. 50是200的( )%,70的70%是( ),60是( )的75%,( )的20%是2013. 把4克盐放入96克水中,盐占盐水的( )%14. 一个数的45%是2.7,这个数是( )15. 甲数比乙数多20%,甲数是乙数的( )%16. 把30%的百分号去掉,这个数与原数相比( )17. 某班今天出勤48人,缺勤2人,出勤率是( )18. 同学们种了200盆花,成活了195盆,成活率是( )19.在88%、0.089、0.875和7/8中,最大的数是(),最小的数是(),相等的数是()和()20.甲数是乙数的5/4倍,甲数比乙数多()%,乙数比甲数少()%21.比30米多1/4的数是20米的()()22.一个数的7/8是21/20,这个数是(),这个数的2/5是()23.15/14的倒数乘10/21的倒数,积的倒数是()24.要修一条长3千米的公路,已经修了全长的3/5,还剩()米没修。
《分数与百分数》概念整理
分数与百分数的概念复习整理分数与百分数知识属于数与代数中数的认识这一内容,知识点以理解和掌握机及运用位主。
一、基本知识点:1、 分数的意义与性质包括7个小知识点:分数的意义、分数大小的比较、分数与除法的关系、真分数、假分数(带分数)、分数的基本性质、最简分数、约分与通分、分数和小数的互化。
2、 百分数包括4个小知识点:百分数的意义、成数、折扣、百分数和分数、小数的互化。
二、通过复习应该达到以下复习目标:理解分数的意义和性质;百分数的意义和特征。
掌握分数和百分数的读法、写法。
能运用对意义的理解解决相关问题。
掌握分数、小数、百分数互化的方法,能比较分数、小数、百分数的大小。
理解分数乘除法的意义,能正确解答分数、百分数的应用题。
掌握分数混合运算的顺序和方法,能根据运算定律、运算性质进行简便运算。
三、知识重点的疏理。
一)分数1、分数的意义①分数表示“把单位1平均分成若干份,表示这样一份或几份的数”。
“1”可以是一个物体、一个图形、一个计量单位或者一个整体……。
分数的分数单位区别于整数和小数是十进制,而要根据分母来确定分数单位。
学生应该能正确找到一个分数的分数单位及包含几个这样分数单位。
②正确区分分率和数量:2米的绳子平均截成5段。
每段长( ),每段是这根绳子的()()。
③能灵活运用分数的意义解决问题,这是学生学习的难点。
如:甲绳比乙绳长13 ,乙绳比甲绳少( )( )。
学生能够通过对13 的理解,即把乙绳看成“1”,平均分成3份,甲绳多了这样的1份,也就是甲绳有4份。
乙绳比甲绳少一份,以甲绳为“1”,也就是比甲绳少了14 。
当然老师还可以变换问题,如问,乙绳是甲绳的( )( ),甲绳是乙绳的( )( )等。
同样也可以替换信息,如甲绳是乙绳的43 ,乙绳是甲绳的34 等,与问题合理匹配,主要是让学生体会思考问题的步骤,抓住解决问题的关键。
在学生掌握了基本方法的基础上,教师还要给学生提供独立运用方法的机会,可以在提供信息的形式上继续变化,强化对思考步骤和方法的掌握。
分数、百分数的认识复习
3.分数、百分数的认识
整理与反思
你了解分数和百分数的哪些知识? (1)什么叫分数?什么叫百分数? (2)分数和除法有什么联系?请你举例说明。 (3)分数的基本性质是什么?你能用它说明小数的性质吗? (4)小数、分数和百分数怎样互相改写?
分数 把单位“1”平均分成若干份,表示这样的一 份或者几份的数,叫作分数。
水、电、煤 气和电话费 10%
其他 15%
伙食费 40%
教育 10%
拓展练习
观察下图,将涂色部分与整个图形的面积的关 系分别用分数、最简整数比、百分数表示:
3
3 10 30
10
小结: 百分数、分数与小数之间的互相转化。
数学阅读
一天,百分数20%、小数0.15、分数 1 三位朋友见面 10
了,寒暄一阵后,它们很想知道谁大谁小,但又不知该怎 么比较。坐在一旁的钢笔似乎看出了它们的心思,给它们 想了一个办法:“你们三个都穿同一件外衣,进行比较, 这样一看就能知道谁大,谁小!”钢笔让它们先穿上20% 的外衣。可0.15和 1 怎样才能脱掉自己的外衣呢?
说说百分数与小数的互化方法。
小数点向右移动两位,同时加上%
小数
百分数
去掉%,小数点同时向左移动两位
说说百分数与分数的互化方法。
先化几,再约分
巩固练习
25
9
3 5
60
4.填表。
0.75
1.2
2
6
5
5
40%
75%
方法一:
方法二:
购物 25%
百分数 表示一个数是另一个数百分之几的数,叫 作百分数。又叫作百分比或百分率。
分数与除法的联系
a a b(b 0) b
《百分数(一)整理与复习》教案
本次教学中,我努力尝试将课堂还给学生,让他们在自主探究、合作交流中学习百分数知识。但从教学反思来看,我还需要在以下几个方面进行改进:
其次,在百分数与分数、小数的互化方面,学生们掌握程度不一。有些学生在互化过程中容易出现错误,这提示我在今后的教学中要注重对这部分学生的个别辅导,帮助他们熟练掌握互化方法。
此外,实践活动环节,学生们的参与度很高,讨论热烈。但在实验操作过程中,我发现部分学生在将实际问题抽象为数学表达式时存在困难。针对这一点,我将在以后的教学中加强对学生问题抽象能力的培养,帮助他们更好地将实际问题与百分数知识联系起来。
1.加强对学生的个别辅导,关注他们在学习中的困难,提高他们的自信心。
2.设计更多有趣的生活实例,让学生在情境中感受百分数的应用,提高问题解决能力。
3.激发学生的讨论热情,鼓励他们大胆发言,提高课堂参与度。
3.百分数的应用:复习百分数在实际问题中的应用,如折扣、成数、增长率等,提高学生解决实际问题的能力。
4.百分数的运算:巩固百分数的加减乘除运算,以及如何利用百分数解决简单的比例问题。
5.综合练习:设计一些典型题目,帮助学生巩固本章所学知识,提高综合运用能力。
二、核心素养目标
本节课旨在培养学生以下核心素养:
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“百分数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
总复习-数的认识2-小数、分数、百分数
通过引导学生自主复习、归纳,让学生系统地理解小数、分数和百分数的知识,构建小数、分数和百分数的知识体系。
难点
掌握小数、分数和百分数的联系与区别。
突破方法
让学生在复习中,结合具体的例想子,感受小数、分数和百分数之间的联系和区别。
教法
采用练习法、问题引导法、自学辅导法等方法让学生系统复习小数、分数和百分数的知识。
引导学生回答:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。
如: =3÷4.
(2)追问:分数与除法之间有什么区别?
让学生明白:除法是一种运算,而分数既可以表示具体的数量,又可以表示两个量之间的倍数关系。
3.商不变的规律和分数的基本性质。
(1)指名说一说什么是“商不变的规律”?什么是“分数的基本性质”?
课题
总复习-数的认识2-小数、分数、百分数
目标
1.进一步认识整数、小数的数位和计数单位,体会整数和小数相邻计数单位间的进率都是10。
2.探索小数、分数和百分数之间的关系,会进行它们之间的互化。
3.结合具体情境,理解小数、分数、百分数的意义,会认、读、写小数、分数和百分数。
重点
复习小数、分数和百分数,构建较完整的知识体系。
认真聆听教师的
谈话。
用简单的语言,开门见山地告诉学生本节课学习的内容,让学生对所整理与复习的知识有一个大概的了解。
新探
(一)复习“分数的意义”。
1.请同学们先回忆一下,什么是分数?什么是分数单位?
引导学生回答:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数;其中的一份叫做分数单位。
2.对照情境图,你能用尽可能多的方式解释“ ”的含义吗?
课件出示教材第68页“回顾与交流”第1题情境图。
(完整版)分数百分数应用题典型解法的整理和复习(可编辑修改word版)
-- ) - - ) 分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。
分数应用题涉及的知识面广, 题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。
小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。
一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例 1 120 千克,还剩下 22 千克。
原】一桶油第一次用去 ,第二次比第一次多用去5来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1 1 1=20+225 5则这桶油的千克数为:(20+22)÷(1 1 1=70(千克)5 5【例 2】一堆煤,第一次用去这堆煤的 20%,第二次用去 290 千克,这时剩下的煤比原来这堆煤的一半还多 10 千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的 ,第二天卖出余下的 , 量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果 极佳。
)【例 3】缝纫机厂女职工占全厂职工人数的 720 工多少人?[分析与解],比男职工少 144 人,缝纫机厂共有职解题的关键是找到与具体数量 144 人的相对应的分率。
小学阶段分数和百分数知识点汇总复习
小学阶段分数和百分数知识点汇总复习分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。
即:a÷b=a/b (b≠0)三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。
真分数小于1。
六、分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】一、表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分率或百分比,百分数通常用“%”表示。
二、分数与百分数比较:不同点相同点分数可以表示具体数量,可以有单位名称表示两个数之间的关系百分数不可以表示具体数量,不可以有单位名称三、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
四、熟记常用三数的互化。
五、1、出勤率表示出勤人数占总人数的百分之几。
2、合格率表示合格件数占总件数的百分之几。
3、成活率表示成活棵数占总棵数的百分之几。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几八、应得利息是税前利息,实得利息是税后利息。
小升初数学总复习归类精讲-第一章 数学的运算(一)数的认识-分数与百分数 全国通用
分数与百分数课标要求1.理解分数和百分数的意义,并能熟练运用。
2.知道分数可以分为真分数、假分数,知道真分数、假分数、带分数的意义。
3.掌握分数的基本性质,能用分数的基本性质解决相关的问题。
4.会进行小数。
分数和百分数的互化(不包括将循环小数化为分数),能比较它们的大小。
5.理解最简分数的额意义,能正确判断一个数是否是最简分数。
6.掌握倒数的意义,并能灵活地加以运用。
考点1 分数、百分数的意义1. 在下面各图中涂色表示它下面的数。
2. 用分数、小数、百分数表示右图中的涂色部分。
分数( ) 小数( ) 百分数( )3. 在下面两幅图中分别用阴影部分表示出 公顷。
4. 分数单位是( ),40%的计数单位是( )。
5. “小学生的近视率是18%。
”这句话的意思是( )。
6. 分数单位是( ),3里面有( )个这样的分数单位。
7. 的分数单位是( ),再添上( )个这样的分数单位就等于1。
8. 的分数单位是( ),再减去( )个这样的分数单位就是最小的质数。
9. 的分数单位是( ),当a 为( )时,这个分数的值等于最小的质数。
745415775745ba10. 党的十九大提出“精准扶贫”,李叔叔蹲点扶贫的乡镇贫困人民中有 已经脱贫,还剩( )没有脱贫,单位“1”是( )。
11. 把一根绳子对折3次,每段占全长的( )。
12. 如右图,将一张长方形纸的一角折起后放在桌上,已知长方形的长是12cm ,则桌面被遮住部分的面积是长方形面积的 。
13. 判断。
(1)因为 大于 ,所以前者的分数单位比后者的大。
( )(2)一堆黄沙,运走 吨,这里的 可以用75%表示。
( )(3)一块地, 种了黄瓜,还剩 公顷。
( )(4)六(一)班植树102棵,全部成活,成活率是102%。
( ) (5)“三天打鱼两天晒网”中,打鱼时间占总时间的60%。
( ) (6)四成五就是百分之四十五。
( )(7)一种商品连续两次降价5%,第二次降价幅度一定比第一次小。
六年级数学总复习----分数百分数应用题
(3)池塘里有4只鹅,正好是鸭的只数 1 的 3 。池塘里有多少只鸭? 单位“1”
鸭: 鹅:
4只 ?只 鸭的只数 鹅 ×1 3 =
单位“1”的量未知, 可直接用除法计算。 1 4÷ =12(只) 3
答:池塘里有12只鸭。
五年级师生向希望小学捐书150本,六 2 年级比五年级多捐 15 。六年级师生捐 书多少本?
学习目标
• 进一步巩固用分数知识解决 实际问题的基本思考方法, 进一步体会分数在实际生活 中的广泛应用。
补充问题【使其成为分数应用题】
• 六一班男生30人,女生20人。 • 女生人数是男生人数的几分之几? • 男生人数是女生人数的几分之几? • 女生人数比男生人数少几分之几? • 男生人数比女生人数多几分之几?
﹋﹋ ﹋﹋﹋﹋﹋﹋ 多的公顷数占计划的百分之几
12公顷
实际比原计划多的
原计划:
实 际: 14公顷
是求多的公顷数与计划造林数的比, 要以原计划造林的公顷数(12公顷)作 为单位“1”,求(14-12)是12的百分之 几,用除法计算。
第一步:求实际比计划多的公顷数。 第二步:求多的公顷数占计划的百分之几。
校园里栽杨树30棵,比柳树 多 1 ,校园里栽柳树多少棵?
4
百分数
发芽率是求发芽种子数占试 验种子总数的百分之几。
发芽种子数 发芽率= ×100% 试验种子总数
某县种子推广站,用300粒玉米种 子作发芽试验,结果发芽的种子有 288粒。求发芽率。
发芽种子数 ×100% 发芽率= 试验种子总数
(4)一种电视机打九折出售。 原价
看谁先找到题中的单位“1”。
5 (1)小牛头数是大牛的 6 。
9 (2)计划产量是实际的 10 。
六年级数学上册分数、百分数应用题复习题
六年级数学上册分数.百分数应用题复习题【知识要点】一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义来理解,就是把一个数(或是整体)平均分成分母份,取分子份.二、分数.百分数应用题的主要类型:(1)求一个数是另一个数的几(百)分之几:用“一个数÷另一个数”(2)求一个数的几(百)分之几是多少;(3)求比一个数多(少)几(百)分之几的数是多少:A. B.(4)求一个数比另一个数多(少)几(百)分之几(大数—小数)÷单位“1”的量,或者“相差数÷单位“1”的量”(5)已知一个数的几(百)分之几是多少,求这个数.A.或者B..设所求的数为未知数X,然后根据求这个数的几(百)分之几,用乘法列方程解.三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之间.已知条件和所求问题之间不再有直接的对应量率关系.解题时一定要找准标准量(单位“1’),找准“与量对应的率”.“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系.四、百分率问题:优秀率=优秀人数÷总人数×100%成活率=成活棵树÷总棵树×100%合格率=合格人数÷总人数×100%百分率=部分数÷总数×100%出粉率=面粉质量÷小面质量×100%花生出油率=花生油重量÷花生重量×100%现实生活中还有“及格率”.“出勤率”.“合格率”.“达标率”.“利息”.“成数”.“利润率”.“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题.五、按比例分配问题:按比例分配:把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配.解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做.六、工程问题.解题指导:“工程问题”指的都是两个人以上合作完成某一项工作,有时还将内容延伸到相遇运动和向水池注水等等.解答工程问题时,一般都是把总工作量看作单位“1”,把单位“1”除以工作时间看成工作效率,因此,工作效率就是工作时间的倒数.工程问题关系式是:工作总量÷工作效率=工作时间工作总量÷工作效率和=合作时间【基础练习】一.求一个数是另一个数的几(百)分之几.1、光明小学有学生1200人,其中男生有576人,男生占全校人数几分之几?2、学校的果园里有梨树15棵,苹果树20棵.梨树的棵数是苹果树的百分之几?3、学校的果园里有梨树15棵,苹果树20棵.苹果树的棵数是梨树的几倍?二、求一个数的几(百)分之几是多少.1、一个排球定价60元,篮球的价格是排球的150% .篮球的价格是多少元?2、一本书有200页,小丽第一天看了全书的25%,第二天看了第一天的80%,第二天看了多少页?3、一块长方形玻璃长56厘米,宽是长的50%,这块玻璃的面积是多少平方厘米?4、商场搞打折促销,其中服装类打5折,文具类打8折.小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?三、求比一个数多(少)几(百)分之几是多少1.一件衬衣原价125元,现在降价.现在售价是多少元?2、一件衬衣原价125元,现在涨价20%.现在售价是多少元?3、要挖一条长2000米的水渠,第一天挖了12.5%,还剩多少米没挖?4、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?1、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?2、学校运来34吨煤,已经烧了18吨,烧掉的比剩下的多几分之几?3、光明小学去年有篮球24个,今年新买了6个.今年比去年增加了百分之几?4、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?五、已知一个数的几(百)分之几是多少,求这个数.1、一个儿童体内所含水分有28千克,占体重的75%.这个儿童的体重有多少千克?2、小红家买来一袋大米,吃了15%,还剩15千克.买来大米多少千克?3、水果店运一批水果.第一次运了50千克,第二次运了70 千克,两次正好运了这批水果的60%.这批水果有多少千克?4、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?5、一件衬衣降价20%后,售价为100元.这件衬衣原价是所少元?6、一件衬衣涨价20%后,售价为120元.这件衬衣原价是多少元?六.百分率问题.1.大米加工厂用200千克的稻谷加工成大米时,共碾出大米160千克,求大米的出米率.2、林场春季植树,成活了175棵,死了25棵,求成活率.3、用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率.4、菜籽的出油率是28%,若榨油84千克,需要菜籽多少千克?七.按比例分配问题.1.石灰水是用石灰和水按1:100配成的,要配制4545千克的石灰水,需石灰多少千克?2、一件衬衣售价为100元,一条长裤的价钱和这件衬衣的价钱之比是 .这条长裤售价是多少元?3、一块长方形地,周长400米,长和宽的比是3:2,这块地的面积是多少平方米?4、一种药水是用药物和水按3:400配制成的.(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?八.工程问题.1.一篇稿件,甲.乙两人合打.甲一个人完成要5小时,乙一个人完成要8小时,求两人合打几小时可以完成?2、一项工程,甲独立完成要12天,乙独立完成要15天,现两队合作,几天可以完成这项工程的?3、客车由甲城到乙城需行12小时,货车由乙城到甲城需行15小时,两车同时从两城相向开出,相遇时客车距离乙城还有360于米.两城相距多少千米?九.较复杂的分数.百分数应用题.1.一件衬衣售价为100元,一条长裤的价钱是这件衬衫的150%,这条长裤的价钱又是一双皮鞋的 .这双皮鞋售价是多少元?2.8月初鸡蛋价格比7月初上涨了10%,9月初又比8月初回落了15%.9月初鸡蛋价格比7月初涨了还是跌了?涨跌幅度是多少?3、长虹电视机进行促销活动,降价8%.在此基础上,商场又返还售价5%的现金.此时购买长虹牌电视机,相当于降价百分之多少?4、红光农场去年植树的数量比前年成活的树木多50%,去年的成活率是80%.去年成活的树木数量是前年成活树木的百分之多少?5、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6.又买来多少本科技书?6、有一堆糖果,其中奶糖占45%,再放16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块?【综合练习一】1、地球上海洋面积是36000万平方千米,占地球总面积的 .地球总面积是多少万平方千米?2、三个同学跳绳.小明跳了120个,小强跳的是小明跳的,小亮跳的是小强跳的 .小亮跳了多少个?3、(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了 .六年级收集了多少个易拉罐?(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?4.(1)一个县迁建绿色蔬菜总产量720万千克,是去年绿色蔬菜总产量的 .去年全县绿色蔬菜总产量是多少万千克?(2)一个县迁建绿色蔬菜总产量720万千克,比去年少 .去年全县绿色蔬菜总产量是多少万千克?【综合练习二】1、一列火车的速度是180千米/时.一辆小汽车的速度是这列火车的,是一架喷气式飞机的 .这架喷气式飞机的速度是多少?2.(1)用84 长的铁丝围城一个长方形,这个长方形的长于宽的比是 .这个长方形的长与宽分别是多少?(2)用84 长得铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5,.三条边各是多少厘米?3、取小麦500克,烘干后,还有428克.计算这种小麦的烘干率和含水率.4、在北纬以上的地方,一年连续约有2个月的时间没有夜晚,没有夜晚的时间约占全年的百分之几?5.由于纬度比较高,瑞典首都斯德哥尔摩七月份的每天平均日照时间大约是一天的75%,约有多少小时?【综合练习三】1、人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的 2/5,在毛细血管中的流动速度只有静脉中的 1/40.血液在毛细血管中每秒流动多少厘米?2、海象的寿命大约是40年,海狮的寿命是海象的 2/3,海豹的寿命是海狮的3/4 .海豹的寿命大约是多少年?3.蜜蜂每秒能振动翅膀236次,蝗虫每秒振动翅膀次数比蜜蜂少 109/118.蝗虫每秒能振动多少次?4、鸡的孵化期是21天,鸭的孵化期比鸡长1/3 .鸭的孵化期是多少天?5.严重的水土流失致使每年大约有16亿吨的泥沙流入黄河,其中25%的泥沙沉积在河道口,其余被带到入海口.有多少亿吨泥沙被带到入海口?6.一幢楼房共有15层,高约50米.小萍家住在7楼,小萍家的地板离地有多高?【综合练习四】1、一共有240千克水果糖,每袋装 1/4千克.已经装完了总量的3/4 ,已经装完了多少袋?2、我国幅员辽阔,东西相距5200km,东西距离是南北的52/55.南北相距多少千米?3、一杯250ml的鲜牛奶大约含有 3/10的钙质,占一个成年人一天所需钙质的 3/8.一个成年人一天大约需要多少钙质?4.一本课外读物,小芳读了35页,还剩下 2/7没有读.这本课外读物一共有多少页?5.体积相等的冰的质量比水的质量少 1/10,现有一块重9kg的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有多重?6.一批大米运往灾区,运了4车才运走,平均每车运走这批大米的几分之几?剩下的大米还要几车才能运完?【综合练习五】1、某电视机厂去年全年生产电视机108万台,其中上半年产量是下半年的4/5.这个电视机厂去年上半年和下半年的产量分别是是多少?2、一套运动服共300元,裤子价钱是上衣的2/3.上衣和裤子的价钱分别是多少?3、中国农历中的“夏至”是一年中白昼最长.黑夜最短的一天.这一天,北京的黑夜时间是白天的3/5.白昼和黑夜分别是多少小时?4、挖一条水渠,王伯伯需要20天,李叔叔需要30天.两人合作,几天挖完这天水渠的一半?5、甲车从A城市到B城市要行驶12小时,乙车从B城市到A城市要行驶15小时.两车分别从A城市和B城市出发,几小时后相遇?6.甲乙两队合作种树,甲队单独种需要8天,乙队单独种需要10天.现在两队合作,5天能种完吗?【综合练习六】1、某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50.上月新生男.女婴儿各有多少人?2、学校把栽70棵树的任务按人数比分配给六年级三个班,一班有46人,二班有44人,三班有50人.三个班各应栽多少棵?3、刘大爷家里的菜地共800 ,刘大爷准备用2/5种西红柿,剩下的按2:1的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?4、一种混凝土的水泥.沙子和石子的比是2:3:5.要搅拌20t这样的混凝土,需要水泥.沙子和石子各多少吨?。
【小升初】数学总复习之【分数、百分数、比和比例应用题】专项复习课件ppt
【解】 5000+5000×2.75%×2 =5000+275 =5275(元)
答:到期后,王伯伯可取出 5275 元。
【例 4】 现有浓度为 10%的盐水 20 千克,再加入多
少千克浓度为 30%的盐水,可得到浓度为 22%的盐水? ☞思路点拨 本题考查生活中有关浓度的百分数问题,可以
1.几折、几成表示十分之几,也就是百分之几十。 2.存入银行的钱叫本金。取款时银行多支付的钱叫利息。利 息与本金的比值叫利率。以 1 个月为期的利率叫月利率,以 1 年 为期的利率叫年利率。
3.常用的基本公式 出勤人数
出勤率= 总人数 ×100% 发芽种子数
发芽率= 种子总数 ×100% 溶质质量
调来女职工人数: 38- 36= 2(名 ) 答:调来 2 名女职工。
课时训练
一、填空。(每空 2 分,共 24 分) 1.2015 年 7 月 31 日,2022 年冬奥会主办地结果揭晓,北京 最终以 44 票成功当选,哈萨克斯坦阿拉木图获得 40 票。北京的 得票数比阿拉木图多( 10 )%。 2.“经典诵读”兴趣小组有 25 人,昨天因事请假 2 人,今 天 全 部到 齐 ,昨 天的 出 勤率 是 ( 92% ), 今 天的 出勤 率 是 ( 100% )。 3.豆腐中蛋白质含量约占 40%,要想获得 8 克蛋白质需要进 食( 20 )克豆腐。
确定单位 “1”的量和 与单位 “1”的量相比较的量 。与单位 “1”相 比较的量 ÷单位 “1”的量=几分之几 (百分之几 )。
在 较复杂的 题中,如 果是求甲 量比乙量 多 (少 )几分之 几 (百分 之几 )。甲量与乙 量的差 ÷单位 “1”的量=甲 量比乙量 多(少)几分之 几 (百分之几 )。
_百分数的整理和复习
解:设原来每件成本x元。
现成本
现成本占单位 “1”的百分率
x-15%x=37.4
37.4 ÷(1-15%)
百分数应用题的解题思路和分数 应用题的相同。
关键是找准单位“1”。
1、单位“1”的量已知,根据求一 个数的几分之几是多少用乘法计算。 2、单位“1”的量未知,可根据等 量关系列方程或用除法计算。 数量÷对应分率=单位“1”的量
(2)雪松的棵数比杨树少百分之几?
(20-15) ÷20 ×100%=25%
3、 如图表示五一班学生如何到校的情况,根据图中 的信息回答下列问题:
(1)这个班级步行到校的人占班级总人数的百分之几? (2)这个班级乘地铁和乘公交车来校的学生占全班人 数的百分之几?
16 人数 12 8 6 2
公交车自行车 步行
百分数、小数和分数之间怎样进行互化?
百分数
先化成分母是10、100、 1000……的分数,再约分。
小数
分子÷分母。
分数
25%
1.13
98.5%
9 10
0.6%
113%
1 4
9%
3 5
0.985
11%
0.55
0.02
27%
163%
1.63
2%
0.27
55%
0.11
判断:
1、0.6%=0.6
(
)
125%X-X=28 (1+40%)X=98
1 1-20%X= 4
1 (1+20%)X= 4
1 75% 105 2
8 4 20 % 7
1.小组同学讨论交流。
(2)在实际应用中,什么情况下最多能达到100%?什 么情况下达不到100%?什么情况下能超过100%?
最新小学数学毕业总复习——第一章数的认识第三课时分数和百分数
(4) 缴纳的税款叫做应纳税额,应纳税额与各种收入(销售 额、营业额……)的比率叫做税率。 应纳税额=收入额×税率 (5) 存在银行的钱叫做本金,取款时银行多支出的钱叫做利 息,单位时间(如1年、1月、1日等)内的利息与本金的比率 叫做利率。 利息=本金×利率×存期
返回目录
5. 分数的基本性质 分数的基本性质:分数的分子和分母都乘以或者除以相同的数 (零除外),分数的大小不变。分数的基本性质是约分和通分的 依据。 6. 约分和通分 (1) 约分:把一个分数化成和它相等,但分子和分母都比较小 的分数,叫做约分。 约分的方法:用分子和分母的公因数(1除外)去除分子、分母 ;通常要除到得出最简分数为止。
返回目录
不能正确确定单位“1”的量。 【例2】(1) 把10克糖,全部溶解到40克水中,糖占糖水的百分 之几? (2) 一袋大米重50千克,用去18千克,用去的是剩下的百分之 几? 错解:(1)10÷40=25% (2)18÷50=36%
返回目录
分析:(1)本题中的单位“1”的量是糖水的质量,而不是水的质 量,应该用糖的质量除以糖水的质量才是糖占糖水的百分之几。 (2)本题中的单位“1”的量是剩下的大米的质量,而不是大米的 总质量,应先求出剩下的大米的质量,用用去的大米的质量除以 剩下大米的质量。 正解:(1)10÷(10+40)=10÷50=20% 答:糖占糖水的20%。 (2)18÷(50-18)=18÷32=56.25% 答:用去的是剩下的56.25%。
7 11
1 6 <1
11
76;再比较1
6 和1
11
1,分别通分得
6
16
11
=1 36
66
,1 1=
6
1 11
小升初数学总复习课件 分数、百分数应用题|人教新课标 (共34张PPT)
题型二 【例2】一件衣服原价1000元,先降价10%,再涨价 10%,现价是多少元?
精析:读题可知,衣服降价10%的单位“1”是原价, 而又涨价10%的单位“1”是降价后的衣服的价格,两 个10%的单位“1”不同。所以降价10%后的价格为 1000×(1-10%)=900(元),涨价10%后的价格为 900×(1+10%)=990(元)。
3. 工程问题 把工作总量用“1”表示,工作效率用单位时间内做工 作总量的“几分之一”表示。根据工作总量与工作效 率,就能求出合作完成工作的时间。 三量之间的关系式:工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间
4. 浓度问题 基本数量关系:溶液质量=溶质质量+溶剂质量
精析:要求“实际比计划多生产百分之几”,就是求实 际比计划多生产的辆数占计划产量的百分之几,把原计 划产量看作单位“1”。
答案:方法1: 5500-5000=500(辆)……实际比计划多生产500辆 500÷5000=0.1=10%……实际比计划多生产百分之几 方法2: 5500÷5000=110%……实际产量相当于原计划的110% 110%-100%=10%……实际比计划多生产百分之几 答:实际比计划多生产10%。
独做要15小时,师徒两人合作4小时后,剩下的任务
由徒弟做,还要几小时才能完成?
[1-(
_1_ 10
+
_1_ 15
)×4]÷1_15_
=5(小时)
答:还要5小时才能完全部的
1 3
,下午
运走120千克,这时已经运走的苹果占全部苹果
质量的 3 。这批苹果共有多少千克?
题型三
【例3】王叔叔买了一辆价值16000元的摩托车。按规定, 买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托 车一共要花多少钱?
(完整版)小数、分数、百分数和比知识点归纳
知识要点归总——总复习数的认识(二)小数、分数、百分数和比知识点一小数1.读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。
2.写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”,小数点点在个位的右下角,小数部分从高位到低位顺次写出每一个数位上的数字。
3.小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……4.求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。
5.小数化成分数的方法:先把小数改写成分母是10,100,1000…的分数,再约分,就化成了分数。
6.小数化成百分数的方法:先将小数点向右移动两位,再在后面添上“%”,就化成了百分数。
7.小数的分类:(1)按整数部分分类:分为“纯小数”和“带小数”两种。
“纯小数”是指整数部分为“0”的小数。
例如:0.8,0.207,0.0012等。
“带小数”是指整数部分不为“0”的小数。
例如:2.3,12.608,300.168等。
一般说来,纯小数都小于1,而带小数都大于1或等于1。
(2)按小数部分分类:分为“有限小数”和“无限小数”两种。
小数部分的位数有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
(3)无限小数的分类:在无限小数中又分为无限循环不数和无限不循环小数。
无限循环小数是指一个无限小数,如果从小数部分的某一位起,都是由一个或几个数字依照一定的顺序连续不断地重复出现,这样的小数叫做无限循环小数,简称“循环小数”。
无限不循环小数是指一个小数的数位无限多,而且小数部分各数位上的数字是不循环的,这样的小数叫做无限不循环小数。
在小学数学中,圆周率(π)3.1415926…便是一个无限不循环小数(无理数)。
分数和百分数应用练习题复习
精品文档分数和百分数应用题姓名:解题方法:找准单位“ 1 ”一、把分率作为突破口,找准单位“ 1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率 = 比较量,比较量÷标准量 = 分率,比较量÷分率 = 标准量,要正确找准单位“ 1的”量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。
例如:幸福村有旱地300 亩,水田面积是旱地面积的3/5 ,水田面积有多少亩?这道题中的分率 3/5 是旱地面积的3/5 ,所以旱地面积是单位“ 1的”量。
二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“ 1。
”例如:我国人口约占世界人口的 1/5 ,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“ 1。
”例如:食堂买来 100 千克白菜,吃了 2/5 ,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以 100 千克白菜就是单位“ 1 。
”解答这类分数应用题,只要找准总数和部分数,确定单位“ 1就”很容易了。
三、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“ 1。
”例如:六( 2)班男生比女生多1/2 。
就是以女生人数为标准(单位“ 1)”,男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。
例如,一个长方形的宽是长的 5/12 。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“ 1。
数的认识(分数。小数、百分数)总复习
公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数, 其中最小的一个叫做这几个数的最小公倍 数.
例:(12,24,36 …)都是4和6的公倍数,(12 )是4和6的最小公倍数.
互质数: 公约数只有1的两个数叫做互质数.
互质数的几种特殊情况
⑴、两个数都是质数,这两个数一定互质. ⑵、相邻的两个数互质. ⑶、1和任何数都互质.
求最大公约数和最小公倍数
4和28 最大公约数是( 4 ); 最小公倍数是( 28 )
⑴. 如果较小数是较大数的约数,那么 较小数就是这两个数的最大公约数; 较大数就是这两个数的最小公倍数.
4和15 最大公约数是( 1 ); 最小公倍数是( 60 )
5.整数大小的比较
比较两个多位数的大小,首先看它 们位数的多少,位数较多的数较大;
如果两个数的位数相同,那么首先 看最高位,最高位上的数较大的,这个数 就大;
如果最高位相同,则左边第二位上 的数较大的,这个数就大……
6.小数
把整数“1”平均分成10份,100份……这样的
一份或几份分别是十分之几,百分之几……可以用
6.最简分数
*计算的结果,能约分的要约成最简分数; 假分数的,一般要化成带分数或整数.
*判断一个最简分数能不能化成有限小数:
分母中除了2和5以外,不含有其他的质因数,就能化成有限小数.
4 25
7 20
23 8
√√
√
6
9
3
8
12 40
×√
√
7.约分
约分------把一个分数化成和它相等,但分子和分母 都比较小的分数.
除尽: 数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽.
六年级下册数学试题-分数、百分数专题复习 人教版
分数、百分数专题复习1. 有两筐苹果,第一筐重30kg ,如果从第一筐中取出21kg 放入第二筐,则两筐苹果同样重。
两筐苹果一共重________千克。
2. 星光村要铺一条长480m 的石子路,第一天铺了全长的31,第二天铺了余下的53。
第二天比第一天多铺了_________米。
3. 小红和爸爸集邮,爸爸集了100张,如果爸爸取出其中的101给小红,则小红的邮票张数正好是爸爸的21,小红原来有_________张邮票。
4. 我们平时看到的电影画面实际上是由许多连续拍摄的照片以每张241秒的速度连续播放的。
请你算一算:半秒可以播放__________张照片。
5. 在通常情况下,体积相等的冰的质量比水的质量少101。
现有一块重9kg 的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有_________㎏。
6. 甲数比乙数多25%,乙数比甲数少_________%。
7. 为了缓解交通拥堵的状况,某市正在进行道路拓宽。
团结乡的路宽由原来的12m 增加到25m ,拓宽了()()。
8. 某品牌的数码相机进行促销活动,降价8%。
在此基础上,商场又返还售价5%的现金。
此时买这个品牌的数码相机,相当于降价_________%。
9. 李叔叔和张叔叔都是集邮爱好者,李叔叔的邮票张数是张叔叔的47倍,李叔叔的邮票张数比张叔叔多_________%。
10. 某针织厂3月1日共生产了500件产品,检查过程中发现合格率为90%,那么这批产品有_________件不合格。
11. 红光农场去年植树的数量比前年成活的树木多50%,去年的成活率是80%。
去年成活的树木数量是前年成活树木的_________%。
12. 正方形的边长减少10%,它的面积比原来减少了_________%。
13. 某种商品4月的价格比3月降低了20%,5月的价格比4月又涨了20%。
5月的价格和3月的价格比较是__________(填“涨了”或“降了”)是_________%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教版小学数学六年级下册总复习数的认识教学设计
第 3 课时
综合运用:(3)下图涂色部分中玫瑰。
先估计哪块花圃种玫瑰的面积所占百分比最大,再尝试验证自己的估计是否正确。
记录下你的思考过程。
预设:先计算出涂色部分所占的百分比,再比较大小;
(设计意图:充分用好教材所提供的练习,合理设计练习的组织形式,处理好“联”与“练”的关系,既可以帮助学生更深入地理解分数与百分数的相关知识,也有利于学生发展思维能力,增强数感。
)四、课堂总结
提问:今天这节课我们复习了哪些方面的知识?是怎样对学过的知识进行整理的?你有什么收获和体会?
教学反思。