二次函数平移问题
二次函数的平移规律总结与应用技巧
二次函数的平移规律总结与应用技巧二次函数是高中数学中重要的一部分,通过对二次函数的平移规律进行总结和应用技巧的探索,可以更好地理解和应用这个函数形式。
本文将从平移规律的基本概念入手,逐步介绍相关的技巧和应用。
1. 平移规律的基本概念平移是指将函数图像沿着坐标轴平行地移动。
对于二次函数,其标准形式为y=a(x-h)^2+k,其中(h,k)表示二次函数图像的顶点坐标。
2. 平移规律的总结与应用技巧2.1 平移规律总结根据平移规律,改变二次函数中的参数a, h, k可以对函数图像进行平移。
具体总结如下:- 参数a的变化:a>0时,图像开口向上;a<0时,图像开口向下。
绝对值|a|越大,图像越"瘦长";|a|越小,图像越"胖宽"。
- 参数h的变化:若h>0,图像向左平移;若h<0,图像向右平移。
绝对值|h|越大,平移距离越长;|h|越小,平移距离越短。
- 参数k的变化:若k>0,图像向上平移;若k<0,图像向下平移。
绝对值|k|越大,平移距离越高;|k|越小,平移距离越低。
2.2 平移规律应用技巧- 技巧1:根据函数参数的变化,确定平移的方向和距离。
例如,对于函数y=2(x-1)^2+3,参数a=2,h=1,k=3,可以知道图像开口向上,向右平移1个单位,向上平移3个单位。
- 技巧2:通过平移规律,根据已知函数图像和顶点坐标,求出函数的表达式。
例如,已知函数图像经向左平移3个单位、向下平移2个单位后,顶点坐标为(3,-2),可以得到新函数的表达式为y=a(x-3)^2-2。
3. 平移规律的应用举例3.1 平移的图像比较可以通过比较两个函数的图像来观察平移规律。
例如,比较函数y=x^2和y=(x-1)^2+2的图像,可以发现后者相对于前者向左平移了1个单位,向上平移了2个单位。
3.2 解题应用解决实际问题时,可以利用平移规律来建立数学模型并求解。
二次函数的图象的平移问题
通过这个演示文稿,我们将深入探讨二次函数图象的平移问题,了解定义、 公式、图形表示、实际应用以及平移的影响等重要概念。
什么是二次函数图象的平移?
平移是指在坐标平面上沿水平或垂直方向移动二次函数的图象,而保持其形 状和曲线特征不变。
平移的定义和公式
平移可以通过更改二次函数的方程中的常数项来实现。对于二次函数f(x) = ax^2 + bx + c,平移后的函数为g(x) = a(x - h)^2 + k,其中(h, k) 是平移的目 标点。
平移的实际应用
平移是数学中的重要概念,在现实世界中有许多实际应用,如物体运动的轨迹描更好地理解平移对二次函数图象的影响,并学习如何在实际问题中应用 这一概念。
平移的图形表达
通过改变二次函数的方程中的平移量,我们可以在坐标平面上绘制出平移后的二次函数图象。这将使我 们更好地理解函数图象的变化。
如何平移二次函数象?
将二次函数的图象沿水平或垂直方向平移,可以通过调整方程中的水平平移量和垂直平移量来实现。
平移前后函数的关系
平移后的函数与原始函数之间存在一定的变化关系,通过比较两者的方程和图象,我们可以更好地理解 这种关系。
专题05二次函数中的平移、旋转、对称(五大题型)解析版
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
二次函数沿斜线平移问题的解法
二次函数沿斜线平移问题的解法
1、抛物线关于x轴、y轴、原点、顶点对称的抛物线的解析式。
二
次函数图像的对称一般有四种情况,可以用一般式或顶点式表达。
2、关于y轴对称,y=ax+bX+c 关于y轴对称后,得到的解析式是
y=ax-bx+c; y=a(x-h)+k关于y轴对称后,得到的解析
式;y=a(x+h)+k.3、关于原点对称,y=ax+bX+c关于原点对称后,得
到的解析式是y=-aX+bx-c;y=a(x-h)+k关于原点对称后,得到的解析式是y=-a(x-h)+k.4、需要注意的是,对于以上四种对称要在结合开个方向、对称轴的位置以及与y轴的交点三个方面结合图像理解记忆。
而对于抛物线关于定点对称问题我们一般都是化成顶点式再变换。
掌握抛物线的四种对称方式,理解公式的推导过程,结合下面例题掌握该考点。
5、求抛物钱上、下、左、右平移的抛物钱的解析式:二次函数图像平移①二次函数图像平移的本质是点的平移,关键在坐标。
②图像平移口诀:左加右减、上加下减。
平移口诀主要针对二次函数顶点式。
希
望同学们掌握二次函数图象平移口诀和方法,通过下面练习做到理解领会。
6、与抛物线平移有关的压轴题:抛物线常出现在中考中的压轴题中,如果考察对称轴公式,那么一般代入直接求解;如果是假设出
平移之后的解析式即可得出图像与X轴的交点坐标,再利用勾股定理求出即可。
二次函数平移旋转总归纳及二次函数典型习题
二次函数平移旋转总归纳及二次函数典型习题二次函数是高中数学中重要的概念之一,它的表达式为y =ax^2 + bx + c,其中a、b、c为常数,而x、y为变量。
在二次函数的图像中,a决定了抛物线开口的方向和大小,b决定了抛物线的位置,c决定了抛物线与y轴的交点。
在解决二次函数平移旋转的问题时,我们可以根据抛物线的特性来进行总结和归纳。
下面我们将介绍二次函数的平移、旋转以及一些典型习题。
一、平移:1. 抛物线y = ax^2 + bx + c向左平移h个单位的公式为:y =a(x - h)^2 + b(x - h) + c。
同样地,向右平移h个单位的公式为:y = a(x + h)^2 + b(x + h) + c。
例如:若原二次函数为y = x^2 + 2x + 1,现在向左平移2个单位,则平移后的二次函数为y = (x - 2)^2 + 2(x - 2) + 1。
2. 抛物线y = ax^2 + bx + c向上平移k个单位的公式为:y =a(x^2 + bx + c + k)。
同样地,向下平移k个单位的公式为:y = a(x^2 + bx + c - k)。
例如:若原二次函数为y = x^2 + 2x + 1,现在向上平移3个单位,则平移后的二次函数为y = (x^2 + 2x + 1) + 3。
二、旋转:对于二次函数的旋转,我们需要使用变量替换的方法。
假设原二次函数y = ax^2 + bx + c按照逆时针旋转α角,则旋转后的二次函数可表示为:x = x'cosα - y'sinαy = x'sinα + y'cosα其中,(x', y')是旋转前的坐标,(x, y)是旋转后的坐标。
三、典型习题:1. 设二次函数y = ax^2 + bx + c的图像通过点(1, 2),(2, 3),(3, 4),求a、b、c的值。
解:将三个点分别代入二次函数中,我们可以得到3个方程: a + b + c = 2 (1)4a + 2b + c = 3 (2)9a + 3b + c = 4 (3)解方程组(1)(2)(3),得到a = 1/2,b = -3/2,c = 2。
二次函数图像的平移问题
索罗学院
二次函数图像的平移问题
疑点:二次函数的图像如何才能正确平移?
解析:平移在考试中会考,但是分值不会太大,重点是考察一般形式下的二次函数。
平移口诀:上加下减,左加右减。
一般情况下,不用担心h,k的正负情况。
只去看向上向下还是向左向右移就可以了。
1、上下平移将抛物线y=ax²向上移动k个单位,那么得到y=ax²+k
将抛物线y=ax²向下移动k个单位,那么得到y=ax²-k
2、左右平移将抛物线y=ax²向右移动h个单位,那么得到y=a(x-h)²
将抛物线y=ax²向左移动h个单位,那么得到y=a(x+h)²
记住上面4条就可以了。
例如:将抛物线y=ax²向右平行移动1个单位,再向上移动2个单位,就可以得到
y=a(x-1)²+2的图象;
也许你会担心h,k的正负情况,其实不用担心,只需遵循前面那4条,直接把h,k 的值代入式子中。
结论:上加下减,左加右减。
本文由索罗学院整理索罗学院是一个免费的中小学生学习网,上面有大量免费学习视频,欢迎大家前往观看!。
二次函数的平移与最值的求解问题
二次函数的平移与最值的求解问题二次函数是高中数学中的重要概念之一,在解决实际问题时十分常见。
本文将重点探讨二次函数的平移与最值的求解问题。
一、二次函数的基本形式二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
二次函数的图像是抛物线,其开口方向取决于a的正负。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
二、二次函数的平移在二次函数的基本形式中,可以通过平移来改变其图像在平面上的位置。
平移分为水平平移和垂直平移两种情况。
1. 水平平移当二次函数形式为f(x) = a(x-h)^2 + k时,其中(h,k)为平面上一点的坐标,表示抛物线的顶点的坐标。
通过改变h的值,可以使抛物线在水平方向上平移。
例如,若将二次函数f(x) = x^2的顶点(0,0)向右平移2个单位,则新函数为f(x) = (x-2)^2。
这样,原来在原点的顶点现在位于(2,0)处,整个抛物线平移了2个单位。
2. 垂直平移当二次函数形式为f(x) = a(x-h)^2 + k时,其中(h,k)为平面上一点的坐标,同样表示抛物线的顶点的坐标。
通过改变k的值,可以使抛物线在垂直方向上平移。
例如,若将二次函数f(x) = x^2的顶点(0,0)向上平移3个单位,则新函数为f(x) = x^2 + 3。
这样,整个抛物线在垂直方向上平移了3个单位。
三、二次函数的最值求解在解决实际问题时,我们常常需要求解二次函数的最值,即最大值或最小值。
对于二次函数f(x) = ax^2 + bx + c,如果a > 0,则二次函数的图像开口向上,且最小值在顶点处取得;如果a < 0,则二次函数的图像开口向下,且最大值在顶点处取得。
而最值点的横坐标为顶点的横坐标,可以通过顶点的求解公式x = -b/2a来得到。
例如,对于二次函数f(x) = x^2 + 2x + 1,将其转化为标准形式后可得a = 1, b = 2, c = 1,因此顶点的横坐标为x = -2/(2*1) = -1。
二次函数一般式的平移
二次函数一般式的平移
二次函数一般式是y=ax+bx+c,其中a、b、c为常数,代表二次函数的特征参数。
平移是将函数图像沿x、y轴方向移动一定距离的操作。
本文将介绍如何通过平移的方式改变二次函数的图像位置。
首先,我们考虑二次函数沿x轴方向平移。
如果要将二次函数
y=ax+bx+c向右平移h个单位,我们只需要将x替换为x-h,即可得到平移后的函数式为y=a(x-h)+b(x-h)+c。
同理,如果要将二次函数向左平移h个单位,可以将x替换为
x+h,即可得到平移后的函数式为y=a(x+h)+b(x+h)+c。
其次,我们考虑二次函数沿y轴方向平移。
如果要将二次函数
y=ax+bx+c向上平移k个单位,我们只需要在函数式中加上k,即可得到平移后的函数式为y=ax+bx+c+k。
同理,如果要将二次函数向下平移k个单位,只需要在函数式中减去k,即可得到平移后的函数式为y=ax+bx+c-k。
通过以上方法,我们可以轻松地将二次函数沿x、y轴方向平移。
需要注意的是,平移后二次函数的图像不会改变形状,只会改变位置。
- 1 -。
二次函数的平移问题
二次函数的平移问题关于二次函数的平移变换问题二次函数的平移变换可以分为上下平移和左右平移两种情况。
1.上下平移对于原函数y=ax²+bx+c,若要进行上下平移,可以进行以下变换:向上平移m个单位,得到平移后的函数y=ax²+bx+c+m;向下平移m个单位,得到平移后的函数y=ax²+bx+c-m。
需要注意的是,m为正数,若m为负数,则对应的加(减)号需要改为减(加)号。
一般称这种变换为上加下减或上正下负。
2.左右平移对于原函数y=ax²+bx+c,若要进行左右平移,可以进行以下变换:先将函数化为顶点式y=a(x-h)²+k;向左平移n个单位,得到平移后的函数y=a(x-h+n)²+k;向右平移n个单位,得到平移后的函数y=a(x-h-n)²+k。
需要注意的是,n为正数,若n为负数,则对应的加(减)号需要改为减(加)号。
一般称这种变换为左加右减或左正右负。
例题:1.将抛物线y=-x²向左平移一个单位,再向上平移三个单位,平移后的表达式为()A。
y=-(x-1)²+3B。
y=-(x+1)²+3C。
y=-(x-1)²-3D。
y=-(x+1)²-32.抛物线y=x²+bx+c向右平移两个单位,再向下平移三个单位,得到的抛物线表达式为y=x²-2x-3,则b、c的值分别为()A。
b=2,c=2B。
b=2,c=0C。
b=-2,c=-1D。
b=-3,c=23.将函数y=x²+x的图像向右平移a(a>0)个单位,得到函数y=x²-3x+2的图像,则a的值为()A。
1B。
2C。
3D。
44.已知二次函数y=x²-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。
下列关于抛物线移动方向的描述中,正确的是()A。
二次函数专题—函数图像的平移
二次函数专题(3)——函数图像的平移我们知道图像的平移,图像本身不会发生改变,只是图像的位置发生改变。
函数图像的平移也是遵循这样原理,只是我们在平移过程中函数的解析式也发生改变,这节专题主要就是探讨函数平移与解析式的计算。
1. 基础情境:点坐标平移①水平平移:纵坐标不变横坐标加减我们以A(1,2)为例,把A往右平移2个单位到A’,很明显A’的纵坐标不变,但是横坐标变为了1+2=3,即A’(3,2);同理把A往左平移2个单位到A’’(-1,2)②竖直平移:横坐标不变,纵坐标加减我们以A(1,2)为例,把A往上平移三个单位到A’,很明显A’的横坐标不变,但是纵坐标变为了2+3=5,即A’(1,5);同理把A往下平移三个单位到A’’(1,-1),如下图:2. 函数平移:一次函数图像平移①水平平移问题:我们以y=2x+2为例,把它向右平移2个单位,那么新的图像函数解析式为何?分析:由于平移过后仍然是条直线,两点决定一条直线,所以我们选取两个特殊点就可以算出新的函数表达式。
解答:选取原一次函数上两点(0,2)、(-1,0),经过平移后这两点坐标变为(2,2)和(1,0),计算得y=2x-2.观察:平移后,一次函数的系数k(2)不变,b减小了两倍(由2变为-2)推广:对于所有一次函数y=kx+b,向右平移2个单位的函数解析式怎么求?分析:可以按照上面的思路,取特殊点求取新的一次函数解析式解答:方法一:坐标法取两个特殊点(0,b)、(1,k+b),经过平移后这两点坐标变为(2,b)和(3,k+b),计算函数表达式得y=kx+b-2k。
这个式子我们还可以改写成这样y=(k-2)x+b。
反思:解析法特殊点法虽然可以帮助我们解决问题,但是需要计算,有没有更加快速的计算一次函数解析式方法?有!我们回到最初函数的定义,比如坐标系中有一个点A(x,y),其中y=kx+b 代表是x与y之间的等量关系。
如果把A(x,y)向右平移2单位变成A’(m,y),此时m=x+2。
二次函数平移问题
二次函数的平移问题我们从两个方面进行了一些探讨,概括出二次函数平移后其解析式的变化规律.一.当解析式为一般式y=ax2+bx+c (a≠0)时1.向上或向下平移时,二次函数解析式的变化规律.将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c+n 将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=ax2+bx+c-n 两式比较:可得抛物线向上平移n个单位,常数项上加n,即解析式由y=ax2+bx+c 变为y=ax2+bx+c+n;同理可推出抛物线向下平移n个单位, 常数项上减去n,即解析式由y=ax2+bx+c 变为y=ax2+bx+c-n2.向左或向右平移时,解析式的变化规律.将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y= a(x+m)2+b(x+m)+c将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y= a(x-m)2+b(x-m)+c两式比较,可得出抛物线向左平移m个单位,自变量上减去m,即解析式由y=ax2+bx+c 变为y=a(x+m)2+b(x+m)+c;同理可推出抛物线向右平移m个单位,自变量上加上m,即解析式由y=ax2+bx+c 变为y=a(x-m)2+b(x-m)+c3.将抛物线向左平移m个单位长度后, 再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y= a(x+m)2+b(x+m)+c+n将抛物线向左平移m个单位长度后, 再将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y= a(x+m)2+b(x+m)+c-n将抛物线向右平移m个单位长度后, 再将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y= a(x-m)2+b(x-m)+c+n将抛物线向右平移m个单位长度后, 再将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y= a(x-m)2+b(x-m)+c-n二.当解析式为顶点式y=a(x-h)2+k(a≠0)时1.向上或向下平移时,解析式的变化规律.将抛物线向上平移n个单位长度后,得到的新抛物线的解析式为y=a(x-h)2+k+n 将抛物线向下平移n个单位长度后,得到的新抛物线的解析式为y=a(x-h)2+k-n 将抛物线向上平移n个单位,有点的平移规律可知,顶点坐标由(h,k)变为(h,k+n)所以抛物线的解析式由y=a(x-h)2+k变为y=a(x-h)2+k+n 将抛物线向下平移n个单位,有点的平移规律可知,顶点坐标由(h,k)变为(h,k-n)所以抛物线的解析式由y=a(x-h)2+k变为y=a(x-h)2+k-n 比较两个解析式可得出向上平移n个单位,括号外加n,同理可推出向下平移n 个单位括号外减去n.即抛物线解析式由y=a(x-h)2+k变为y=a(x+m-h)2+k-n2.向右或向左平移时,解析式的变化规律.将抛物线向左平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h+m)2+k 将抛物线向右平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h-m)2+k 将抛物线向左平移m个单位,由点的平移规律可知,顶点坐标由(h,k)变为(h-m,k),所以抛物线解析式由y=a(x-h)2+k变为 y=a[x-(h-m)]2+k=a(x-h+m)2+k将抛物线向右平移m 个单位,由点的平移规律可知,顶点坐标由(h,k)变为(h+m,k),所以抛物线解析式由y=a(x-h)2+k 变为 y=a[x-(h+m)]2+k=a (x-h-m)2+k两解析式比较可得出图像向左平移m 个单位,括号内加上m ,即抛物线解析式由y=a(x-h)2+k 变为y=a (x-h+m)2+k ;同理可推出向右平移m 个单位括号内减去m ,即抛物线解析式由y=a(x-h)2+k 变为y=a (x-h-m)2+k综上所述,当解析式为顶点式时,解析式的变化规律为上加下减括号外,左加右减括号内;解析式为一般式时,解析式的变化规律为左加右减自变量,上加下减常数项3.将抛物线向左平移m 个单位长度后, 再将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h+m)2+k+n将抛物线向左平移m 个单位长度后, 再将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h+m)2+k-n将抛物线向右平移m 个单位长度后, 再将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h-m)2+k+n将抛物线向右平移m 个单位长度后, 再将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a (x-h-m)2+k-n二次函数的平移练习题1.把抛物线y=-x 2向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( )A. y=-(x-1)2+3B. y=-(x+1)2+3C. y=-(x-1)2-3D. y=-(x+1)2-32.抛物线y=x 2+bx+c 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为y=x 2-2x-3,则b 、c 的值为( ) A . b=2,c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3,c=23.将函数y=x 2+x 的图像向右平移a (a >0)个单位,得到函数y=x 2-3x+2的图像,则a 的值为( )A. 1B. 2C. 3D. 44.已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( )A. 先往左上方移动,再往右下方移动B.先往左下方移动,再往左上方移动B.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动5.已知抛物线C :y=x 2+3x-10,将抛物线C 平移得到抛物线C ′.若两条抛物线C 、C ′关于直线x=1对称,则下列平移方法正确的是( )A. 将抛物线C 向右平移2.5个单位 B.将抛物线C 向右平移3个单位 C.将抛物线C 向右平移5个单位 D.将抛物线C 向右平移6个单位6.把二次函数y=-41x 2-x+3用配方法化成y=a(x-h)2+k 的形式 A. y=-41(x-2)2+2 B. y=41(x-2)2+4 C. y=-41(x+2)2+4 D. y= (21x-21)2+3 7.在平面直角坐标系中,将二次函数y=2x 2的图象向上平移2个单位,所得图象的解析式为A .y=2x 2-2B .y=2x 2+2C .y=2(x-2)2D .y=2(x+2)28.将抛物线y=2x 2向下平移1个单位,得到的抛物线是( )A .y=2(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=2x 2-19.将函数y=x 2+x 的图象向右平移a(a >0)个单位,得到函数y=x 2-x+2的图象,则a 的值为( )A .1B .2C .3D .410.把抛物线y=-2x 2向右平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为( )A. y=-2(x-2)2+5B. y=-2(x+2)2+5C. y=-2(x-2)2-5D. y=-2(x+2)2-511.在平面直角坐标系中,先将抛物线y=x 2+x-2关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .y=-x 2-x+2B .y=-x 2+x-2 C. y=-x 2+x+2 D .y=x 2+x+212.在平面直角坐标系中,将抛物线y=x 2+2x+3绕着它与y 轴的交点旋转1800,所得抛物线的解析式是( )A .y=-(x+1)2+2B .y=-(x-1)2+4C .y=-(x-1)2+2D .y=-(x+1)2+413.要得到二次函数y=-x 2+2x-2的图象,需将y=-x 2的图象( ).A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位14.若二次函数y=(x-m)2-1,当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( )A .m =1B .m >1C .m ≥1D .m ≤115.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x-m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为( )A .13B .7C .5D .816.抛物线y=ax 2向左平移5个单位,再向下移动2个单位得到抛物线17.二次函数y=-2(x+3)2-1由y=-2(x-1)2+1向_____平移______个单位,再向_____平移______个单位得到18.抛物线y=3(x+2)2-3可由抛物线y=3(x+2)2+2向 平移 个单位得到19.将抛物线y=53(x-3)2+5向右平移3个单位,再向上平移2个单位,得到的抛物线是 20.把抛物线y=-(x-1)2-2是由抛物线y=-(x+2)2-3向 平移 个单位,再向_____平移_____个单位得到21.把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________22.抛物线y =x 2-5x+4的图像向右平移三个单位,在向下平移三个单位的解析式23.已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为24.已知a+b+c=0,a ≠0,把抛物线y=ax 2+bx+c 向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式25.已知二次函数y =-x 2-4x-5.①指出这个二次函数图象的开口方向、对称轴和顶点坐标;②把这个二次函数的图象上、下平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式;③把这个二次函数的图象左、右平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式。
【经典必考】二次函数图像平移30题含详细答案
○………○………二次函数图像平移30题含详细答案 一、单选题 1.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ). A .22(2)3y x =++; B .22(2)3y x =-+; C .22(2)3y x =--; D .22(2)3y x =+-. 2.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度 3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .()3,6-- B .()3,0- C .()3,5-- D .()3,1-- 4.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A .y=(x +2)2﹣5 B .y=(x +2)2+5 C .y=(x ﹣2)2﹣5 D .y=(x ﹣2)2+5 5.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( ) A .y=﹣5(x+1)2﹣1 B .y=﹣5(x ﹣1)2﹣1 C .y=﹣5(x+1)2+3 D .y=﹣5(x ﹣1)2+3 6.如图,抛物线2145y x 7x 22=-+与x 轴交于点A 、B ,把抛物线在x 轴及其下方的部分记作1C ,将1C 向左平移得到2C ,2C 与x 轴交于点B 、D ,若直线1y x m 2=+与1C 、2C 共有3个不同的交点,则m 的取值范围是( )……○…………订※※装※※订※※线※※内※……○…………订A .455m 82-<<- B .291m 82-<<- C .295m 82-<<- D .451m 82-<<- 7.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( ) A .先向左平移1个单位,再向上平移2个单位 B .先向左平移1个单位,再向下平移2个单位 C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.如图,将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x ﹣2)2-2 B .y =12(x ﹣2)2+7C .y =12(x ﹣2)2-5 D .y =12(x ﹣2)2+49.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位10.抛物线267y x x =++可由抛物线2y x 如何平移得到的( )A .先向左平移3个单位,再向下平移2个单位B .先向左平移6个单位,再向上平移7个单位C .先向上平移2个单位,再向左平移3个单位D .先回右平移3个单位,再向上平移2个单位11.将抛物线y=x 2﹣4x ﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函A .y=(x+1)2﹣13B .y=(x ﹣5)2﹣3C .y=(x ﹣5)2﹣13D .y=(x+1)2﹣3 12.若要得到函数y =(x+1)2+2的图象,只需将函数y =x 2的图象( ) A .先向右平移1个单位长度,再向上平移2个单位长度 B .先向左平移1个单位长度,再向上平移2个单位长度 C .先向左平移1个单位长度,再向下平移2个单位长度 D .先向右平移1个单位长度,再向下平移2个单位长度 13.将抛物线y=12x 2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( ) A .y=12(x ﹣8)2+5 B .y=12(x ﹣4)2+5 C .y=12(x ﹣8)2+3 D .y=12(x ﹣4)2+3 14.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位 15.把抛物线y=﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( ) A .y=﹣2(x+1)2+2 B .y=﹣2(x+1)2﹣2 C .y=﹣2(x ﹣1)2+2 D .y=﹣2(x ﹣1)2﹣2 16.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为( ) A .2(1)4y x =-+ B .2(4)4y x =-+ C .2(2)6y x =++ D .2(4)6y x =-+ 17.将抛物线2y x 向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ) A .2(2)3y x =+- B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =-- 18.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是 A .()2y x 12=-+ B .()2y x 12=++ C .2y x 1=+ D .2y x 3=+ 19.将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =-- B .2(1)3y x =-- C .2(2)2y x =-- D .2(4)2y x =--20.抛物线y =3x 2向右平移一个单位得到的抛物线是( )A .y =3x 2+1B .y =3x 2﹣1C .y =3(x+1)2D .y =3(x ﹣1)2 21.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( )A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位22.把抛物线y=﹣2x 2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A .y=﹣2(x ﹣1)2+6B .y=﹣2(x ﹣1)2﹣6C .y=﹣2(x+1)2+6D .y=﹣2(x+1)2﹣623.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A .y =﹣2(x +1)2+1 B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣124.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、解答题 25.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式; (2)求该函数图象与坐标轴的交点坐标; (3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积. 26.已知二次函数2223y x mx m =-++(m 是常数) (1)求证:不论m 为何值,该函数的图像与x 轴没有公共点; (2)把该函数的图像沿x 轴向下平移多少个单位长度后,得到的函数的图像与x 轴只有一个公共点? 27.把二次函数y=a(x-h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=12(x+1)2-1的图象. (1)试确定a ,h ,k 的值; (2)指出二次函数y=a(x-h)2+k 的开口方向,对称轴和顶点坐标. 三、填空题 28.抛物线y =x 2-2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________. 29.将抛物线2213y x =-向右平移3个单位,再向上平移3个单位,所得的抛物线的解析式为________________. 30.把抛物线y=x 2﹣2x+3沿x 轴向右平移2个单位,得到的抛物线解析式为 .参考答案1.B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+,故选B .【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.2.D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.3.B【解析】分析:根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.详解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x (x-2)=x 2-2x=(x-1)2-1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x-1+2)2-1-3=(x+1)2-4.当x=-3时,y=(x+1)2-4=0,∴得到的新抛物线过点(-3,0).故选B .点睛:本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.4.A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x 2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5), 所以,平移后的抛物线的解析式为y=(x +2)2﹣5.故选A .【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键. 5.A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x 2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A .点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键. 6.C【分析】先求出点A 和点B 的坐标,然后再求出2C 的解析式,分别求出直线1y x m 2=+与抛物线2C 相切时m 的值以及直线1y x m 2=+过点B 时m 的值,结合图形即可得到答案. 【详解】抛物线2145y x 7x 22=-+与x 轴交于点A 、B , ∴2145x 7x 22-+=0, ∴x 1=5,x 2=9,()B 5,0∴,()A 9,0∴抛物线向左平移4个单位长度后的解析式21y (x 3)22=--, 当直线1y x m 2=+过B 点,有2个交点, 50m 2∴=+, 5m 2=-, 当直线1y x m 2=+与抛物线2C 相切时,有2个交点, 211x m (x 3)222∴+=--, 2x 7x 52m 0-+-=,相切,49208m 0∴=-+=,29m 8∴=-, 如图,若直线1y x m 2=+与1C 、2C 共有3个不同的交点, ∴--295m 82<<-, 故选C .【点睛】本题考查了抛物线与x 轴交点、二次函数图象的平移等知识,正确地画出图形,利用数形结合思想是解答本题的关键.7.D【解析】将抛物线y =-3x 2平移,先向右平移1个单位得到抛物线y =-3(x -1)2, 再向下平移2个单位得到抛物线y =-3(x -1)2-2.故选D.8.D【详解】∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m =()211212-+=32,n =()214212-+=3, ∴A (1,32),B (4,3), 过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,32), ∴AC =4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC •AA ′=3AA ′=9,∴AA ′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是()21242y x =-+. 故选D .9.B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5), 故选B .【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 10.A【分析】先将抛物线267y x x =++化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为()226732y x x x =++=+-,所以将抛物线2y x 先向左平移3个单位,再向下平移2个单位即可得到抛物线267y x x =++,故选A .【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.11.D【详解】因为y=x 2-4x-4=(x-2)2-8,以抛物线y=x 2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(-1,-3),所以平移后的抛物线的函数表达式为y=(x+1)2-3.故选D .12.B【分析】找出两抛物线的顶点坐标,由a 值不变即可找出结论.【详解】解:∵抛物线y=(x+1)2+2的顶点坐标为(-1,2),抛物线y=x 2的顶点坐标为(0,0), ∴将抛物线y=x 2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.13.D【解析】【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】 y=12x 2﹣6x+21 =12(x 2﹣12x )+21 =12[(x ﹣6)2﹣36]+21 =12(x ﹣6)2+3, 故y=12(x ﹣6)2+3,向左平移2个单位后, 得到新抛物线的解析式为:y=12(x ﹣4)2+3. 故选D .【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.14.B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵23222y x y (x 2)y (x 2)3→+→+-向左平移个单位向下平移个单位===y =x 2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B .15.C【详解】解:把抛物线y=﹣2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x ﹣1)2+2,故选C .16.B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将223y x x =-+化为顶点式,得2(1)2y x =-+.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为2(4)4y x =-+,故选B .【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.17.A【分析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-3),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-3),所以平移后的抛物线解析式为y=(x+2)2-3. 故选A .18.C【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .19.D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:()226534y x x x =-+=--,即抛物线的顶点坐标为()3,4-, 把点()3,4-向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为()4,2-, 所以平移后得到的抛物线解析式为()242y x =--.故选D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.20.D【解析】【分析】先确定抛物线y =3x 2的顶点坐标为(0,0),再利用点平移的坐标变换规律得到点(0,0)平移后对应点的坐标为(1,0),然后根据顶点式写出平移后的抛物线的解析式.【详解】y =3x 2的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y =3(x ﹣1)2.故选D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.C【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.22.C【解析】∵抛物线y =﹣2(x ﹣1)2+3的顶点坐标为(1,3),∴向左平移2个单位,再向上平移3个单位后的顶点坐标是(﹣1,6)∴所得抛物线解析式是y =﹣2(x +1)2+6.故选C点睛:本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k ,确定其顶点坐标(h ,k ),在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”.23.B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.24.D【解析】【分析】先将抛物线y=x2+2x+3化为顶点式,找出顶点坐标,利用平移的特点即可求出新的抛物线,可求得与直线y=3的交点坐标.【详解】解:抛物线y= x2+2x+3=(x+1)2+2,顶点坐标(-1,2),再向下平移3个单位得到的点是(-1,-1).可得新函数的解析式为y=(x+1)2−1,当y=3时候,即:(x+1)2−1=3,得:(x+1)2=4,解得:x=1或x=-3,∴抛物线与直线y=3的交点坐标为(1,3)或(-3,3),故选D.【点睛】本题主要考查抛物线平移的规律与性质, 关键是得到所求抛物线顶点坐标,利用平移的规律解答.25.(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】解:(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.26.(1)证明见解析;(2)3.【分析】(1)求出根的判别式,即可得出答案.(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.【详解】(1)∵()()222224134412120m m m m ∆=--⨯⨯+=--=-<, ∴方程22230x mx m -++=没有实数解.∴不论m 为何值,该函数的图象与x 轴没有公共点.(2)∵()222233y x mx m x m =-++=-+,∴把函数2223y x mx m =-++的图象延y 轴向下平移3个单位长度后,得到函数()23y x m =-+的图象,它的顶点坐标是(m ,0).∴这个函数的图象与x 轴只有一个公共点.∴把函数2223y x mx m =-++的图象延y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.【点睛】本题考查了1.抛物线与x 轴的交点问题;2.一元二次方程根的判别式;3.二次函数图象与平移变换.27.(1)1,1,52a h k ===- (2)开口向下,对称轴是x=1的直线,顶点(1,-5) 【解析】试题分析:(1)二次函数的平移,可以看作是将二次函数y=12(x+1)2-1先向右平移2个单位,再向下平移4个单位得到二次函数y=a(x-h)2+k ,然后再按二次函数图象的平移法则,确定函数解析式,即可得到结论;(2),直接根据函数解析式,结合二次函数的性质,进行回答即可.试题分析:(1)∵二次函数y=a(x-h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=12(x+1)2-1, ∴可以看作是将二次函数y=12 (x+1)2-1先向右平移2个单位,再向下平移4个单位得到二次函数y=a(x-h)2+k ,而将二次函数y=12 (x+1)2-1先向右平移2个单位,再向下平移4个单位得到二次函数为:y=12(x-1)2-5,∴a=12,b=1,k=-5; (2)二次函数y=12 (x-1)2-5, 开口向上,对称轴为x=1,顶点坐标为(1,-5).28.y=x 2-8x+20.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】2y 23x x =-+=()21x - +2,其顶点坐标为(1,2).向上平移2个单位长度,再向右平移3个单位长度后的顶点坐标为(4,4),得到的抛物线的解析式是y=()24x -+42820x x =-+.故答案为2y 820x x =-+.【点睛】本题考查二次函数图象与几何变换.29.22(3)23y x =-+ 【解析】【分析】先确定抛物线y 2213x =-的顶点坐标为(0,-1),再把点(0,-1)先向右平移3个单位,再向上平移3个单位后得到的点的坐标为(3,2),然后根据顶点式写出平移后抛物线的解析式.【详解】解:抛物线y=2213x -的顶点坐标为(0,-1),把点(0,-1)先向右平移3个单位,再向上平移3个单位后得到的点的坐标为(3,2),所以所得的抛物线的解析式为y=()22323x -+. 故答案为y=()22323x -+. 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.30.y=(x﹣3)2+2【解析】【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,故答案为:y=(x﹣3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.。
二次函数中的平移、翻折、对称、旋转、折叠问题
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
二次函数的平移与对称性
二次函数的平移与对称性二次函数是一个非常重要的数学概念,它在数学和实际问题中有着广泛的应用。
在本篇文章中,我们将探讨二次函数的平移与对称性。
1. 平移的概念平移是指改变函数图像的位置而不改变其形状。
对于二次函数来说,平移可以分为水平平移和垂直平移两种情况。
1.1 水平平移水平平移是指在横轴方向上移动函数图像的位置。
当二次函数为f(x) = ax^2 + bx + c时,水平平移的公式为f(x-h) = a(x-h)^2 + b(x-h) + c,其中h为平移的距离。
1.2 垂直平移垂直平移是指在纵轴方向上移动函数图像的位置。
当二次函数为f(x) = ax^2 + bx + c时,垂直平移的公式为f(x) = ax^2 + bx + c + k,其中k为平移的距离。
2. 平移的影响平移会改变二次函数图像的位置,进而对函数的性质和方程产生影响。
2.1 平移对顶点的影响顶点是二次函数图像的最低点(极小值)或最高点(极大值)。
当进行平移时,顶点的坐标会发生改变。
对于水平平移,顶点的横坐标会加上平移的距离;而对于垂直平移,顶点的纵坐标会加上平移的距离。
2.2 平移对对称轴的影响对称轴是二次函数图像的对称线,对称轴的方程是x = -b/(2a)。
当进行平移时,对称轴的位置会发生改变。
对于水平平移,对称轴的方程中的b会减去平移的距离;而对于垂直平移,对称轴的方程不会受到平移的影响。
2.3 平移对图像形状的影响平移不会改变二次函数图像的形状,只会改变其位置。
二次函数的形状由参数a的正负确定,正数的a使得图像开口向上,负数的a使得图像开口向下。
平移只会改变图像在坐标系中的位置,不会改变其形状。
3. 对称性的概念对称性是指图像在某种变换下仍旧保持原样。
对于二次函数来说,有两种类型的对称性:轴对称和中心对称。
3.1 轴对称轴对称是指图像相对于某一条直线对称。
对于二次函数来说,其图像关于对称轴对称。
对称轴的方程是x = -b/(2a),这条直线将图像分为左右两部分,两部分关于该直线对称。
平移后的二次函数顶点题类型方法总结
平移后的二次函数顶点题类型方法总结
一、概述
在解决顶点问题时,常常需要进行二次函数的平移操作。
本文总结了平移后的二次函数顶点题的不同类型和解题方法。
二、顶点向右平移
当二次函数的顶点向右平移时,可以采用以下方法求解:
1. 已知平移后的顶点坐标
若已知平移后的顶点坐标为 (h, k),则原来的顶点坐标为 (h - a, k),其中 a 为平移的水平距离。
然后可以根据顶点坐标求出二次函数的表达式。
2. 已知平移的水平距离
若已知平移的水平距离为 a,且顶点为坐标 (h, k),则平移后的顶点坐标为 (h + a, k)。
接下来可以根据顶点坐标求出二次函数的表达式。
三、顶点向左平移
当二次函数的顶点向左平移时,可以采用以下方法求解:
1. 已知平移后的顶点坐标
若已知平移后的顶点坐标为 (h, k),则原来的顶点坐标为 (h + a, k),其中 a 为平移的水平距离。
然后可以根据顶点坐标求出二次函
数的表达式。
2. 已知平移的水平距离
若已知平移的水平距离为 a,且顶点为坐标 (h, k),则平移后的顶点坐标为 (h - a, k)。
接下来可以根据顶点坐标求出二次函数的表
达式。
四、总结
在解决平移后的二次函数顶点题时,我们可以根据已知的顶点
信息或平移的水平距离来确定顶点的具体位置,并进而求出二次函
数的表达式。
通过掌握以上方法,我们能够更轻松地解决这类问题。
以上是对平移后的二次函数顶点题类型和方法的总结。
希望能
帮助您更好地理解和解决这类问题。
字数:212。
二次函数图像平移专题训练(含解析)
二次函数图像平移专题训练(含解析)一、单选题1.将直线向上平移2个单位,相当于()A.向左平移2个单位B.向左平移1个单位C.向右平移2个单位D.向右平移1个单位2.抛物线y=(x+2)2+1可由抛物线y=x2平移得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位3.抛物线经过平移得到,平移方法是()A.向左平移1个单位,再向下平移5个单位B.向左平移1个单位,再向上平移5个单位C.向右平移1个单位,再向下平移5个单位D.向右平移1个单位,再向上平移5个单位4.若抛物线平移得到,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位二、填空题5.在平面直角坐标系中,将点M(2,3)向左平移3个单位,再向下平移2个单位,则平移后的点的坐标是.6.抛物线向右平移1个单位,再向上平移2个单位,平移后的抛物线的顶点坐标是.7.平移抛物线y=2x2,使其顶点为(2,3),平移后的抛物线是8.将抛物线向上平移个单位,再向右平移个单位,则平移后的抛物线为.9.把抛物线向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式为.10.如果将抛物线先向左平移2个单位,再向上平移1个单位,那么所得的新抛物线的解析式为.11.把抛物线y=先向上平移2个单位长度,再向左平移1个单位长度,则平移后抛物线的解析式是.12.将抛物线向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.答案解析部分1.【答案】B【解析】【解答】解:将直线向上平移2个单位,可得函数解析式为:直线向左平移2个单位,可得故A不符合题意;直线向左平移1个单位,可得故B符合题意;直线向右平移2个单位,可得故C不符合题意;直线向右平移1个单位,可得故D不符合题意.故答案为:B.【分析】一次函数y=kx+b向左平移m(m>0)个单位长度,得到的新一次函数的解析式为y=k(x+m)+b;一次函数y=kx+b向右平移m(m>0)个单位长度,得到的新一次函数的解析式为y=k(x-m)+b;一次函数y=kx+b向上平移m(m>0)个单位长度,得到的新一次函数的解析式为y=kx+b+m;一次函数y=kx+b向下平移m(m>0)个单位长度,得到的新一次函数的解析式为y=kx+b-m,据此一一判断得出答案.2.【答案】C【解析】【解答】解:根据题意将y=x2向左平移2个单位再向上平移1个单位即可得y=(x+2)2+1,故答案为:C【分析】根据抛物线平移的性质:左加右减,上加下减的原则求解即可。
二次函数平移题目
二次函数平移题目一、二次函数平移的基本原理1. 二次函数的一般式为y = ax^2+bx + c(a≠0),其顶点式为y=a(x - h)^2+k,其中(h,k)为顶点坐标。
2. 平移规律:- 向左平移m个单位时,x变为x + m;- 向右平移m个单位时,x变为x - m;- 向上平移n个单位时,y变为y - n;- 向下平移n个单位时,y变为y + n。
二、典型题目及解析题目1:将二次函数y = x^2的图象向上平移3个单位,再向右平移2个单位,得到的图象对应的二次函数表达式是什么?解析:1. y = x^2的图象向上平移3个单位,根据平移规律,此时函数变为y=x^2+3。
2. 然后,再将y=x^2+3的图象向右平移2个单位,此时x变为x - 2,所以得到的二次函数表达式为y=(x - 2)^2+3。
- 展开y=(x - 2)^2+3,y=(x^2-4x + 4)+3=x^2-4x+7。
题目2:二次函数y = 2(x+1)^2-3向左平移2个单位,再向下平移1个单位后的函数表达式是什么?解析:1. 对于二次函数y = 2(x + 1)^2-3,向左平移2个单位,此时x+1变为x+1+2=x + 3,函数变为y = 2(x+3)^2-3。
2. 再向下平移1个单位,y变为y+1,所以得到的函数表达式为y=2(x + 3)^2-3-1=2(x + 3)^2-4。
- 展开y = 2(x + 3)^2-4,y=2(x^2+6x+9)-4 = 2x^2+12x + 18-4=2x^2+12x+14。
题目3:已知二次函数y=ax^2+bx + c的图象经过点(0,0),(1, - 3),(2,-8),将这个二次函数的图象向左平移3个单位,再向上平移5个单位,求平移后的二次函数表达式。
解析:1. 把点(0,0),(1,-3),(2,-8)代入y = ax^2+bx + c中,得到方程组:- 当x = 0,y = 0时,c = 0;- 当x = 1,y=-3时,a×1^2+b×1 + c=-3,即a + b=-3;- 当x = 2,y=-8时,a×2^2+b×2 + c=-8,即4a+2b=-8。
二次函数中的平移试题
二次函数中的平移方法及典型试题一.平移法:y=ax2→y=ax2+c;y=ax2→y=a(x+h)2;y=ax2→y=a(x+h)2→y=a(x+h)2+k具体步骤:第一步:将一般式变形为顶点式(配方法)第二步:找出原型函数并用描点法画出其图象第三步:先左右平移,再上下平移。
(移动规律是“上加下减,左加右减”)。
二.选择题1.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为().A.0,5 B.0,1 C-4,5. D.-4,12.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-23.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位4.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(-3,-6)B.(1,-4)C.(1,-6)D.(-3,-4)5.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是()A、y=2(x-1)2-5 B、y=2(x-1)2+5 C、y=2(x+1)2-5 D、y=2(x+1)2+56.将二次函数y=x2的图象如何平移可得到y= x2+4x+3的图象()A.向右平移2个单位,向上平移一个单位B.向右平移2个单位,向下平移一个单位C.向左平移2个单位,向下平移一个单位D.向左平移2个单位,向上平移一个单位7.把抛物线y= x2+2x+5的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是()A.y= x2-2x+5B. y= x2+8x+18C. y= x2-4x+6D.y= x2+2x+38.把抛物线y= x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得函数的解析式是y= x2-3x+5,则有()A、b=3,c=7B、b=-9,c=-15C、b=3,c=3D、b=-9,c=219.直角坐标平面上将二次函数y= x2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,﹣1)C.(0,﹣1)D.(﹣1,﹣1)10.将抛物线y=2x2-12x+16绕它的顶点旋转180°,所得抛物线的解析式是().A. y=-2x2-12x+16 B.y=-2x2+12x-16 C. y=-2x2+12x-20 D.y=-2x2+12x-1911.将抛物线y=2x2-4x-5向上平移6个单位长度,再向左平移2个单位长度,最后所得抛物线绕原点转180°,得到新的抛物线解析式()A.y=2x2-4x-5B.y=-2x2+4x-1C. y=2x2+12x+19D. y=-2x2-12x-1712.抛物线y=-2x2-4x-5经过平移后得到抛物线y=-2x2,平移方法是( )A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位 C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位13.抛物线y=x2-4x+3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为() A.(4,-1) B.(0,-3) C.(-2,-3) D.(-2,-1)14.如图,在平面直角坐标系中,抛物线y=1/2 x2经过平移得到抛物线y=1/2 x2−2x,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.1615.如图,已知抛物线l1:y=1/2(x-2)2-2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为()A.y=1/2(x-2)2+4B.y=1/2(x-2)2+3C.y=1/2(x-2)2+2D.y=1/2(x-2)2+116.小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?()A.L1为x轴,L3为y轴B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴D.L2为x轴,L4为y 轴17.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=1/2x2+bx+c的顶点,则方程1/2x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或2二.填空题1.将抛物线y=(x-3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为2.把抛物线y=ax2+bx+c的图象先向右平移3 个单位长度,再向下平移2 个单位长度,所得图象的解析式是y=x2-3x+5则a+b+c= .3.抛物线y=3x2-4向上平移3个单位,再向左平移4个单位,得到的抛物线的解析式是。
二次函数平移基础题
二次函数图像平移基础题一.选择题(共21小题)1.(2013•枣庄)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+12.(2013•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x23.(2013•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.4.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2﹣4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(1,4)D.(4,3)5.(2012•黔东南州)抛物线y=x2﹣4x+3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为()A.(4,﹣1)B.(0,﹣3)C.(﹣2,﹣3)D.(﹣2,﹣1)6.(2012•兰州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.(2012•河南)在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣28.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)29.(2011•青海)将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是()A.y=2x2+2 B.y=2(x+2)2C.y=(x﹣2)2D.y=2x2﹣210.(2012•鄂州)把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2B.4C.6D.8 11.(2011•乐山)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2 C.y=﹣(x﹣2)2D.y=﹣x2﹣212.(2011•广元)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是()A.y=3(x﹣3)2+3 B.y=3(x﹣3)2﹣3 C.y=3(x+3)2+3 D.y=3(x+3)2﹣313.(2010•徐州)平面直角坐标系中,若平移二次函数y=(x﹣2009)(x﹣2010)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位14.(2010•通化)二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)215.(2010•台湾)坐标平面上,若移动二次函数y=2(x﹣175)(x﹣176)+6的图形,使其与x轴交于两点,且此两点的距离为1单位,则移动方式可为下列哪一种()A.向上移动3单位B.向下移动3单位C.向上移动6单位D.向下移动6单位16.(2010•宁夏)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+317.(2010•兰州)抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=218.(2010•荆州)若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,…则E(x,x2﹣2x+1)可以由E(x,x2)怎样平移得到?()A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位19.(2009•天津)在平面直角坐标系中,先将抛物线y=x2+x﹣2关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A.y=﹣x2﹣x+2 B.y=﹣x2+x﹣2 C.y=﹣x2+x+2 D.y=x2+x+220.(2012•西湖区一模)坐标平面上,若移动二次函数y=﹣(x﹣2012)(x﹣2011)+2的图象,使其与x轴交于两点,且此两点的距离为1个单位,则移动方式可为()A.向上移动2个单位B.向下移动2个单位C.向上移动1个单位D.向下移动1个单位21.将抛物线y=x2﹣2x﹣1绕其顶点旋转180°后,所得到的新的抛物线的解析式为()A.y=﹣x2+2x﹣1 B.y=﹣x2+2x﹣3 C.y=﹣x2﹣2x﹣1 D.y=﹣x2﹣2x﹣3参考答案与试题解析一.选择题(共21小题)1.(2013•枣庄)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1考点:二次函数图象与几何变换.专题:压轴题.分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.2.(2013•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2考点:二次函数图象与几何变换.分析:根据“左加右减、上加下减”的原则进行解答即可.解答:解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.(2013•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.考点:二次函数图象与几何变换.分析:确定出平移前的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出抛物线解析式即可.解答:解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),∵向右平移一个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(1,﹣3),∴得到的抛物线的解析式为y=(x﹣1)2﹣3.故选B.点评:本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.4.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2﹣4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(1,4)D.(4,3)考点:二次函数图象与几何变换.专题:压轴题;探究型.分析:先把抛物线y=2x2﹣4x+3化为顶点式的形式,再根据函数图象平移的法则求出向右平移3个单位长度,再向上平移2个单位长度所得抛物线的解析式,求出其顶点坐标即可.解答:解:∵抛物线y=2x2﹣4x+3化为y=2(x﹣1)2+1,∴函数图象向右平移3个单位长度,再向上平移2个单位长度所得抛物线的解析式为:y=y=2(x﹣1﹣3)2+1+2,即y=2(x﹣4)2+3,∴其顶点坐标为:(4,3).故选D.点评:本题考查的是二次函数的图象与几何变换,先把原抛物线的解析式化为顶点式的形式是解答此题的关键.5.(2012•黔东南州)抛物线y=x2﹣4x+3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为()A.(4,﹣1)B.(0,﹣3)C.(﹣2,﹣3)D.(﹣2,﹣1)考点:二次函数图象与几何变换.专题:探究型.分析:先把抛物线的解析式化为顶点式的形式,再根据函数图象平移的法则进行解答即可.解答:解:∵抛物线y=x2﹣4x+3可化为:y=(x﹣2)2﹣1,∴其顶点坐标为(2,﹣1),∴向右平移2个单位得到新抛物线的解析式,所得抛物线的顶点坐标是(4,﹣1).故选A.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.(2012•兰州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位考点:二次函数图象与几何变换.分析:根据“左加右减,上加下减”的原则进行解答即可.解答:解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.点评:本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.(2012•河南)在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣2考点:二次函数图象与几何变换.分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解答:解:函数y=x2﹣4向右平移2个单位,得:y=(x﹣2)2﹣4;再向上平移2个单位,得:y=(x﹣2)2﹣2;故选B.点评:本题主要考查了二次函数的图象与几何变换,熟练掌握平移的规律:左加右减,上加下减的规律是解答此题的关键.8.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:探究型.分析:直接根据上加下减的原则进行解答即可.解答:解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.(2011•青海)将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是()A.y=2x2+2 B.y=2(x+2)2C.y=(x﹣2)2D.y=2x2﹣2考点:二次函数图象与几何变换.分析:根据“左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,将函数y=2x2的图象向左平移2个长度单位所得到的图象对应的函数关系式是:y=2(x+2)2.故选:B.点评:此题主要考查了二次函数的图象与几何变换,熟知“左加右减”的原则是解答此题的关键.10.(2012•鄂州)把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2B.4C.6D.8考点:二次函数图象与几何变换.分析:首先根据点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.解答:解:∵y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,∴顶点坐标为(1,2),∴向左平移3个单位,再向下平移2个单位,得(﹣2,0),则原抛物线y=x2+bx+4的顶点坐标为(﹣2,0),∴原抛物线y=x2+bx+4=(x+2)2=x2+4x+4,∴b=4.故选:B.点评:此题主要考查了平移规律,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原抛物线的解析式.11.(2011•乐山)将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是()A.y=﹣(x+2)2B.y=﹣x2+2 C.y=﹣(x﹣2)2D.y=﹣x2﹣2考点:二次函数图象与几何变换.专题:动点型.分析:易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线.解答:解:∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(﹣2,0),设新抛物线的解析式为y=﹣(x﹣h)2+k,∴新抛物线解析式为y=﹣(x+2)2,故选A.点评:考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;左右平移只改变顶点的横坐标,左加右减.12.(2011•广元)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是()A.y=3(x﹣3)2+3 B.y=3(x﹣3)2﹣3 C.y=3(x+3)2+3 D.y=3(x+3)2﹣3考点:二次函数图象与几何变换.专题:压轴题;动点型.分析:先判断出原抛物线的顶点及新抛物线的顶点,根据平移不改变二次函数二次项的系数可得新抛物线解析式.解答:解:原抛物线的顶点坐标为(0,0),∵把x轴、y轴分别向上、向右平移3个单位,∴新抛物线的顶点坐标为(﹣3,﹣3),设新抛物线为y=3(x﹣h)2+k,∴新坐标系中此抛物线的解析式是y=3(x+3)2﹣3.故选D.点评:考查二次函数的平移问题;得到新抛物线的顶点是解决本题的易错点;用到的知识点为:二次函数的平移,不改变二次项的系数.13.(2010•徐州)平面直角坐标系中,若平移二次函数y=(x﹣2009)(x﹣2010)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位考点:二次函数图象与几何变换.专题:压轴题.分析:先由二次函数y=(x﹣2009)(x﹣2010)+4求出抛物线,然后求出抛物线与x轴的两个交点横坐标,利用坐标轴上两点间距离公式即可求得距离是1.解答:解:法一:二次函数y=(x﹣2009)(x﹣2010)+4=[(x﹣2010)+1](x﹣2010)+4设t=x﹣2010,则原二次函数为y=(t+1)t+4=t2+t+4=﹣+4=+.则原抛物与x轴没的交点.若原抛物线向下平移4个单位,则新抛物的解析式为:y=+﹣4=﹣.则新抛物与x轴的交点距离为|0﹣(﹣1)|=1.故选B.法二:二次函数y=(x﹣2009)(x﹣2010)+4的图象向下平移4个单位得y=(x﹣2009)(x﹣2010),属于交点式,与x轴交于两点(2009,0)、(2010,0),两点的距离为1,符合题意,故选B.点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.14.(2010•通化)二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)2考点:二次函数图象与几何变换.专题:压轴题.分析:抛物线平移不改变a的值.解答:解:原抛物线的顶点为(0,0),向右平移3个单位,那么新抛物线的顶点为(3,0).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x﹣3)2.故选D.点评:解决本题的关键是得到新抛物线的顶点坐标.15.(2010•台湾)坐标平面上,若移动二次函数y=2(x﹣175)(x﹣176)+6的图形,使其与x轴交于两点,且此两点的距离为1单位,则移动方式可为下列哪一种()A.向上移动3单位B.向下移动3单位C.向上移动6单位D.向下移动6单位考点:二次函数图象与几何变换.分析:根据所给二次函数的特点知:若将原二次函数移动至y=2(x﹣175)(x﹣176)时,该二次函数与x轴的两交点的距离为1,进而可根据左加右减,上加下减的平移规律得出移动方案.解答:解:将二次函数y=2(x﹣175)(x﹣176)+6向下平移6个单位,得:y=2(x﹣175)(x﹣176),此函数与x轴两交点为(175,0),(176,0),距离为1;故选D.点评:能够正确的发现所给二次函数解析式的特点是解答此题的关键.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.(2010•宁夏)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+3考点:二次函数图象与几何变换.专题:压轴题.分析:利用二次函数平移的性质.解答:解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选D.点评:本题主要考查二次函数y=ax2、y=a(x﹣h)2、y=a(x﹣h)2+k的关系问题.17.(2010•兰州)抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x ﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=2考点:二次函数图象与几何变换.专题:压轴题.分析:易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.解答:解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣1=x2+2x,∴b=2,c=0.故选B.点评:抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.18.(2010•荆州)若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,…则E(x,x2﹣2x+1)可以由E(x,x2)怎样平移得到?()A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位考点:二次函数图象与几何变换.专题:压轴题;新定义.分析:首先弄清E(x,x2﹣2x+1)和E(x,x2)所代表的函数,然后根据左加右减,上加下减的规律进行判断.解答:解:E(x,x2﹣2x+1)即为y=x2﹣2x+1=(x﹣1)2;E(x,x2)即为y=x2;y=(x﹣1)2可由y=x2向右平移一个单位得出;故选D.点评:主要考查的是函数图象的平移,弄清新标记的含义是解答此题的关键.19.(2009•天津)在平面直角坐标系中,先将抛物线y=x2+x﹣2关于x轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A.y=﹣x2﹣x+2 B.y=﹣x2+x﹣2 C.y=﹣x2+x+2 D.y=x2+x+2考点:二次函数图象与几何变换.专题:压轴题.分析:根据平面直角坐标系中,二次函数关于x轴、y轴轴对称的特点得出答案.解答:解:先将抛物线y=x2+x﹣2关于x轴作轴对称变换,可得新抛物线为y=﹣x2﹣x+2;再将所得的抛物线y=﹣x2﹣x+2关于y轴作轴对称变换,可得新抛物线为y=﹣x2+x+2,故选C.点评:两抛物线关于x轴对称,二次项系数,一次项系数,常数项均互为相反数;两抛物线关于y轴对称,二次项系数,常数项不变,一次项系数互为相反数.20.(2012•西湖区一模)坐标平面上,若移动二次函数y=﹣(x﹣2012)(x﹣2011)+2的图象,使其与x轴交于两点,且此两点的距离为1个单位,则移动方式可为()A.向上移动2个单位B.向下移动2个单位C.向上移动1个单位D.向下移动1个单位考点:二次函数图象与几何变换.专题:探究型.分析:根据所给二次函数的特点知:若将原二次函数移动至y=﹣(x﹣2012)(x﹣2011)时,该二次函数与x轴的两交点的距离为1,进而可根据左加右减,上加下减的平移规律得出移动方案.解答:解:将二次函数y=﹣(x﹣2012)(x﹣2011)+2向下移动2个单位,得:y=﹣(x﹣2012)(x﹣2011),此函数与x轴两交点为(2012,0),(2011,0),距离为1;故选B.点评:本题考查的是二次函数的图象与几何变换,能够正确的发现所给二次函数解析式的特点是解答此题的关键,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.21.将抛物线y=x2﹣2x﹣1绕其顶点旋转180°后,所得到的新的抛物线的解析式为()A.y=﹣x2+2x﹣1 B.y=﹣x2+2x﹣3 C.y=﹣x2﹣2x﹣1 D.y=﹣x2﹣2x﹣3考点:二次函数图象与几何变换.分析:先将原抛物线解析式化为顶点式,将其绕顶点旋转180°后,开口大小和顶点坐标都没有变化,变化的只是开口方向,可据此得出所求的结论.解答:解:y=x2﹣2x﹣1,=(x2﹣2x)﹣1,=(x2﹣2x+1﹣1)﹣1,=(x2﹣2x+1)﹣1﹣1,=(x﹣1)2﹣2,将原抛物线绕顶点旋转180°后,得y=﹣(x﹣1)2﹣2,即:y=﹣x2+2x﹣3,故选:B.点评:本题考查了二次函数图象的旋转变换,在绕抛物线顶点旋转过程中,二次函数的开口大小和顶点坐标都没有变化.11。
二次函数的平移问题
二次函数的平移问题1..若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.2..若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)3.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 4..抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度5.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)6.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是( )A.B.C.D.7.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+8. 若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+49.把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为.10.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.其它问题11.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥B.b≥1或b≤﹣1 C.b≥2D.1≤b≤212.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或13. 抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1014.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或615.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个16.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确17.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.118.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥B.b≥1或b≤﹣1 C.b≥2D.1≤b≤219. 已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB 的值为()A.B.C.D.220.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.21.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.22.如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm223.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将抛物线向左平移 m 个单位,由点的平移规律可知,顶点坐标由( h,k) 变为
二次函数的平移问题
我们从两个方面进行了一些探讨,概括出二次函数平移后其解析式的变化规律 .
一.当解析式为一般式y=ax 2+bx+c (a 丰0)时
1. 向上或向下平移时 , 二次函数解析式的变化规律 .
将抛物线向上平移 n 个单位长度后 , 得到的新抛物线的解析式为 y=ax 2+bx+c+n 将抛物线向下平移 n 个单位长度后 , 得到的新抛物线的解析式为 y=ax 2+bx+c-n 两式比较:可得抛物线向上平移n 个单位,常数项上加n ,即解析式由y=ax 2+bx+c 变为y=ax 2+bx+c+n;同理可推出抛物线向下平移 n 个单位,常数项上减去n ,即解析 式由 y=ax 2+bx+c 变为 y=ax 2+bx+c-n
2. 向左或向右平移时 , 解析式的变化规律 .
将抛物线向左平移m 个单位长度后,得到的新抛物线的解析式为y=
2 a(x+m) +b(x+m)+c 将抛物线向右平移 m 个单位长度后, 得到的新抛物线的解析式为 y= 2
a(x-m) +b(x-m)+c
两式比较,可得出抛物线向左平移 m 个单位,自变量上减去 m,即解析式由 y=ax 2+bx+c 变为y=a(x+m)2+b(x+m)+c;同理可推出抛物线向右平移 m 个单位,自变量 上加上m,即解析式由y=ax 2+bx+c 变为y=a(x-m) 2+b(x-m)+c
3.
m 个单位长度后,再将抛物线向上平移
2 y= a(x+m) +b(x+m)+c+n
m 个单位长度后,再将抛物线向下平移 2 y= a(x+m) +b(x+m)+c-n
m 个单位长度后,再将抛物线向上平移
2 y= a(x-m) +b(x-m)+c+n
m 个单位长度后,再将抛物线向下平移 2 y= a(x-m) +b(x-m)+c-n
二.当解析式为顶点式y=a(x-h) 2+k (a ^0)时
1. 向上或向下平移时,解析式的变化规律 .
将抛物线向上平移n 个单位长度后,得到的新抛物线的解析式为y=a(x-h) 2+k+n
将抛物线向下平移n 个单位长度后,得到的新抛物线的解析式为y=a(x-h) 2+k-n 将抛物线向上平移n 个单位,有点的平移规律可知,顶点坐标由(h , k )变为
(h , k+n )所以抛物线的解析式由y=a(x-h) 2+k 变为y=a(x-h) 2+k+n
将抛物线向下平移n 个单位,有点的平移规律可知,顶点坐标由(h , k )变为
(h , k-n )所以抛物线的解析式由y=a(x-h) 2+k 变为y=a(x-h) 2+k-n
比较两个解析式可得出向上平移 n 个单位,括号外加n ,同理可推出向下平移n 个单位括号外减去 n. 即抛物线解析式由 y=a(x-h) 2+k 变为 y=a ( x+m-h)2+k-n
2. 向右或向左平移时,解析式的变化规律
将抛物线向左平移m 个单位长度后,得到的新抛物线的解析式为y=a(x-h+m) 2+k 将抛将抛物线向左平移 的新抛物线的解析式为 将抛物线向左平移 的新抛物线的解析式为 将抛物线向右平移 的新抛物线的解析式为 将抛物线向右平移 的新抛物线的解析式为 n 个单位长度后 , 得到
n 个单位长度后 , 得到 n 个单位长度后 , 得到 n 个单位长度后 , 得到
物线向右平移m个单位长度后,得到的新抛物线的解析式为y=a(x-h-m) 2+k
(h-m,k),所以抛物线解析式由y=a(x-h) 2+k 变为y=a[x-(h-m)] 2+k=a (x-h+m)2+k 将抛物线向右平移m个单位,由点的平移规律可知,顶点坐标由( h,k)变为
(h+m,k),所以抛物线解析式由y=a(x-h) 2+k 变为y=a[x-(h+m)] 2+k=a( x-h-m) 2+k 两解析式比较可得出图像向左平移m个单位,括号内加上m即抛物线解析式由
y=a(x-h) 2+k变为y=a(x-h+m)2+k;同理可推出向右平移m个单位括号内减去m即抛物线解析式由y=a(x-h) 2+k变为y=a( x-h-m) 2+k
综上所述,当解析式为顶点式时,解析式的变化规律为上加下减括号外,左加右减括号内;解析式为一般式时,解析式的变化规律为左加右减自变量,上加下减常数项
3.
二次函数的平移练习题
1. 把抛物线y=-x2向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( )
2 2 2 2
A. y=- ( x-1) +3
B. y=- ( x+1) +3
C. y=- ( x-1) -3
D. y=- ( x+1) -3
2. 抛物线y=x2+bx+c图像向右平移2个单位再向下平移3个单位,所得图像的解析式为y=x2-2x-3,贝U b、c的
值为( )A . b=2 , c=2 B. b=2 , c=0 C . b= -2 , c=-1 D. b= -3 , c=2
3•将函数y=x2+x的图像向右平移a ( a> 0)个单位,得到函数y=x2-3x+2的图像,贝U a的值为( )
A. 1
B. 2
C. 3
D. 4
4. 已知二次函数y=x2-bx+1 (-1 w b< 1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,
F列关于抛物线的移动方向的描述中,正确的是( )
向右平移5个单位D.将抛物线C向右平移6个单位
1
___ I 9 . , O
6. 把二次函数y=- x -x+3用配方法化成y=a(x-h) +k的形式
4
A. y=-丄(x-2)
42
+2 B. y= 丄(x-2)
2+4 C. y=-
4
-(x+2) 2+4 D. y=(
4
丄x-丄)2+3
2 2
7. 在平面直角坐标系中,将二次函数y=2x2的图象向上平移
A. y=2x2-2 B . y=2x2+2 C . y=2(x-2) 2 D
8. 将抛物线y=2x2向下平移1个单位,得到的抛物线是(
2 2 2
A. y=2(x+1)
B. y=2(x-1)
C. y=2x +1 2个单位,所得图象的解析式为y=2(x+2) 2
)
D. y=2x2-1
9.将函数y=x2+x的图象向右平移a(a >0)个单位,得到函数y=x2-x+2的图象,贝U a的值为(
A. 1
B. 2
C. 3
D. 4
10. 把抛物线y=-2x2向右平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为(
2 2 2 2
A. y=-2 (x-2 ) +5
B. y=-2 (x+2) +5
C. y=-2 (x-2 ) -5
D. y=-2 (x+2) -5
11. 在平面直角坐标系中,先将抛物线y=x2+x-2关于x轴作轴对称变换,再将所得的抛物线关于换,那么经两次变换后所得的新抛物线的解析式为( )
2 2 2 2
A. y=-x -x+2 B . y=-x +x-2 C. y=-x +x+2 D. y=x +x+2
)
)
y轴作轴对称变
将抛物线向左平移的新抛物线的解析式为将抛物线向左平移的新抛物线的解析式为m个单位长度后,再将抛物线向上平移y=a( x-h+m)2+k+n
m个单位长度后,再将抛物线向下平移
2
y=a( x-h+m) +k-n
将抛物线向右平移的新抛物线的解析式为m个单位长度后,再将抛物线向上平移y=a( x-h-m) 2+k+n
将抛物线向右平移m个单位长度后,再将抛物线向下平移n个单位长度后,得到n个单位长度后,得到n个单位长度后,得到n个单位长度后,得到
的新抛物线的解析式为y=a( x-h-m) 2+k-n
A. 先往左上方移动,再往右下方移动
B. 先往右上方移动,再往右下方移动B.先往左下方移动,再往左上方移动
D.先往右下方移动,再往右上方移动
5. 已知抛物线C: y=x2+3x-10,将抛物线平移方法正确的是(C平移得到抛物线C'.若两条抛物线
C向右平移2.5个单位B.将抛物线
C C'关于直线x=1对称,则下列
C向右平移3个单位C.将抛物线C
将抛物线向左平移m 个单位,由点的平移规律可知,顶点坐标由( h,k) 变为。