二次函数平移变换

合集下载

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。

二次函数中平移变换的规律和性质

二次函数中平移变换的规律和性质

二次函数中平移变换的规律和性质二次函数是高中数学中一个重要的概念,具有广泛的应用。

其中,平移是二次函数的基本变换之一,它可以使二次函数在坐标平面上发生横向或纵向的移动。

本文将探讨二次函数中平移变换的规律和性质。

一、平移变换的基本概念在二次函数y = ax^2 + bx + c中,平移变换通过改变a, b, c的值来实现函数图像在平面上的平移。

其中,a决定了二次函数的开口方向和是否对称于y轴,b和c则决定了函数图像在横纵方向的平移。

二、平移变换的规律1. 横向平移:当二次函数y = ax^2 + bx + c中的c值保持不变时,随着b值的变化,函数图像在横向上发生平移。

当b > 0时,函数图像向左平移;当b < 0时,函数图像向右平移。

2. 纵向平移:当二次函数y = ax^2 + bx + c中的b值保持不变时,随着c值的变化,函数图像在纵向上发生平移。

当c > 0时,函数图像向上平移;当c < 0时,函数图像向下平移。

3. 综合平移:当二次函数y = ax^2 + bx + c中的b和c同时变化时,函数图像即在横向又在纵向上发生平移。

平移的方向和大小由b和c的值决定。

三、平移变换的性质1. 平移不改变二次函数的开口方向:无论进行何种平移变换,二次函数的开口方向都保持不变。

例如,当二次函数的开口向上时,平移后它仍然向上开口。

2. 平移不改变二次函数的最值:无论进行何种平移变换,二次函数的最值不发生改变。

例如,对于开口向上的二次函数,平移只会改变它的顶点位置,但最大值或最小值不会发生改变。

3. 平移不改变二次函数的对称性:无论经过何种平移变换,二次函数的对称性仍然保持不变。

例如,对称于y轴的二次函数平移后仍然对称于y轴。

综上所述,平移是二次函数中常见的一种变换方式,能够改变函数图像在平面上的位置,并且不改变二次函数的开口方向、最值和对称性。

熟练掌握平移变换的规律和性质,有助于我们更好地理解和应用二次函数,解决与之相关的数学问题。

二次函数平移规律

二次函数平移规律

二次函数平移规律二次函数的一般形式为:y = ax^2 + bx + c,其中a、b和c是常数,代表曲线的形状、位置和方向。

平移变换的规律可以分为以下几种情况:1.沿x轴平移:将整个图像沿x轴的正方向或负方向移动一个固定的距离。

将二次函数的公式中的x换成(x-h),其中h表示x轴的平移量。

例如,若h>0,则平移后的函数为y=a(x-h)^2+b(x-h)+c。

2. 沿y轴平移:将整个图像沿y轴的正方向或负方向移动一个固定的距离。

将二次函数的公式中的c换成c + k,其中k表示y轴的平移量。

例如,若k > 0,则平移后的函数为y = ax^2 + bx + (c + k)。

3.组合平移:同时沿x轴和y轴方向进行平移变换。

将二次函数的公式中的x换成(x-h),c换成(c+k)。

例如,若h>0且k>0,则平移后的函数为y=a(x-h)^2+b(x-h)+(c+k)。

需要注意的是,平移会改变函数的位置,但不会改变函数的形状和方向。

也就是说,平移前后的函数曲线是相似的,它们只是在坐标系中的位置不同。

平移变换也可通过绘制函数图像来观察和理解。

首先,绘制原始函数的图像,然后通过调整参数a、b、c、h和k,分别代表二次函数的系数和平移量,来获得不同位置的图像。

通过比较不同图像之间的差异,可以更好地理解平移变换的规律。

此外,可以通过数学的推导和计算来验证平移变换的规律。

对于给定的二次函数,通过代入不同的参数值,并计算出相应的函数值,可以验证函数图像在平移后是否符合平移变换的规律。

总结起来,二次函数的平移变换是通过改变函数的参数来实现的。

沿x轴平移可以通过更改x的值,沿y轴平移可以通过更改c的值,组合平移则同时改变x和c的值。

平移变换不仅可以通过绘制函数图像来观察和理解,还可以通过数学的推导和计算来验证和探索。

掌握了二次函数的平移规律,可以更好地理解二次函数的性质和变换。

二次函数像的平移伸缩和翻转规律

二次函数像的平移伸缩和翻转规律

二次函数像的平移伸缩和翻转规律二次函数的平移、伸缩和翻转规律是描述二次函数图像变化的重要概念。

通过改变二次函数的系数和常数项,我们可以对其图像进行平移、伸缩和翻转操作,从而得到不同形状和位置的二次函数图像。

下面将详细介绍二次函数图像的平移、伸缩和翻转规律。

1. 平移规律平移是指将二次函数图像沿着坐标轴的方向移动一定的距离。

在二次函数y = ax^2 + bx + c中,平移操作主要通过改变常数项c实现。

1.1 向上或向下平移当常数项c增加时,二次函数图像将向上平移,反之则向下平移。

平移的距离与c的绝对值成正比,即常数项c增加1个单位,图像上移1个单位;常数项c减少1个单位,图像下移1个单位。

1.2 向左或向右平移当常数项c保持不变,而系数b增加时,二次函数图像将向左平移;反之则向右平移。

平移的距离与b的绝对值成正比,即系数b增加1个单位,图像左移1个单位;系数b减少1个单位,图像右移1个单位。

2. 伸缩规律伸缩是指将二次函数图像在坐标轴的方向上进行拉伸或压缩。

在二次函数y = ax^2 + bx + c中,伸缩操作主要通过改变系数a实现。

2.1 垂直方向伸缩当系数a增加时,二次函数图像在垂直方向上将被拉伸;反之,当系数a减少时,图像将被压缩。

伸缩的比例与a的绝对值成正比,即系数a增加1个单位,图像在y轴方向上拉伸1倍;系数a减少1个单位,图像在y轴方向上压缩1倍。

2.2 水平方向伸缩当系数a保持不变,而系数b增加时,二次函数图像在水平方向上将被压缩;反之,当系数b减少时,图像将被拉伸。

伸缩的比例与b的绝对值成正比,即系数b增加1个单位,图像在x轴方向上压缩1倍;系数b减少1个单位,图像在x轴方向上拉伸1倍。

3. 翻转规律翻转是指将二次函数图像关于某条直线对称。

在二次函数y = ax^2+ bx + c中,翻转操作主要通过改变系数a的正负实现。

3.1 关于x轴翻转当系数a为正时,二次函数图像将关于x轴翻转;当系数a为负时,图像不发生翻转。

二次函数的平移与垂直变换

二次函数的平移与垂直变换

二次函数的平移与垂直变换二次函数是高中数学中的一个重要概念,它是指一个以x的二次方作为最高次项的函数。

在图像的表示中,二次函数的平移与垂直变换是非常常见的操作。

本文将介绍二次函数的平移与垂直变换的概念和应用,并通过具体的例子进行解析。

一、平移变换平移是指将函数的图像沿着x轴或y轴的方向进行移动。

对于二次函数,平移可以分为水平平移和垂直平移两种情况。

1.水平平移水平平移是指将函数的图像沿着x轴的方向进行移动。

具体而言,当二次函数的公式为y=a(x-h)²+k时,其中h表示水平平移的单位数。

当h为正数时,图像会向右移动h个单位;当h为负数时,图像会向左移动h个单位。

例如,考虑二次函数y=x²,我们可以通过改变h的值来实现水平平移。

当h=2时,原来的抛物线图像会向右平移2个单位,变为y=(x-2)²。

同样地,当h=-3时,图像会向左平移3个单位,变为y=(x+3)²。

2.垂直平移垂直平移是指将函数的图像沿着y轴的方向进行移动。

具体而言,当二次函数的公式为y=a(x-h)²+k时,其中k表示垂直平移的单位数。

当k为正数时,图像会向上移动k个单位;当k为负数时,图像会向下移动k个单位。

举个例子,考虑二次函数y=x²,我们可以通过改变k的值来实现垂直平移。

当k=3时,原来的抛物线图像会向上平移3个单位,变为y=x²+3。

同样地,当k=-4时,图像会向下平移4个单位,变为y=x²-4。

二、垂直变换垂直变换是指对函数的图像进行纵向的拉伸或压缩。

对于二次函数来说,这可以通过改变a的值来实现。

当a>1时,图像会被纵向拉伸;当0<a<1时,图像会被纵向压缩。

具体来说,当二次函数的公式为y=ax²时,参数a的变化会影响曲线的形状。

举个例子,考虑二次函数y=x²,我们可以通过改变a的值来实现垂直变换。

当a=2时,原来的抛物线图像将被纵向拉伸,变为y=2x²。

二次函数的平移与拉伸效果

二次函数的平移与拉伸效果

二次函数的平移与拉伸效果二次函数是一种常见的数学函数,它的一般形式为y = ax^2 + bx + c。

其中,a、b、c分别代表函数的系数,x、y分别代表自变量和因变量。

本文将重点探讨二次函数中平移和拉伸效果的相关概念和特点。

一、平移效果平移是指将函数图像在平面坐标系中沿横轴或纵轴方向移动。

对于二次函数而言,平移分为水平平移和垂直平移两种情况。

1. 水平平移水平平移是指移动二次函数图像的横坐标。

设初始的二次函数为y= ax^2 + bx + c,若将其水平平移h个单位,则新的二次函数可表示为y = a(x - h)^2 + bx + c。

以二次函数y = x^2为例,若要将其水平平移2个单位,则新的函数为y = (x - 2)^2。

通过比较原函数和新函数的图像可以发现,新函数的整体形状与原函数相同,但整体向右平移了2个单位。

2. 垂直平移垂直平移是指移动二次函数图像的纵坐标。

设初始的二次函数为y= ax^2 + bx + c,若将其垂直平移k个单位,则新的二次函数可表示为y = ax^2 + bx + (c + k)。

以二次函数y = x^2为例,若要将其垂直平移3个单位,则新的函数为y = x^2 + 3。

通过比较原函数和新函数的图像可以发现,新函数的整体形状与原函数相同,但整体向上平移了3个单位。

二、拉伸效果拉伸是指通过改变二次函数中的系数,改变函数图像在横轴和纵轴方向的形状。

对于二次函数而言,拉伸分为水平拉伸和垂直拉伸两种情况。

1. 水平拉伸水平拉伸是指改变二次函数图像的横坐标的比例关系。

设初始的二次函数为y = ax^2 + bx + c,若将其水平拉伸为原来的n倍,则新的二次函数可表示为y = a((x - h)/n)^2 + b((x - h)/n) + c。

以二次函数y = x^2为例,若要将其水平拉伸为原来的2倍,则新的函数为y = (1/4)x^2。

通过比较原函数和新函数的图像可以发现,新函数的整体形状相较于原函数更为扁平。

二次函数图像变换

二次函数图像变换

二次函数图像变换
二次函数图像变换有3种:平移、对称、旋转。

一、专用解法
1、平移:左加右减自变量,上加下减常数项
2、对称、旋转:取原抛物线上一点(x,y),然后根据对称或旋转规律找到对应点,
将对应点坐标代入原抛物线解析式,然后化解得到的解析式即所求。

例1:原抛物线上y=ax^2+bx+c有一点(x,y),其关于x轴对称的点坐标为(x,-y),将(x,-y)代入到原解析式得到-y=ax^2+bx+c,即y=-ax^2-bx-c
例2:原抛物线上y=x^2+2x绕点(1,0)旋转180°,求旋转后的解析式解:设点(x,y)是原抛物线y=x^2+2x上一点,(x,y)绕点(1,0)旋转180°,通过中点坐标公式得出对应点为(2-x,-y),将(2-x,-y)代入y=x^2+2x得到
-y=(2-x)^2+2(2-x),即y=-x^2+6x-8
注意:以上方法也适用于一次函数
二、通用解法
①将解析式化顶点式y=a(x-h)^2+k,得到顶点(h,k)
②将顶点(h,k)按照要求进行平移、对称、旋转,得到新的顶点(h’,k’)
③平移a不变;X轴对称a变号,Y轴对称a不变;旋转a变号,特别的原点对称就是绕(0,0)旋转180
注意:这里的旋转肯定是180°,因为如果不是180°得到的就不是二次函数了
④知道了a和顶点,设顶点式就可以得到新抛物线的解析式
注意:无论平移、对称、旋转都可以用,如果是一次函数可以将顶点(h,k)替换为直线与y轴交点,a替换为k,整体思路是一样的。

二次函数的平移问题

二次函数的平移问题

二次函数的平移问题关于二次函数的平移变换问题二次函数的平移变换可以分为上下平移和左右平移两种情况。

1.上下平移对于原函数y=ax²+bx+c,若要进行上下平移,可以进行以下变换:向上平移m个单位,得到平移后的函数y=ax²+bx+c+m;向下平移m个单位,得到平移后的函数y=ax²+bx+c-m。

需要注意的是,m为正数,若m为负数,则对应的加(减)号需要改为减(加)号。

一般称这种变换为上加下减或上正下负。

2.左右平移对于原函数y=ax²+bx+c,若要进行左右平移,可以进行以下变换:先将函数化为顶点式y=a(x-h)²+k;向左平移n个单位,得到平移后的函数y=a(x-h+n)²+k;向右平移n个单位,得到平移后的函数y=a(x-h-n)²+k。

需要注意的是,n为正数,若n为负数,则对应的加(减)号需要改为减(加)号。

一般称这种变换为左加右减或左正右负。

例题:1.将抛物线y=-x²向左平移一个单位,再向上平移三个单位,平移后的表达式为()A。

y=-(x-1)²+3B。

y=-(x+1)²+3C。

y=-(x-1)²-3D。

y=-(x+1)²-32.抛物线y=x²+bx+c向右平移两个单位,再向下平移三个单位,得到的抛物线表达式为y=x²-2x-3,则b、c的值分别为()A。

b=2,c=2B。

b=2,c=0C。

b=-2,c=-1D。

b=-3,c=23.将函数y=x²+x的图像向右平移a(a>0)个单位,得到函数y=x²-3x+2的图像,则a的值为()A。

1B。

2C。

3D。

44.已知二次函数y=x²-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。

下列关于抛物线移动方向的描述中,正确的是()A。

二次函数的平移与伸缩

二次函数的平移与伸缩

二次函数的平移与伸缩二次函数是一种常见的数学函数,在数学和物理等领域有广泛的应用。

平移和伸缩是二次函数的重要性质,它们可以改变函数图像的位置和形状。

本文将详细介绍二次函数的平移和伸缩的概念、性质及其在图像变化中的应用。

一、平移的概念与性质平移是指将函数图像沿着坐标轴的方向上下或左右移动,而不改变函数的形状。

对于二次函数 f(x) = ax^2 + bx + c,平移的一般形式可以表示为 f(x - h) + k,其中 (h, k) 表示平移的距离和方向。

1. 水平平移:当 h > 0 时,函数图像向右平移 h 个单位;当 h < 0 时,函数图像向左平移 |h| 个单位。

2. 垂直平移:当 k > 0 时,函数图像向上平移 k 个单位;当 k < 0 时,函数图像向下平移 |k| 个单位。

平移的性质:平移后的函数图像与原函数图像相似,但位置发生了变化。

平移不改变二次函数的对称轴和开口方向。

二、伸缩的概念与性质伸缩是指将函数图像在坐标轴的方向上拉长或压缩,通过改变函数的系数实现。

对于二次函数 f(x) = ax^2 + bx + c,伸缩的一般形式可以表示为 f(px) = a(p·x)^2 + b(p·x) + c,其中 p 表示伸缩的比例。

1. 水平伸缩:当 p > 1 时,函数图像在 x 轴方向上被压缩;当 0 < p < 1 时,函数图像在 x 轴方向上被拉长。

2. 垂直伸缩:当 a > 1 时,函数图像在 y 轴方向上被拉伸;当 0 < a< 1 时,函数图像在 y 轴方向上被压缩。

伸缩的性质:伸缩后的函数图像与原函数图像相似,但形状和大小发生了改变。

伸缩改变了二次函数的开口程度,但不改变二次函数的对称轴。

三、平移与伸缩的应用1. 位置调整:通过平移可以将函数图像移动到坐标系中合适的位置,使得图像与实际问题相符合。

二次函数的平移

二次函数的平移

二次函数的平移二次函数是一种常见的数学函数类型,它可以用来描述许多自然界和社会现象中的规律。

在二次函数中,平移是一种对函数图像的变换操作,可以改变函数的位置。

本文将详细介绍二次函数的基本概念和平移的概念,以及如何通过平移来改变函数的图像。

首先,我们来回顾一下二次函数的一般形式:y = ax^2 + bx + c。

其中,a、b和c都是实数常数,且a不等于零。

二次函数的图像通常是一个抛物线,其形状由a的正负和大小决定。

在二次函数中,平移是指通过添加或减少常数值来改变函数的位置,而不改变它的形状。

平移可以分为水平平移和垂直平移两种类型。

1. 水平平移:水平平移是指在函数图像上同时将所有点在x轴上向左或向右移动一个固定的距离。

若向左平移h个单位,则二次函数变为y = a(x - h)^2 + bx + c;若向右平移h个单位,则二次函数变为y = a(x + h)^2 + bx + c。

注意,平移的方向和距离由平移量h的正负号决定。

例如,考虑函数y = x^2的图像。

若向左平移2个单位,则函数变为y = (x - 2)^2。

这意味着函数上的每个点在x轴上都向左移动了2个单位。

2. 垂直平移:垂直平移是指在函数图像上同时将所有点在y轴上向上或向下移动一个固定的距离。

若向上平移k个单位,则二次函数变为y = ax^2 + bx + (c + k);若向下平移k个单位,则二次函数变为y = ax^2 + bx + (c - k)。

同样,平移的方向和距离由平移量k的正负号决定。

例如,考虑函数y = x^2的图像。

若向上平移3个单位,则函数变为y = x^2 + 3。

这意味着函数上的每个点在y轴上都向上移动了3个单位。

通过水平和垂直平移,我们可以改变二次函数图像的位置,从而使其更好地适应问题的需求。

这在许多实际情况下都非常有用。

例如,当我们研究一个抛物线的轨迹时,可能需要将其平移以匹配特定的时间点或位置。

另外,平移还可以用来调整二次函数的顶点位置或对称轴位置。

二次函数的变换

二次函数的变换

二次函数的变换引言二次函数是一种重要的数学函数之一,既有数学意义,也有实际应用价值。

通过一些基础的变换,我们可以得到更多的二次函数图像,这些变换方式不仅方便了我们的计算,也可以拓展我们的思维,提高我们的数学素养。

一、平移变换在二次函数图像中,如果我们希望将图像向左或向右平移,可以考虑在函数中加上一个常数。

例如,对于$f(x)=x^2$函数,当我们将其写成$f(x-a)=(x-a)^2$时,其图像就会向右平移a个单位。

反之,如果我们写成$f(x+a)=(x+a)^2$,那么图像就会向左平移a个单位。

这个变换的实际应用是很广泛的,比如在地图上移动坐标轴。

二、缩放变换在二次函数图像中,如果我们需要缩放图像,那么我们可以改变函数中二次项系数的值。

例如,对于$f(x)=x^2$函数,当我们将其写成$f(kx)=kx^2$时,其图像就会沿x轴方向缩放k倍。

当我们将其写成$f(x/k)=\frac{1}{k}x^2$时,其图像就会沿y轴方向缩放k 倍。

这个变换的实际应用比较广泛,例如在计算机图像处理中,可以对图像进行缩放。

三、翻转变换在二次函数图像中,如果我们需要翻转图像,那么我们可以改变函数的系数。

例如,对于$f(x)=x^2$函数,当我们将其写成$f(-x)=x^2$时,其图像就会以y轴为对称轴进行翻转。

反之,如果我们写成$f(-x)=-x^2$,那么图像就会以x轴为对称轴进行翻转。

这个变换的实际应用比较多,例如在研究物理现象时,可以通过翻转图像得到更多的信息。

四、平移、缩放和翻转的组合变换在二次函数图像中,我们还可以通过组合上述变换来得到更多的图像。

例如,对于$f(x)=x^2$函数,我们希望将其变成以点(-a,b)为顶点,开口向上的二次函数。

那么我们可以进行如下组合变换:$f(x-a)=x^2$,然后将图像沿y轴方向缩放为$\frac{1}{b}$倍,最后将其沿x轴翻转。

这样,我们就可以得到所需的二次函数图像。

二次函数图象的左右上下平移

二次函数图象的左右上下平移

3
变换后的图象
经过同时进行的平移变换后,二次函数图象在平面上发生了水平和垂直方向上的 移动。
练习题举例
例题1
已知二次函数图象表示为y = x^2 + 2,进行向右 平移2个单位。
例题3
已知二次函数图象表示为y = x^2 - 4,进行向上 平移4个单位。
例题2
已向 左平移3个单位。
2
向下平移
将二次函数图象整体向下平移,纵坐标减小,表示向下移动。
3
平移距离
平移距离由平移量确定,平移量为正时向上平移,为负时向下平移。
同时进行的平移规律及图象
1
水平和垂直同时平移
可以同时进行水平和垂直方向的平移变换,改变二次函数图象的位置。
2
平移距离
水平方向和垂直方向的平移距离由平移量决定,正值表示向右上方移动,负值表 示向左下方移动。
二次函数图象的左右上下 平移
二次函数的标准式
二次函数的基本形态
标准形态
二次函数图象呈现典型的抛物线 形态,开口方向由函数的二次项 系数决定。
尖峰或平坦
当二次项系数大于零时,抛物线 开口向上,呈现尖峰形态;当二 次项系数小于零时,抛物线开口 向下,呈现平坦形态。
平移变换
通过平移变换,可以改变抛物线 的位置,使其在平面上上下左右 移动。
例题4
已知二次函数图象表示为y = -x^2 + 2,进行向 下平移2个单位。
左右平移规律及图象
1
向左平移
2
将二次函数图象整体向左平移,横坐标
增加,表示向负方向移动。
3
向右平移
将二次函数图象整体向右平移,横坐标 减小,表示向正方向移动。
平移距离

二次函数的平移缩放与反转变换解析

二次函数的平移缩放与反转变换解析

二次函数的平移缩放与反转变换解析二次函数是高中数学中的重要知识点,它在数学和物理等学科中都有广泛应用。

在解析几何中,我们经常需要对二次函数进行平移、缩放和反转等变换操作,以便更好地研究其特性和性质。

本文将详细介绍二次函数的平移缩放与反转变换的解析方法。

一、平移变换平移是指改变二次函数的图像位置,使其在平面上上下左右移动。

平移变换可以通过改变二次函数的形式来实现。

对于一般形式的二次函数$f(x) = ax^2 + bx + c$,如果我们希望将图像向右平移$h$个单位,可以将$x$替换为$x-h$,即$f(x-h) = a(x-h)^2 + b(x-h) + c$。

同样地,如果我们希望将图像向左平移$h$个单位,可以将$x$替换为$x + h$,即$f(x+h) = a(x+h)^2 + b(x+h) + c$。

例如,考虑二次函数$f(x) = x^2$,我们希望将其向右平移3个单位。

根据平移变换的原理,我们将$x$替换为$x-3$,得到$f(x-3) = (x-3)^2$。

这样,原来的函数图像$f(x) = x^2$向右平移3个单位后,变成了$f(x-3) = (x-3)^2$的图像。

同样地,我们可以将二次函数向上或向下平移$k$个单位。

具体操作是将整个函数加上或减去$k$,即$f(x) + k$或$f(x) - k$。

例如,如果要将函数$f(x) = x^2$向上平移2个单位,我们可以令$y = f(x) + 2 = x^2 + 2$,这样原来的函数图像$f(x) = x^2$向上平移2个单位后,变成了$y = x^2 + 2$的图像。

二、缩放变换缩放是指改变二次函数图像的形状和大小,使其变得更高或更扁。

缩放变换可以通过改变二次函数的系数来实现。

对于一般形式的二次函数$f(x) = ax^2 + bx + c$,如果我们希望将图像垂直方向缩放$k$倍,可以将$f(x)$替换为$k \cdot f(x)$,即$kf(x) = k(ax^2 + bx + c)$。

二次函数的平移缩放与反转变换解析

二次函数的平移缩放与反转变换解析

二次函数的平移缩放与反转变换解析二次函数是数学中常见且重要的函数形式之一。

在图像的变换过程中,平移、缩放和反转是常用的操作。

本文将详细解析二次函数在平移、缩放和反转变换中的数学原理和具体方法。

一、平移变换平移变换是指将二次函数图像沿着横轴或纵轴方向移动一定的单位长度。

对于一般的二次函数y = ax^2 + bx + c来说,平移变换可以通过改变常数项c实现。

1. 沿横轴方向的平移当c的值发生变化时,二次函数图像将在纵轴上进行平移。

若c增加,则图像向上平移;若c减少,则图像向下平移。

具体而言,当c增加k个单位时,二次函数图像上的所有点的纵坐标都将增加k个单位;当c减少k个单位时,二次函数图像上的所有点的纵坐标都将减少k个单位。

例如,对于二次函数y = x^2,若c增加2个单位,则图像上的任意一点(x, y)的纵坐标y都将增加2个单位,即变为x^2 + 2;若c减少2个单位,则图像上的任意一点(x, y)的纵坐标y都将减少2个单位,即变为x^2 - 2。

2. 沿纵轴方向的平移当b的值发生变化时,二次函数图像将在横轴上进行平移。

若b增加,则图像向右平移;若b减少,则图像向左平移。

具体而言,当b增加k个单位时,二次函数图像上的所有点的横坐标都将增加k个单位;当b减少k个单位时,二次函数图像上的所有点的横坐标都将减少k个单位。

例如,对于二次函数y = x^2,若b增加2个单位,则图像上的任意一点(x, y)的横坐标x都将增加2个单位,即变为(x + 2)^2;若b减少2个单位,则图像上的任意一点(x, y)的横坐标x都将减少2个单位,即变为(x - 2)^2。

二、缩放变换缩放变换是指将二次函数图像在横轴和纵轴方向上进行拉伸或压缩。

对于一般的二次函数y = ax^2 + bx + c来说,缩放变换可以通过改变系数a实现。

1. 沿横轴方向的缩放当a的值发生变化时,二次函数图像将在横轴方向上进行拉伸或压缩。

若a增加,则图像在横轴方向上被拉伸;若a减少,则图像在横轴方向上被压缩。

二次函数中的平移、翻折、对称、旋转、折叠问题

二次函数中的平移、翻折、对称、旋转、折叠问题

二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

二次函数平移规律总结

二次函数平移规律总结

二次函数平移规律总结二次函数是高中数学中重要的内容之一,它的图像特点丰富多彩,而二次函数的平移规律更是其中的重要内容之一。

通过对二次函数平移规律的总结,我们可以更好地理解和掌握二次函数的性质和特点。

下面,我将对二次函数平移规律进行总结,希望能为大家的学习和理解提供帮助。

首先,我们来看二次函数的一般形式:y=ax²+bx+c。

其中,a、b、c分别为二次项系数、一次项系数和常数项。

对于二次函数y=ax²+bx+c,我们可以通过平移变换得到新的二次函数。

具体来说,对于函数y=ax²+bx+c,我们可以通过以下几种平移方式得到新的二次函数:1. 上下平移,当二次函数y=ax²+bx+c上下平移h个单位时,新的二次函数为y=ax²+bx+(c+h)。

这里,如果h大于0,那么函数图像将向上平移h个单位;如果h小于0,那么函数图像将向下平移|h|个单位。

2. 左右平移,当二次函数y=ax²+bx+c左右平移k个单位时,新的二次函数为y=a(x-k)²+bx+c。

其中,如果k大于0,那么函数图像将向右平移k个单位;如果k 小于0,那么函数图像将向左平移|k|个单位。

3. 综合平移,当二次函数y=ax²+bx+c进行上下平移h个单位和左右平移k个单位时,新的二次函数为y=a(x-k)²+bx+(c+h)。

这种综合平移方式将同时对函数图像进行上下和左右的平移。

通过以上总结,我们可以得出二次函数平移规律的结论,对于二次函数y=ax²+bx+c,当对其进行上下平移h个单位和左右平移k个单位时,新的二次函数为y=a(x-k)²+bx+(c+h)。

这一规律可以帮助我们更好地理解二次函数的图像特点,也为解决相关问题提供了便利。

在实际应用中,二次函数的平移规律也有着广泛的应用。

比如在物理学中,二次函数的平移规律可以用来描述抛物线运动的轨迹;在经济学中,二次函数的平移规律可以用来描述成本、收益等关系。

论述高中数学二次函数的变换规律

论述高中数学二次函数的变换规律

论述高中数学二次函数的变换规律一、二次函数的一般形式二次函数一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a≠0。

二、平移变换规律1. 水平平移:- 右平移h个单位:y = a(x - h)^2 + bx + c;- 左平移h个单位:y = a(x + h)^2 + bx + c。

2. 垂直平移:- 上平移k个单位:y = ax^2 + bx + (c + k);- 下平移k个单位:y = ax^2 + bx + (c - k)。

三、缩放变换规律1. 水平缩放:- 横坐标伸缩为原来的k倍:y = a(x/k)^2 + bx + c,其中k≠0;- 横坐标收缩为原来的k倍:y = a(kx)^2 + bx + c,其中k≠0。

2. 垂直缩放:- 纵坐标伸缩为原来的k倍:y = (ak)x^2 + bx + c,其中k≠0;- 纵坐标收缩为原来的k倍:y = (a/k)x^2 + bx + c,其中k≠0。

四、翻转变换规律1. 关于x轴翻转:y = a(-x)^2 + bx + c。

2. 关于y轴翻转:y = ax^2 - bx + c。

3. 关于原点翻转:y = a(-x)^2 - bx + c。

五、其他常见变换规律1. 拉伸变换:- 沿x轴拉伸:y = a(x/k)^2 + bx + c,其中a>0,且k>1;- 沿y轴拉伸:y = (ak)x^2 + bx + c,其中a>1。

2. 旋转变换:- 顺时针旋转α角:y = a(xcosα + ysinα)^2 + bxcosα - bysinα + c,其中a>0,α∈[0,2π)。

- 逆时针旋转α角:y = a(xcosα - ysinα)^2 + bxcosα + bysinα + c,其中a>0,α∈[0,2π)。

六、应用举例例如,对于二次函数y = x^2 + 2x + 1,可以通过平移、缩放和翻转等变换规律进行如下操作:- 右平移1个单位:y = (x - 1)^2 + 2(x - 1) + 1;- 上平移2个单位:y = x^2 + 2x + 3;- 横坐标伸缩为原来的2倍:y = (1/2)x^2 + 2x + 1;- 纵坐标伸缩为原来的3倍:y = 3x^2 + 2x + 1;- 关于y轴翻转:y = x^2 - 2x + 1;- 关于原点翻转:y = x^2 + 2x + 1。

二次函数平移变换课件

二次函数平移变换课件

二次函数平移变换的数学表达式
总结词
二次函数平移变换的数学表达式包括水平平移和垂直平移。水平平移是 $f(x-h)$ ,垂直平移是 $f(x) pm k$。
详细描述
水平平移表示将函数图像沿 x 轴移动,移动距离为 $h$。垂直平移表示将函数图 像沿 y 轴移动,移动距离为 $k$。这两种平移都可以通过改变函数表达式来实现 。
总结词
函数值整体上移
详细描述
对于二次函数 $f(x) = ax^2 + bx + c$,向上平移一个单位后,新的函数 为 $f(x) + 1 = ax^2 + bx + c + 1$ 。图像上每一个点的纵坐标增加1。
一次向下平移的二次函数
总结词
函数值整体下移
VS
详细描述
对于二次函数 $f(x) = ax^2 + bx + c$, 向下平移一个单位后,新的函数为 $f(x) - 1 = ax^2 + bx + c - 1$。图像上每一 个点的纵坐标减少1。
综合练习题
题目
将二次函数$f(x) = x^2 - 2x$的图象先向左平移3个单位 ,再向下平移5个单位,所得图象对应的函数解析式是 ____.
解析
原函数$f(x) = x^2 - 2x$的顶点坐标为$(1, -1)$。向左 平移3个单位后,顶点坐标变为$( -2, -1)$;再向下平移 5个单位,顶点坐标变为$( -2, -6)$。因此,平移后的函 数解析式为$y = (x + 2)^2 - 6$。
一次向左平移的二次函数
总结词
函数图像向左平移
详细描述
对于二次函数 $f(x) = ax^2 + bx + c$,向左平移一个单位后,新的函数为 $f(x+1) = a(x+1)^2 + b(x+1) + c$。图像上每一个点 $(x, y)$ 对应到新的函数上变为 $(x+1, y)$。

二次函数的变换规律

二次函数的变换规律

二次函数的变换规律二次函数是高中数学中的重要内容,它是一种常见的数学函数形式。

在学习二次函数时,我们需要了解二次函数的变换规律,即通过对函数中的参数进行变化,能够改变函数的形状和位置。

在本文中,我将详细介绍二次函数的变换规律,以加深对该主题的理解。

1. 平移变换平移变换是指通过改变二次函数的平移量,使函数图像在坐标平面上上下左右移动。

二次函数的标准形式为f(x) = ax² + bx + c,在平移变换中,平移量为h和k,表示在横轴和纵轴上的平移距离。

1.1 沿x轴平移二次函数沿x轴正方向平移h个单位,相当于将函数图像向左移动h个单位;沿x轴负方向平移h个单位,相当于将函数图像向右移动h个单位。

平移后的函数可表示为f(x) = a(x-h)² + bx + c,其中h代表横轴的平移量。

1.2 沿y轴平移二次函数沿y轴正方向平移k个单位,相当于将函数图像向上移动k个单位;沿y轴负方向平移k个单位,相当于将函数图像向下移动k个单位。

平移后的函数可表示为f(x) = ax² + bx + (c-k),其中k代表纵轴的平移量。

2. 缩放变换缩放变换是指通过改变二次函数的参数a和导致函数图像的纵向和横向的缩放。

二次函数的标准形式为f(x) = ax² + bx + c,在缩放变换中,缩放因子为p和q,表示纵向和横向的缩放比例。

2.1 纵向缩放当缩放因子p大于1时,二次函数的图像会纵向收缩;当p在0和1之间时,二次函数的图像会纵向拉伸。

缩放后的函数可表示为f(x) = pax² + bx + c,其中p表示纵向缩放因子。

2.2 横向缩放当缩放因子q大于1时,二次函数的图像会横向拉伸;当q在0和1之间时,二次函数的图像会横向收缩。

缩放后的函数可表示为f(x) =a(qx)² + bx + c,其中q表示横向缩放因子。

3. 翻转变换翻转变换改变了二次函数图像的方向。

二次函数的像变换

二次函数的像变换

二次函数的像变换二次函数是数学中的一种特殊函数形式,其表达式为f(x) = ax^2 +bx + c,其中a、b、c为常数,且a ≠ 0。

二次函数的图像呈现出一种特殊的形状——拱形或抛物线,且拥有一条对称轴。

在学习二次函数时,我们会涉及到像变换,即通过对函数图像进行平移、缩放或翻转等操作,从而改变函数图像的位置、大小和方向。

一、平移变换平移变换指的是将函数图像沿x轴或y轴方向进行移动,可以使图像向左、向右、向上或向下平移。

1. 向左平移将函数图像沿x轴的正方向平移k个单位,可记作f(x - k),其中k为平移的距离。

例如,对于二次函数y = ax^2 + bx + c,向左平移k个单位后的新函数为y = a(x + k)^2 + b(x + k) + c,图像相对于原函数的平移方向相反,距离为k。

2. 向右平移将函数图像沿x轴的负方向平移k个单位,可记作f(x + k),其中k为平移的距离。

例如,对于二次函数y = ax^2 + bx + c,向右平移k个单位后的新函数为y = a(x - k)^2 + b(x - k) + c,图像相对于原函数的平移方向相反,距离为k。

3. 向上平移将函数图像沿y轴的正方向平移k个单位,可记作f(x) + k,其中k 为平移的距离。

例如,对于二次函数y = ax^2 + bx + c,向上平移k个单位后的新函数为y = a(x)^2 + b(x) + (c + k),图像相对于原函数的平移方向相同,距离为k。

4. 向下平移将函数图像沿y轴的负方向平移k个单位,可记作f(x) - k,其中k 为平移的距离。

例如,对于二次函数y = ax^2 + bx + c,向下平移k个单位后的新函数为y = a(x)^2 + b(x) + (c - k),图像相对于原函数的平移方向相同,距离为k。

二、缩放变换缩放变换指的是改变函数图像的大小,可以使图像变窄或变宽,变高或变矮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数配方问题
如何将2y ax bx c =++ (一般式)的形式变化为 2()y a x h k =-+(顶点式)
2
2424b ac b y a x a a -⎛
⎫=++ ⎪

⎭,其中2424b ac b h k a a -=-=, 对称轴是2b h a =- 顶点(a
b a
c a b 44,22
--) (h, k ) (1)y=x 2-2x-1 (2) y =x 2-x-6 (3)5322--=x x y
(4) y=x 2+2x+1 (5)y=2x 2-6x-1 (6)6422
++-=x x y
(7)432
+--=x x y (8) y =-x 2-x-6 (9)y =-4x 2-3x-7
关于y=ax 2+bx+c 中a b c 的分析以及y=ax 2+bx+c 与c ax y +=图像判断
1.已知二次函数y=ax 2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( )
2.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )
C
二次函数平移 一、本节学习指导
平移是二次函数中的常考点,大多以选择题、填空题出现,在判断平移时,首先我们要判断平移类型,再结合口诀“上加下减,左加右减”来解题,拿不准的题目就画图,虽然花费时间较多,但是准确率较高。

本节有配套免费学习视频。

二、知识要点
1、 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式()2
y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:
【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位
2、平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”。

方法二:
⑴ 2
y ax bx c =++ 沿y 轴平移:向上(下)平移m 个单位,2
y ax bx c =++ 变成
2y ax bx c m =+++(或2y ax bx c m =++- )
⑵2
y ax bx c =++沿轴平移:向左(右)平移m 个单位,2
y ax bx c =++变成
2()()y a x m b x m c =++++(或2()()y a x m b x m c =-+-+)
3、二次函数2
()y a x h k =-+与2
y ax bx c =++ 的比较
x
A
y O x
B
y O x
C
y O x
D
y O
从解析式上看,2()y a x h k =-+与2
y ax bx c =++ 是两种不同的表达形式,后者通过配方可以得到前者,即2
2424b ac b y a x a a -⎛
⎫=++ ⎪⎝⎭
,其中2424b ac b h k a a -=-=
,。

注:我们把2
()y a x h k =-+直接就可以看出顶点是:(h ,k ),所以也称为顶点式。

这个函数的关系式还能直接看出此二次函数的对称轴是2b
h a
=-
: 例1:将二次函数y=x 2
的图象向下平移一个单位,则平移以后的二次函数的解析式为( ) 分析:题目中明确给出是下平移一个单位,所以x 是不变的,向下平移函数值y 减小1个单位,所以平移后是y=x 2
-1,也可以直接用口诀“上加下减”来解答此题。

例2:将二次函数y=x 2的图象平移后,可得到二次函数y=(x+1)2的图象,平移的方法是( ) 分析:我们观察y=x 2 ,y=(x+1)2, 得到,两个函数的自变量不一样,所以是横向平移,根据口诀“左加右减”可以得出是想左平移1个单位。

三、经验之谈:
二次函数的几种常见形式我们都要清楚,特别是“顶点式”,其优点是直接可以读出顶点坐标和对称轴。

一般情况下,我们为了快速获得顶点信息,常常把二次函数的标准式通过配方得到顶点式。

对于平移部分我们要多做练习题,平移的类型共三种:函数值变时纵向平移,自变量变时横向平移,两则都变化时斜着平移。

第三种平移较难,我们要分步进行,先横向平移,后纵向平移,或者先纵向平移,后横向平移,得到最终平移结果。

1. 抛物线3)2(2+-=x y 的对称轴是( )
A. 直线3-=x
B. 直线3=x
C. 直线
=x
D. 直线
2. 二次函数c bx ax y ++=2的图象如右图,则点)
,(a
c
b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数
c bx ax y ++=2,且0<a ,0>+-c b a ,
则一定有( ) A. 042>-ac b
B. 042=-ac b
C. 042<-ac b
D. ac b 42-≤0
4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式
是532+-=x x y ,则有( ) A. 3=b ,7=c
B. 9-=b ,15-=c
C. 3=b ,3=c
D. 9-=b ,21=c
5. 已知反比例函数x
k
y =
的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )
B
x
6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数
c ax y +=的大致图象,有且只有一个是正确的,正确的是( )
B
D
7. 抛物线322+-=x x y 的对称轴是直线( )
A. 2-=x
B. 2=x
C. 1-=x
D. 1=x
8. 二次函数2)1(2+-=x y 的最小值是( )
A. 2-
B. 2
C. 1-
D. 1
9. 二次函数c bx ax y ++=2的图象如图所示,若
c b a M ++=24c b a N +-=,b a P -=4,则( )
A. 0>M ,0>N ,0>P
B. 0<M ,0>N ,0>P
C. 0>M ,0<N ,0>P
D. 0<M ,0>N ,0<P 二、填空题:
10. 将二次函数322+-=x x y 配方成
k h x y +-=2)(的形式,则y =______________________.
11. 已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的根
的情况是______________________.
12. 已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________.。

相关文档
最新文档