沪教版数学高一下册- 5.2.1 任意角的三角比(第一课时)教案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章三角比
5.1任意角及其度量
教材:角的概念的推广
目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:一、提出课题:
回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
二、角的概念的推广
1.讲解:“旋转”形成角(P4)
突出“旋转”注意:“顶点”“始边”“终边”
“始边”往往合于x轴正半轴
2.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角α或α
∠可以简记成α
3.由于用“旋转”定义角之后,角的范围大大地扩大了。
1︒角有正负之分如:α=210︒β=-150︒γ=-660︒
2︒角可以任意大
实例:体操动作:旋转2周(360︒×2=720︒) 3周(360︒×3=1080︒)
3︒还有零角一条射线,没有旋转
三、关于“象限角”
为了研究方便,我们往往在平面直角坐标系中来讨论角
角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)
例如:30︒ 390︒ -330︒是几象限角? 300︒ -60︒是第几象限角? 585︒ 1180︒是第几象限角? -2000︒是第几象限角?
你是怎样得出结论的?
四、关于终边相同的角
1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同
2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和
390︒=30︒+360︒ )1(=k -330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒ )0(=k
1470︒=30︒+4×360︒ )4(=k
-1770︒=30︒-5×360︒ )5(-=k
3.所有与α终边相同的角连同α在内可以构成一个集合
{}Z k k S ∈⋅+==,360|οαββ
即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和
4.例一 (P30)略
五、小结: 1︒ 角的概念的推广
用“旋转”定义角 角的范围的扩大
2︒“象限角”与“终边相同的角”
六、作业: P31 练习1、2、3、4
习题5.1 A 组 1 ,2,3. B 组1,2.