二次函数平移、旋转、轴对称变换
二次函数图象的变换
二次函数图象的变换这里研究二次函数图象的平移变换、对称变换和翻折变换.二次函数图象的平移变换二次函数的图象作平移变换时,其开口方向和开口大小不会发生改变,故平移前后a 的值不变;改变的是顶点坐标和对称轴.一般地,二次函数k ax y +=2(0>k )的图象是由二次函数2ax y =的图象沿y 轴正方向向上平移k 个单位长度得到的;二次函数k ax y -=2(0>k )的图象是由二次函数2ax y =的图象沿y 轴正方向向下平移k 个单位长度得到的.抛物线k ax y +=2的对称轴是y 轴,顶点坐标是()k ,0.如例图(1)所示.一般地,二次函数()2h x a y -=的图象是由二次函数2ax y =的图象沿x 轴向左(0<h )或向右(0>h )平移h 个单位长度得到的.抛物线()2h x a y -=的对称轴是直线h x =,顶点坐标是()0,h .如例图(2)所示.一般地,二次函数()k h x a y +-=2的图象是由二次函数2ax y =的图象先沿x 轴向左(0<h )或向右(0>h )平移h 个单位长度,再向上(0>k )或向下(0<k )平移k 个单位长度得到的.抛物线()k h x a y +-=2的对称轴为直线h x =,顶点坐标是()k h ,.如下页例图所示.二次函数图象的对称变换如果两个二次函数的图象关于x 轴对称,那么它们的开口方向相反,开口大小相同,对称轴相同,顶点坐标关于x 轴对称,与y 轴的交点关于x 轴对称.故两个二次函数的解析式a 的值互为相反数.①若二次函数的解析式为顶点式()k h x a y +-=2,则与其图象关于x 轴对称的二次函数的解析式为()k h x a y ---=2;②若二次函数的解析式为一般式c bx ax y ++=2,则与其图象关于x 轴对称的二次函数的解析式为c bx ax y ---=2.高中知识点 函数()x f y =与函数()x f y -=的图象关于x 轴对称.如例图(3)所示.xy y = x 2 ()2 1y = x 2 ()2 + 1图 (3)O–1–21234–1–2–3–41234如果两个二次函数的图象关于y 轴对称,那么它们的开口方向相同,开口大小相同,与y 轴的交点相同,对称轴关于y 轴对称,顶点坐标关于y 轴对称.故两个二次函数的解析式a 的值相等.①若二次函数的解析式为顶点式()k h x a y +-=2,则与其图象关于y 轴对称的二次函数的解析式为()k h x a y ++=2②若二次函数的解析式为一般式c bx ax y ++=2,则与其图象关于y 轴对称的二次函数的解析式为c bx ax y +-=2.高中知识点 函数()x f y =与函数()x f y -=的图象关于y 轴对称.如例图(4)所示.图 (4)x 2 )2 + 1二次函数图象的翻折变换在同一平面直角坐标系中,通过对二次函数c bx ax y ++=2图象的翻折变换,可以得到函数c bx ax y ++=2的图象和函数c x b ax c x b x a y ++=++=22的图象.先画出二次函数c bx ax y ++=2的图象,保留x 轴上及其上方的图象,把x 轴下方的图象翻折到x 轴上方,即可得到函数c bx ax y ++=2的图象如下页例图(5)所示.先画出二次函数c bx ax y ++=2的图象,保留y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧,即可得到函数c x b ax c x b x a y ++=++=22的图象.如下页例图(6)所示.图 (5)图 (6)高中知识点在同一平面直角坐标系中,通过对函数)(x f y =图象的翻折变换,可以得到函数)(x f y =和)(x f y =的图象.(1)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留x 轴上及其上方的图象,把x 轴下方的图象翻折到x 轴上方即可;(2)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧即可. 例题讲解例1. 把抛物线2x y -=向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为【 】(A )()312---=x y (B )()312-+-=x y(C )()312+--=x y (D )()312++-=x y分析 将函数的图象左右平移时,其解析式将发生有规律的变化——遵循自变量“左加右减”,函数值“上加下减”的原则.将二次函数的图象左右平移,其图象的开口方向和开口大小保持不变,所以平移前后a 的值不变,改变的是图象的顶点坐标和对称轴.其中顶点坐标的改变遵循“左减右加”的原则.解析 由题意可知,平移后抛物线的解析式为()312++-=x y .另外,抛物线2x y -=的顶点坐标为()0,0,平移后函数图象的顶点坐标为()3,1-,所以由顶点式可知平移后抛物线的解析式为()312++-=x y .所以选择答案【 D 】.例2. 函数()1122---=x y 的图象可由函数()3222++-=x y 的图象平移得到,平移的方法是【 】(A )先向右平移3个单位,再向下平移4个单位 (B )先向右平移3个单位,再向上平移4个单位 (C )先向左平移3个单位,再向下平移4个单位 (D )先向左平移3个单位,再向上平移4个单位分析 首先,要确定函数()3222++-=x y 的图象是平移的对象,平移后得到抛物线()1122---=x y .解析将函数()3222++-=x y 的图象先向右平移3个单位,得到函数()3122+--=x y 的图象,再向下平移4个单位,得到函数()1122---=x y 的图象.∴选择答案【 A 】.例3. 抛物线向右平移3个单位,再向下平移2个单位后得到抛物线x x y 422+-=,则平移前抛物线的解析式为________________.分析 把抛物线x x y 422+-=向左平移3个单位,在向上平移2个单位,即可得到平移前的抛物线.解析 ∵()2124222+--=+-=x x x y∴平移前抛物线的解析式为()()4222231222++-=+++--=x x y .即4822---=x x y .例4. 已知二次函数()1322+-=x y .(1)图象关于x 轴对称的抛物线的解析式为________________; (2)图象关于y 轴对称的抛物线的解析式为________________.分析 (1)抛物线()k h x a y +-=2关于x 轴对称的抛物线为()k h x a y ---=2;(2)抛物线()k h x a y +-=2关于y 轴对称的抛物线为()k h x a y ++=2.解析 (1)()1322---=x y ;(2)()1322++=x y .例5. 已知二次函数122--=x x y .(1)图象关于x 轴对称的抛物线的解析式为________________; (2)图象关于y 轴对称的抛物线的解析式为________________.分析 (1)抛物线c bx ax y ++=2关于x 轴对称的抛物线为c bx ax y ---=2;(2)抛物线c bx ax y ++=2关于y 轴对称的抛物线为c bx ax y +-=2. 解析 (1)122++-=x x y ;(2)122-+=x x y .例6. 已知二次函数5432+-=x x y .(1)图象关于x 轴对称后再关于y 轴对称的抛物线的解析式为____________; (2)图象关于y 轴对称后再关于x 轴对称的抛物线的解析式为____________. 分析 (1)(2)中的两条抛物线关于原点对称:若二次函数的解析式为顶点式()k h x a y +-=2,则与其图象关于原点对称的二次函数的解析式为()k h x a y -+-=2;若二次函数的解析式为一般式c bx ax y ++=2,则与其图象关于原点对称的二次函数的解析式为c bx ax y -+-=2. 解析 (1)5432---=x x y ; (2)5432---=x x y .例7. 画出函数12-=x y 的图象.分析 把二次函数12-=x y 的图象沿x 轴进行翻折变换,即可得到函数12-=x y 的图象,具体做法是:先画出二次函数12-=x y 的图象,保留x 轴及其上方的图象,然后把x 轴下方的图象翻折到x 轴上方即可得到函数12-=x y 的图象. 解析 函数12-=x y 的图象如下图所示.。
二次函数的变换规律
二次函数的变换规律二次函数是高中数学中的重要内容,它是一种常见的数学函数形式。
在学习二次函数时,我们需要了解二次函数的变换规律,即通过对函数中的参数进行变化,能够改变函数的形状和位置。
在本文中,我将详细介绍二次函数的变换规律,以加深对该主题的理解。
1. 平移变换平移变换是指通过改变二次函数的平移量,使函数图像在坐标平面上上下左右移动。
二次函数的标准形式为f(x) = ax² + bx + c,在平移变换中,平移量为h和k,表示在横轴和纵轴上的平移距离。
1.1 沿x轴平移二次函数沿x轴正方向平移h个单位,相当于将函数图像向左移动h个单位;沿x轴负方向平移h个单位,相当于将函数图像向右移动h个单位。
平移后的函数可表示为f(x) = a(x-h)² + bx + c,其中h代表横轴的平移量。
1.2 沿y轴平移二次函数沿y轴正方向平移k个单位,相当于将函数图像向上移动k个单位;沿y轴负方向平移k个单位,相当于将函数图像向下移动k个单位。
平移后的函数可表示为f(x) = ax² + bx + (c-k),其中k代表纵轴的平移量。
2. 缩放变换缩放变换是指通过改变二次函数的参数a和导致函数图像的纵向和横向的缩放。
二次函数的标准形式为f(x) = ax² + bx + c,在缩放变换中,缩放因子为p和q,表示纵向和横向的缩放比例。
2.1 纵向缩放当缩放因子p大于1时,二次函数的图像会纵向收缩;当p在0和1之间时,二次函数的图像会纵向拉伸。
缩放后的函数可表示为f(x) = pax² + bx + c,其中p表示纵向缩放因子。
2.2 横向缩放当缩放因子q大于1时,二次函数的图像会横向拉伸;当q在0和1之间时,二次函数的图像会横向收缩。
缩放后的函数可表示为f(x) =a(qx)² + bx + c,其中q表示横向缩放因子。
3. 翻转变换翻转变换改变了二次函数图像的方向。
二次函数图像的变换
二次函数图像的变换第一环节 【知识储备】一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称 2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.第二环节 【新知探究】【问题一】 平移变换求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位。
二次函数图像变换
二次函数图像变换
二次函数图像变换有3种:平移、对称、旋转。
一、专用解法
1、平移:左加右减自变量,上加下减常数项
2、对称、旋转:取原抛物线上一点(x,y),然后根据对称或旋转规律找到对应点,
将对应点坐标代入原抛物线解析式,然后化解得到的解析式即所求。
例1:原抛物线上y=ax^2+bx+c有一点(x,y),其关于x轴对称的点坐标为(x,-y),将(x,-y)代入到原解析式得到-y=ax^2+bx+c,即y=-ax^2-bx-c
例2:原抛物线上y=x^2+2x绕点(1,0)旋转180°,求旋转后的解析式解:设点(x,y)是原抛物线y=x^2+2x上一点,(x,y)绕点(1,0)旋转180°,通过中点坐标公式得出对应点为(2-x,-y),将(2-x,-y)代入y=x^2+2x得到
-y=(2-x)^2+2(2-x),即y=-x^2+6x-8
注意:以上方法也适用于一次函数
二、通用解法
①将解析式化顶点式y=a(x-h)^2+k,得到顶点(h,k)
②将顶点(h,k)按照要求进行平移、对称、旋转,得到新的顶点(h’,k’)
③平移a不变;X轴对称a变号,Y轴对称a不变;旋转a变号,特别的原点对称就是绕(0,0)旋转180
注意:这里的旋转肯定是180°,因为如果不是180°得到的就不是二次函数了
④知道了a和顶点,设顶点式就可以得到新抛物线的解析式
注意:无论平移、对称、旋转都可以用,如果是一次函数可以将顶点(h,k)替换为直线与y轴交点,a替换为k,整体思路是一样的。
二次函数的平移问题
二次函数的平移问题关于二次函数的平移变换问题二次函数的平移变换可以分为上下平移和左右平移两种情况。
1.上下平移对于原函数y=ax²+bx+c,若要进行上下平移,可以进行以下变换:向上平移m个单位,得到平移后的函数y=ax²+bx+c+m;向下平移m个单位,得到平移后的函数y=ax²+bx+c-m。
需要注意的是,m为正数,若m为负数,则对应的加(减)号需要改为减(加)号。
一般称这种变换为上加下减或上正下负。
2.左右平移对于原函数y=ax²+bx+c,若要进行左右平移,可以进行以下变换:先将函数化为顶点式y=a(x-h)²+k;向左平移n个单位,得到平移后的函数y=a(x-h+n)²+k;向右平移n个单位,得到平移后的函数y=a(x-h-n)²+k。
需要注意的是,n为正数,若n为负数,则对应的加(减)号需要改为减(加)号。
一般称这种变换为左加右减或左正右负。
例题:1.将抛物线y=-x²向左平移一个单位,再向上平移三个单位,平移后的表达式为()A。
y=-(x-1)²+3B。
y=-(x+1)²+3C。
y=-(x-1)²-3D。
y=-(x+1)²-32.抛物线y=x²+bx+c向右平移两个单位,再向下平移三个单位,得到的抛物线表达式为y=x²-2x-3,则b、c的值分别为()A。
b=2,c=2B。
b=2,c=0C。
b=-2,c=-1D。
b=-3,c=23.将函数y=x²+x的图像向右平移a(a>0)个单位,得到函数y=x²-3x+2的图像,则a的值为()A。
1B。
2C。
3D。
44.已知二次函数y=x²-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。
下列关于抛物线移动方向的描述中,正确的是()A。
二次函数几何变换
注意问题:
1.是否可取等号问题 2.解析式是否发生变化 3.是否考虑全面
练1.二次函数 y = x2 + bx + c 的顶点坐标为M(1,-4).
(1)求二次函数的解析式 (2)将二次函数的图象在X轴下方的部分沿X轴翻折,图象的 其余部分保持不变,得到一个新的图象,请你结合新图象回答: 当直线y=x+n与这个新图象有两个公共点时,求n的取值范围
△△△ >0 =0 <0 21无 个个交 交交点 点点
3 与非平行于坐标轴的直线交点
y
y=kx+b
x
基础练习
(1)判断直线y x 1
y 与x抛2 物3x线 1
交点情况?
如果有交点,请求y 出交x 点1 坐标。 解:联立 y x2 3x 1
x2 2x 0
得
△ =4 >0
所以有两个交点,交点坐标为(0,1)和(2,-1)
平移后的抛物线与 直线联立,根据判 别式来进行确定。
n=0
解题思路:
1 列出平移后的函数 解析式。 y=4x+6+n B(-1-n,0) C(3-n,0)
二次函数 几何变换与交点问题
新东方初中数学组 张志安
平移 旋转 翻折
一 平移
抛物线平移问题
例1.将抛物线 y = 2x2 + 4x - 3 向右平移3个单位, 再向上平移5个单位,求平移后所得抛物线的解析式。
方法一:顶点平移
y = 2x2 + 4x - 3 = 2(x +1)2 - 5
顶点坐标为(-1,-5)
y 2x2 - 4x - 2
练1:
二次函数图像的变换及解析式的确定(必考)
2,解得a=2,∴抛物线的解析式为 = ሺ − ሻ − = − + .
>
/m
<
解法2:∵抛物线 = + + 的对称轴为x=2,且与x轴交于点(1,0),
∴抛物线与x轴的另一个交点为(3,0),∴抛物线的解析式为 = ሺ −
+ ሻሺ − ሻ,把(0,3)代入,得a·3×(-1)=3,解得a=-1,
∴该二次函数的表达式为 = −ሺ + ሻሺ − ሻ,
即 = − − + .
>
m
<
>
/m
<
类型8 利用平移变换求抛物线解析式
(人教九上P35例3改编)将二次函数 = 22 + 4 + 1 的图象向右平移2个
<
>
/m
<
>
m
<
>
/m
<
续表
变换形式
图象关系
点坐标变化
横坐标 互
>
m
<
关于 轴
>
m
<
>
m
<
>
/m
<
>
/m
<
为相反数,
>
/m
<
系数关系
不变
______
本质
相同
开口方向______
相 − 值______,
变号
互为____
2
反数
二次函数解析式及图形变换学而思培优
②顶点式: y = a (x - h )2 + k 或 y = a x +⎪ + ④对称点式:y =a(x -x 1)(x -x 2)+b (a ≠0) 其中 x 1,x 2 是两个对称点的横坐标,b 是对称第五讲二次函数解析式及图形变换一、二次函数解析式四种形式:①一般式: y = ax 2 + bx + c (a ≠ 0);⎛ ⎝b ⎫2 2a ⎭4ac - b 2 (a ≠ 0); 4a③交点式: y = a (x - x )(x - x ) (a ≠ 0) 其中 x ,x 是方程 ax 2 + b x + c = 0 的两个实根。
1 2 1 2, 点纵坐标。
二、抛物线的平移、对称与旋转①平移:“左加右减,上加下减”。
②对称:关于 x 轴对称: y = ax 2 + b x + c 的图象 x 轴对称后得到图象的解析式是y = -ax 2 - b x - c 。
关于 y 轴对称: y = ax 2 + b x + c 的图象 y 轴对称后得到图象的解析式是 y = ax 2 - b x + c 。
关于原点对称: y = ax 2 + b x + c 的图象原点对称后得到 图 象 的 解 析 式 是 y = -ax 2 + b x - c 。
1.求二次函数 y = ax 2 + b x + c 与直线 y = kx + m 的交点,联立方程组 ⎨ 求解。
2.求二次函数 y = a x 2+ b x + c 与 y = a x 2+ b x + c 的交点,联立方程组 ⎨ 求解。
⎧⎪ y = a x 2 + b x + c ⎪⎩ y = a x 2 + b x + c ⑶(2007 朝阳二模)已知抛物线 y = ax 2 + b x(a ≠ 0) 的顶点在直线 y = -x - 1 上,当且仅当 ⑵请探索:是否存在二次项系数的绝对值小于 的整点抛物线?若存在,请写出其中一条抛物线三、二次函数与一元二次方程⎧ y = ax 2 + bx + c ⎩ y = kx + m1 1 1 1 1 12 2 2 2 2 2板块一 二次函数解析式【例1】 ⑴ 下列说法不正确的是()A .抛物线 y = ax 2 + b x - 3 与 y 轴的交点为 (0 ,- 3)B .抛物线 y = ax 2 - 2ax + a 2 - 1 的对称轴为 x = 1C .抛物线 y = ax 2 - a (m + 1)x + ma 与 x 轴的交点为 (m ,0)和 (1,0)D .抛物线 y = a (x + π )2 - x 的顶点坐标为 (-π ,- x )⑵(2009 三帆单元测试)已知抛物线 y = ax 2 + bx + c 经过点 A (-1,0),且经过直线 y = x - 3 与x 轴的交点 B 及与 y 轴的交点 C ,则抛物线的解析式为。
2012学年九年级上数学-二次函数复习之抛物线的平移、轴对称、旋转变换
2012(主要内容)抛物线的平移、轴对称、旋转变换1、抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列叙述正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 2、抛物线223x y =向右平移3个单位,再向上平移2个单位,则所得抛物线的解析式 。
3、抛物线5)2(212+--=x y 可以由抛物线1)1(212+--=x y 先向 平移 个单位,再向 平移 个单位得到的。
4、( 2011庆江津)将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位得到的抛物线是____ ___5、函数2x y =的图像与函数2x y -=的图像关于 对称。
6、已知抛物线742+-=x x y(1)写出与它关于y 轴对称的抛物线的解析式 。
(2)写出与它关于x 轴对称的抛物线的解析式 。
(3)写出与它关于原点中心对称的抛物线的解析式 。
(4)写出它绕着顶点旋转180°后得到的抛物线的解析式 。
(5)向右平移 个单位,图像经过点(5,4)。
(6)向下平移 个单位,图像也经过点(5,4)。
7、(2009年鄂州)把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则求a+b+c 的.8、(2009宁波市)如图,抛物线254y ax ax a =-+与x 轴相交于点A 、B ,且过点(54)C ,. (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.9、(2009年衢州)如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式; ② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.A BPxyOC (5,4)4 x2 2A8 -2 O-2 -4 y 6 B C D -44。
二次函数平移、旋转、轴对称变换汇总
二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
y=a(x-h)²+k y=a(x-h)²+k ±my=a(x-h)² y=a(x-h ±m)²+k 练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。
(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称) ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。
(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。
练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。
2024年九年级数学中考专题:二次函数平移对称旋转 课件
(x,y +b)
(x,y -b)
口诀:上加下减,左减右加
坐
标
旋
转
变
换
一、坐标平移旋转对称
点(x,y) 绕着(m,n)旋转180° ,求旋转后的
点的坐标?
中点坐标公式:
A(1 , 1 ), B(2 , 2 ),
1 +2 1 +2
AB中点 (
,
)
2
2
旋转后的点的坐标( − ,2n-y)
中考专题:
二次函数平移旋转对称
目录
一
二
三
坐标平移旋
转对称
二次函数
表达式
例题讲解
四
方法归纳
五
学以致用
一、坐标平移
旋转对称
坐
标
平
移
变
换
一、坐标平移旋转对称
x轴 向左平移a个单位(x,y)
向右平移a个单位(x,y)
(x-a,y)
(x+a,y)
y轴 向上平移b个单位(x,y)
向下平移b个单位(x,y)
坐
标
对
称
变
换
一、坐标平移旋转对称
关于x轴对称 (x,y)
关于y轴对称 (x,y)
(x, -y)
(- x, y)
口诀:关于谁对称,谁不变,另一个互为相反数
关于原点O对称 (x,y部互为相反数
二 、二次函数
表达式
二、二次函数表达式
一般式:y = 2 + + ( ≠ 0, , 均为常数)
变式2
(3)抛物线2 与抛物线1 关于原点O对称,求抛物线 2 的表达
式
三、例题讲解
二次函数图象的平移和对称变换
2二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。
所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。
利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。
下面由具体的例子进行说明。
一 、 平 移 。
例1、 把抛物线 y=x -4x+6 向左平移 3 个单位,再向下平移 4 个单位后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0, 6),( 1, 3),( 2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3 个单位,再向下平移4 个单位后得到三个新点( -3 , 2),( -2 , -1 ),(-1 ,-2 ),把这三个新点代入到新的函数关 系式的一般形式 y=ax 2+bx+c 中,求出各项系数即可。
例 2、已知抛物线 y=2x 位,求其解析式。
法(二)2-8x+5, 求其向上平移 4 个单位,再向右平移 3 个单先利用配方法把二次函数化成y a( x h)2 k 的形式,确定其顶点( 2,-3 ),然后把顶点( 2, -3 )向上平移 4 个单位,再向右平移 3 个单位后得到新抛物线的顶点为( 5, 1),因为是抛物线的平移,因此平移前后 a 的值应该相等,这样我们就得到新的抛物线的解析式中 a=2,且顶点为( 5, 1),就可以求出其解析式了。
22222【平移规律:在原有函数的基础上“左加右减、上加下减”】 .法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为 “左右平移即把解析式中自变量 x 改为 x 加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。
二次函数知识点归纳总结
二次函数知识点归纳总结二次函数是高中数学中的一个重要内容,也是数学建模和解几何问题的重要工具。
下面是关于二次函数的知识点的归纳总结。
一、基本概念1. 二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c (a ≠ 0) 的函数,其中 a、b、c 是常数。
2.二次函数的图象:二次函数的图象是一个抛物线,开口方向取决于a的正负性,顶点坐标为(-b/2a,f(-b/2a))。
3.对称轴:二次函数的对称轴是与图象关于x轴对称的直线,其方程为x=-b/2a。
4. 零点:二次函数的零点是函数图象与 x 轴的交点,可以通过求解二次方程 ax^2 + bx + c =0 来得到。
5.最值:二次函数的最值取决于a的正负性,当a>0时,函数取最小值;当a<0时,函数取最大值。
二、二次函数的变形与性质1.平移变换:二次函数可以通过平移变换来改变其图象的位置。
平移变换的一般形式是f(x)→f(x-h)+k,其中h和k是任意实数。
2.缩放变换:二次函数可以通过缩放变换来改变其图象的形状。
缩放变换的一般形式是f(x)→af(x),其中a是非零实数。
3.纵坐标平移:二次函数可以通过纵坐标平移来改变其图象的位置。
纵坐标平移的一般形式是f(x)→f(x)+k,其中k是任意实数。
4.二次函数的奇偶性:如果a是偶数,则二次函数是偶函数;如果a是奇数,则二次函数是奇函数。
5.顶点坐标的性质:顶点坐标(-b/2a,f(-b/2a))是二次函数的最值点,当a>0时是最小值,当a<0时是最大值。
三、二次函数的方程与不等式1. 二次方程的解:二次方程 ax^2 + bx + c =0 的解可以通过求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 来得到。
2. 解的判别式:二次方程 ax^2 + bx + c =0 的解的判别式是 D =b^2 - 4ac,根据判别式的值可以判断方程有几个实数解。
二次函数的图像
汇报人:
二次函数图像的形状 二次函数图像的平移 二次函数图像的对称变换 二次函数图像的翻折 二次函数图像的交点 二次函数图像的综合应用
二次函数图像的形状
开口方向
向上开口:二次项系数大于0
垂直于x轴:二次项系数等于0
添加标题
添加标题
向下开口:二次项系数小于0
添加标题
添加标题
水平线:一次项系数等于0
抛物线与坐标轴交点的应 用
抛物线在实际问题中的建 模应用
在数学竞赛中的应用
二次函数图像的综合应用可以解决数学竞赛中的代数问题。 通过分析二次函数图像,可以解决几何问题。 利用二次函数图像的性质,可以解决数列问题。 二次函数图像的综合应用在数学竞赛中具有广泛的应用价值。
在高中数学中的重要性
二次函数图像是高中数学的重要知识点,是理解和掌握函数性质的关键。 通过二次函数图像的综合应用,可以解决各种实际问题,提高数学应用能力。 二次函数图像在高中数学中占有重要地位,是高考数学的必考内容之一。 掌握二次函数图像的综合应用,有助于提高学生的数学素养和思维能力。
变化规律:顶点不变,开口方 向相反,对称轴不变
举例:y=x^2沿x轴翻折后为 y=-x^2
应用:理解次函 数图像在y轴两侧 对称翻转
效果:改变开口 方向和顶点位置
公式:将二次函 数的一般形式 y=ax^2+bx+c 中的a替换为-a, 得到新的二次函 数
上平移和下平移对函数值的影响:上平移会使函数值增大,下平移会使函数值减小。
上平移和下平移的代数表示:向上平移a个单位,函数解析式变为y=f(x+a);向下平移 a个单位,函数解析式变为y=f(x-a)。
上平移和下平移的实际应用:在解决实际问题时,可以通过平移二次函数的图像来调整 参数,从而得到最优解。
二次函数中的平移、翻折、对称、旋转、折叠问题
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
二次函数的平移与对称
二次函数的平移与对称二次函数是数学中的基本函数之一,其函数表达式为y=a(x-h)²+k,其中a、h、k分别为常数,a表示二次函数的开口方向、大小,h和k则是控制二次函数平移的参数。
平移是指将二次函数在坐标系上沿x轴或y轴方向上移动一定距离的变换操作,而对称则是指二次函数在某条直线上镜像对称的特性。
一、二次函数的平移二次函数的平移是通过改变h和k的值实现的。
当h和k取不同值时,二次函数图像在坐标系中相对于原点进行平移。
1. 沿x轴平移:当h取正值时,二次函数图像向右平移;当h取负值时,二次函数图像向左平移。
平移的距离等于|h|。
例如,考虑二次函数y=x²,将其沿x轴向右平移2个单位。
根据平移的定义,新的函数为y=(x-2)²。
对比原函数和新函数的图像可以看出,在新函数中,x的值相较于原函数向右平移了2个单位。
2. 沿y轴平移:当k取正值时,二次函数图像向上平移;当k取负值时,二次函数图像向下平移。
平移的距离等于|k|。
例如,考虑二次函数y=x²,将其沿y轴向上平移3个单位。
根据平移的定义,新的函数为y=x²+3。
对比原函数和新函数的图像可以看出,在新函数中,y的值相较于原函数向上平移了3个单位。
二、二次函数的对称二次函数的对称是指二次函数关于某条直线对称。
1. 关于y轴对称:当h=0时,二次函数关于y轴对称。
即函数表达式为y=ax²+k。
例如,考虑二次函数y=x²+1,该函数关于y轴对称。
在图像上可以看出,当x的值取正和负相等的时候,y的值也相等,即二次函数在y轴上对称。
2. 关于x轴对称:当k=0时,二次函数关于x轴对称。
即函数表达式为y=ax²。
例如,考虑二次函数y=2x²,该函数关于x轴对称。
在图像上可以看出,当y等于0时,二次函数在x轴上有一个对称的点。
3. 关于直线y=x对称:当a=1时,二次函数关于直线y=x对称。
二次函数的几个公式
二次函数的几个公式二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
1.顶点坐标公式:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
2.轴对称公式:二次函数的轴对称线方程为x = -b/2a。
3.判别式公式:二次函数的判别式为Δ = b^2 - 4ac,判别式可以用来判断二次函数的图像与x轴的交点情况。
当Δ > 0时,二次函数与x轴有两个不同的交点;当Δ = 0时,二次函数与x轴有一个重复的交点;当Δ < 0时,二次函数与x轴没有实数解。
4.对称性质公式:二次函数在轴对称线上的函数值相等,即f(x) = f(-b/2a + t),其中t为任意实数。
5.开口方向公式:二次函数的开口方向由系数a的正负性决定。
当a > 0时,二次函数开口向上;当a < 0时,二次函数开口向下。
6.最值公式:二次函数的最值可以通过寻找顶点的纵坐标得到。
当a > 0时,最小值为f(-b/2a),当a < 0时,最大值为f(-b/2a)。
拓展:1.零点公式:二次函数的零点为函数与x轴的交点,可以通过求解f(x) = 0得到。
根据一元二次方程求根公式,当Δ > 0时,一般解为x = (-b ± √Δ)/(2a);当Δ = 0时,解为x = -b/2a;当Δ < 0时,无实数解。
2.平移变换公式:二次函数可以通过平移变换改变其图像的位置。
例如,对于函数f(x) = ax^2 + bx + c,进行垂直平移h个单位和水平平移k个单位后,得到的函数为f(x - k) + h。
3.模型应用公式:二次函数在数学建模中有广泛的应用。
例如,可以使用二次函数来建模抛物线运动、汽车行驶距离与时间关系、弹体抛射运动等实际问题。
总结一下,二次函数的公式包括顶点坐标公式、轴对称公式、判别式公式、对称性质公式、开口方向公式和最值公式。
此外,还有拓展的零点公式、平移变换公式和模型应用公式等。
二次函数关于y轴对称的解析式
二次函数关于y轴对称的解析式y=a(x-h)^2+k,代表的是关于y轴对称的二次函数。
它的一般式:y=ax²+bx+c,其中a≠0,a,b,c为实数,其解析式为:1. 平移(h,k):y=a(x-h)^2+ky轴对称:即将x轴上的点移到y轴上,二次函数的曲线也将会镜像,也即是将二次函数的曲线的形状保持不变,只是整体上下翻转,即f(x)=-f(-x),即关于y轴对称。
2. 顶点公式:顶点处(h,k)即为 y=ax²+bx+c 的解析式,其中h为抛物线x轴方向的对称轴,k为y轴方向的对称轴。
3. 定点公式:根据定点公式,可以得到顶点公式中的h,k:h=-b/2a , k=f(-b/2a)4. 将h,k代入顶点公式即可得到形如:y=a(x+b/2a)^2+f(-b/2a) 的式子,即为关于y轴对称的二次函数的一般解析式。
5. 将二次函数变换成标准形式:将y=a(x+b/2a)^2+f(-b/2a) 变换为y=a(x-h)^2+k,即可得到关于y轴对称的二次函数的解析式。
总结:1. 关于y轴对称的二次函数一般式为:y=ax²+bx+c,其中a不等于0,a,b,c为实数。
2. 顶点公式:顶点处即为 y=ax²+bx+c的解析式,其中h为抛物线x轴方向的对称轴,k为y轴方向的对称轴。
3. 定点公式:得到h,k的值:h=-b/2a , k=f(-b/2a)。
4. 解析式:将h,k代入顶点公式即可得到形如:y=a(x+b/2a)^2+f(-b/2a) 的式子,即为关于y轴对称的二次函数的一般解析式。
5. 将二次函数变换成标准形式:y=a(x-h)^2+k,即可得到关于y轴对称的二次函数的解析式。
二次函数的变换(热考题型)-解析版
专题06 二次函数的变换【思维导图】◎考点题型1二次函数的平移(1) 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:(2) 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2例.(2021·内蒙古通辽·九年级期末)将抛物线y =﹣3x 2+1向左平移2个单位长度,再向下平移1个单位长度,所得的抛物线解析式为( ) A .y =﹣3(x +2)2 B .y =﹣3(x ﹣2)2﹣1 C .y =﹣3(x +1)2﹣1 D .y =﹣3(x ﹣1)2+3【答案】A 【解析】 【分析】根据二次函数图象平移的规律进行解答即可. 【详解】解:抛物线y =﹣3x 2+1向左平移2个单位长度得y =﹣3(x+2)2+1, 抛物线y =﹣3(x+2)2+1向下平移1个单位长度得y =﹣3(x +2)2. 故选:A . 【点睛】本题考查二次函数图象的平移,掌握平移规律:左加右减,上加下减是解题关键.变式1.(2021·山东烟台·九年级期中)将二次函数2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为223y x x =--,则b 、c 的值为( ) A .2b =,6c =- B .6b =-,8c = C .6b =-,2c = D .2b =,0c【答案】D 【解析】 【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【详解】由题意可得新抛物线的顶点为(1,4)-, ∴原抛物线的顶点为(1,1)--,设原抛物线的解析式为2()y x h k =-+, 代入得:22(1)12y x x x =+-=+,∴2b =,0c . 故选:D . 【点睛】主要考查了函数图象的平移,抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.变式2.(2022·广西·南宁市天桃实验学校八年级期末)将抛物线22(3)2y x =--图像先向上平移4个单位,再向左平移5个单位后的解析式是( ) A .22(8)2y x =-+ B .22(8)6y x =-- C .22(2)6y x =+- D .22(2)2y x =++【答案】D 【解析】 【分析】根据左加右减,上加下减的规律,可得答案. 【详解】解:将抛物线22(3)2y x =--图像先向上平移4个单位,再向左平移5个单位后的解析式是22(35)24y x =-+-+,即22(2)2y x =++.故选:D . 【点睛】本题考查了二次函数图像与几何变换,主要考查的是函数图像的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.变式3.(2022·河北邢台·九年级期末)怎么样才能由22y x =的图像经过平移得到函数22(6)7y x =-+的图像呢?小亮说:先向左平移6个单位长度,再向上平移7个单位长度; 小丽说:先向上平移7个单位长度,再向右平移6个单位长度. 对于上述两种说法,正确的是( ) A .小亮对 B .小丽对C .小亮、小丽都对D .小亮、小丽都不对【答案】B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:小亮:由y=2x2的图象先向左平移6个单位长度,再向上平移7个单位长度后得到抛物线解析式为:y=2(x+6)2+7,则小亮说法错误;小丽:由y=2x2的图象先向上平移7个单位长度,再向右平移6个单位长度后得到抛物线解析式为:y=2(x-6)2+7,则小丽说法正确;故选:B.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.◎考点题型2 二次函数图象的对称(1)关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;(2)关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;(3)关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca =--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.例.(2022·河南周口·九年级期末)已知抛物线21y x mx =+-经过(1,)n -和(2,)n 两点,则n 的值为( ) A .1- B .1 C .2 D .3【答案】B 【解析】 【分析】根据(1,)n -和(2,)n 可以确定函数的对称轴1x =,再由对称轴的12mx =-=,即可求解. 【详解】解:抛物线21y x mx =+-经过(1,)n -和(2,)n 两点, 可知函数的对称轴12122x -+==, 122m ∴-=, 1m ∴=-;21y x x ∴=--,将点(1,)n -代入函数解析式,可得1n =; 故选:B . 【点睛】本题考查二次函数图象上点的坐标,解题的关键是熟练掌握二次函数图象上点的对称性. 变式1.(2020·黑龙江·勃利县大四站镇中学九年级期中)已知4a -2b +c =0,9a +3b +c =0,则二次函数y =ax 2+bx +c 的图象顶点可能在( ) A .第一或第四象限 B .第三或第四象限 C .第一或第二象限 D .第二或第三象限【答案】A 【解析】 【分析】首先由已知条件4a-2b+c=0,9a+3b+c=0,得出此二次函数过点(-2,0),(3,0),然后根据二次函数的对称性求出抛物线的对称轴,进而得出二次函数y=ax2+bx+c图象的顶点可能所在的象限.【详解】解:∴4a-2b+c=0,9a+3b+c=0,∴此二次函数过点(-2,0),(3,0),∴抛物线的对称轴为直线x=12,∴二次函数y=ax2+bx+c图象的顶点可能在第一或第四象限.故选:A.【点睛】此题考查了二次函数的性质,二次函数图象的对称性,掌握二次函数图象与性质求出对称轴为直线x=12是解题的关键.变式2.(2022·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)已知二次函数y=ax2+bx +c,函数y与自变量x的部分对应值如表:x……﹣11234……y (10521)25……若A(m,y1)、B(m﹣1,y2)两点都在函数的图象上,则当m满足()时,y1<y2A.m≤2B.m≥3C.m52<D.m52>【答案】C【解析】【分析】根据表格中的数据先确定抛物线的对称轴为直线x=2,开口向下,然后根据二次函数图象的性质,列出m 的不等式,解不等式即可.【详解】解:由表格可知,该函数图象开口向上,对称轴为直线x042+==2,∴A(m,y1)、B(m﹣1,y2)两点都在函数的图象上,y1<y2,∴2﹣(m ﹣1)>m ﹣2, 解得:m 52<,故C 正确.故选:C . 【点睛】本题主要考查了二次函数图象的性质,根据表格中的数据确定二次函数图象的对称轴,列出关于m 的不等式,是解题的关键.变式3.(2020·辽宁铁岭·九年级期中)点1P (-1,1y ),2P (3,2y ),3P (5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y =>B .312y y y >=C .123y y y >>D .23y y y <<【答案】A 【解析】 【分析】已知函数表达式里面二次项系数和一次项系数,可以求出该函数图像的对称轴2ba-,结合对称轴,分析函数的增减性即可.当a <0,x >2b a -时,y 随x 的增大而减小;当a <0,x <2ba-时,y 随x 的增大而增大. 【详解】 对称轴:x =2ba-=212(1)-=⨯- 11(1)P y -,到对称轴有1-(-1)=2个单位长度; 22(3)P y ,到对称轴有3-1=2个单位长度;∴12y y = ∴a =-1<0 ∴当x >2ba-时,y 随x 的增大而减小 ∴33(5)P y ,,5>3>2b a- ∴32<y y综上:321y y y <= 故选:A【点睛】本题主要考查了二次函数的增减性,结合函数表达式求出函数图像的对称轴,根据二次项系数的正负和对称轴分析函数的增减性是解题的关键.◎考点题型3 二次函数的图象与系数的关系二次函数c bx ax y ++=2(0≠a )的系数与图象的关系(1)a 的符号由抛物线c bx ax y ++=2的开口方向决定:0>⇔a 开口向上 ,0>⇔a 开口向上;(2)b 的符号由抛物线c bx ax y ++=2的对称轴的位置及a 的符号共同决定:对称轴在y 轴左侧b a ,⇔同号,对称轴在y 轴右侧b a ,⇔异号;(3)c 的符号由抛物线c bx ax y ++=2与y 轴的交点的位置决定:与y 轴正半轴相交0>⇔c ,与y 轴正半轴相交0<⇔c ⏹ 二次项系数a二次函数y =ax 2+bx +c 中,a 作为二次项系数,显然a ≠0.⑴ 当a >0时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑴ 当a <0时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.【总结起来】a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,|a |的大小决定开口的大小. ⏹ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在a >0的前提下,当b >0时,−b2a <0,即抛物线的对称轴在y 轴左侧(a 、b 同号); 当b =0时,−b 2a =0,即抛物线的对称轴就是y 轴;当b <0时,−b 2a >0,即抛物线对称轴在y 轴的右侧(a 、b 异号). ⑵ 在a <0的前提下,结论刚好与上述相反,即当b >0时,−b2a >0,即抛物线的对称轴在y 轴右侧(a 、b 异号); 当b =0时,−b 2a =0,即抛物线的对称轴就是y 轴;当b <0时,−b 2a <0,即抛物线对称轴在y 轴的左侧(a 、b 同号). 【总结起来】在a 确定的前提下,b 决定了抛物线对称轴的位置.常数项c⑴ 当c >0时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当c =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当c <0时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 【总结起来】c 决定了抛物线与y 轴交点的位置.总之,只要a , b , c 都确定,那么这条抛物线就是唯一确定的.例.(2021·山东烟台·九年级期中)在同一平面直角坐标系内,二次函数()20y ax bx c a =++≠与一次函数y ax b =+的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】逐图分析系数a ,b 的符号,即可判断. 【详解】A .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a >,0b >,此选项错误;B .由()20y ax bx c a =++≠的图象可知,0a <,0b <,由y ax b =+的图象可知,0a >,0b <,此选项错误;C .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a >,0b <,此选项正确;D .由()20y ax bx c a =++≠的图象可知,0a >,0b <,由y ax b =+的图象可知,0a <,0b =,此选项错误. 故选:C . 【点睛】本题考查了一次函数与二次函数的图象,解题关键是会根据图象判断系数a ,b 的符号.变式1.(2022·云南玉溪·九年级期末)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论中不正确的是( )A .abc <0B .b =-4aC .4a +2b≥m (am +b )D .a -b +c >0【答案】D 【解析】 【分析】先根据抛物线的开口向下可知a <0,与y 轴的交点在y 轴的负半轴可知c <0,由抛物线的对称轴x =2可得出a 、b 的关系,再对四个选项进行逐一分析. 【详解】∴抛物线的开口向下, ∴a <0,∴抛物线与y 轴的交点在y 轴的正半轴, ∴c >0,∴抛物线的对称轴为直线2x =, ∴22ba-=,即4b a =- ∴4a +b =0,故B 正确,不符合题意;; ∴0b >,∴abc <0,故A 正确,不符合题意; ∴抛物线的对称轴为直线2x =,a <0, ∴当2x =时,y 取得最大值为42a b c ++ ∴对于任意实数m ,242a a c am bm c ++≥++∴4a +2b +c≥m (am +b )+ c ∴4a +2b ≥m (am +b ), 故C 正确,不符合题意;当x =﹣1时,抛物线与y 轴的交点在x 轴上,即a ﹣b +c =0,故D 错误, 符合题意.故选D . 【点睛】本题考查的是二次函数的图象与系数的关系,数形结合是解题的关键,二次函数y = ²+bx +c (a ≠0)的图象,当a <0时,抛物线向下开口,当a 与b 同号时(即ab >0,对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.变式2.(2022·湖北恩施·九年级期末)抛物线2y ax bx c =++的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:∴240b ac -<;∴当1x >-时,y 随x 增大而减小;∴0a b c ++<;∴若方程20ax bx c m ++-=没有实数根,则2m >;∴0b c -+>.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】 【分析】利用图象信息,以及二次函数的性质即可一一判断. 【详解】解:根据题意得:二次函数与x 轴有两个交点, ∴b 2-4ac >0,故∴错误;∴抛物线2y ax bx c =++的顶点为D (-1,2), ∴抛物线的对称轴为直线x =-1, ∴抛物线开口向下,∴当x >-1时,y 随x 增大而减小,故∴正确;∴抛物线与x 轴的一个交点A 在点(-3,0)和-2,0)之间,对称轴为直线x =-1, ∴抛物线与x 轴的另一个交点为在(0,0)和(1,0)之间,∴x =1时,y =a +b +c <0,故∴正确;∴抛物线2y ax bx c =++的顶点为D (-1,2),抛物线开口向下, ∴函数的最大值为2,∴当m >2时,抛物线与直线y =m 没有交点, ∴方程ax 2+bx +c -m =0没有实数根,故∴正确;∴抛物线2y ax bx c =++的顶点为D (-1,2),抛物线开口向下, ∴当x =-1时,2a b c -+=,0a <, ∴20b c a -+=->,故∴正确, ∴正确的有4个. 故选:C 【点睛】本题考查二次函数图象与系数的关系,根的判别式、抛物线与x 轴的交点等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合思想解答,属于中考常考题型.变式3.(2022·湖北武汉·中考真题)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【解析】 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限. 【详解】解:∴抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0, ∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限, 故选:D . 【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.◎考点题型4二次函数与一次函数的综合判断例.(2022·全国·九年级课时练习)如图,一次函数1y x =与二次函数22y x bx c =++的图像相交于P 、Q 两点,则函数()21y x b x c =+-+的图像可能是( )A .B .C .D .【答案】A 【解析】 【分析】根据函数图象和二次函数的性质判断即可. 【详解】解: 由2y =x 2+bx +c 图象可知,对称轴x =2b->0,0c <,0b ∴<,抛物线21y x b x c =+-+()与y 轴的交点在x 轴下方,故选项B ,C 错误,抛物线21y x b x c =+-+()的对称轴为1122b bx --=-=, ∴102b->, ∴抛物线y =x 2+(b -1)x +c 的对称轴在y 轴的右侧,故选项D 错误, 故选:A . 【点睛】本题考查二次函数图像和性质,明确二次函数2y ax bx c =++ 中各项系数的意义及利用数形结合的思想是解答本题的关键.变式1.(2022·全国·九年级课时练习)已知,在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .【答案】B 【解析】 【分析】题干中二次函数2y ax =的图象开口向下,可以判断出a 的符号为负,一次函数y bx c =+的图象与x 轴正方向夹角小于90°,且与y 轴交点在y 轴的正半轴,可以据此判断出b 、c 的符号皆为正,再去判断各选项哪个符合二次函数2y ax bx c =++的图象. 【详解】∴二次函数2y ax =的图象开口向下, ∴a <0,又∴一次函数y bx c =+的图象与x 轴正方向夹角小于90°,且与y 轴交点在y 轴的正半轴,∴b >0,c >0, 则2ba->0, 可知二次函数2y ax bx c =++开口方向向下,对称轴在y 轴右侧,且与y 轴交点在y 的正半轴,选项B 图象符合, 故选:B . 【点睛】本题考查了一次函数、二次函数图象与系数的关系,题目比较简单,解决题目需要熟练掌握图象与系数的关系.变式2.(2021·河南驻马店·九年级期中)函数1y ax =+与()210y ax ax a =++≠的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】由一次函数图象可确定a 的符号,再确定二次函数图象的大致形状和位置即可. 【详解】解:根据四个选项中一次函数图象在一、二、三象限,可以确定a >0时, ∴a >0,函数y =ax 2+ax +1(a ≠0)的图象开口向上, 对称轴为直线122a x a =-=-; 在y 轴左侧, 只有C 选项符合题意. 故选:C . 【点睛】本题一次函数和二次函数图象与系数的关系,解题关键是明确函数图象与系数的关系,树立数形结合思想,准确进行判断推理.变式3.(2021·北京市第六十六中学九年级期中)如图,在同一坐标系中,二次函数2y ax c =+与一次函数y ax c =+的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数图象,逐项判断,a c 符号,即可求解. 【详解】解:A 、由二次函数图象,可得0a < ,一次函数图象,可得0a > ,相矛盾,故本选项错误,不符合题意;B 、由二次函数图象,可得0a > ,一次函数图象,可得0a < ,相矛盾,故本选项错误,不符合题意;C 、由二次函数图象,可得0c > ,一次函数图象,可得0c < ,相矛盾,故本选项错误,不符合题意;D 、由二次函数图象,可得0a > ,0c <,一次函数图象,可得0a > ,0c <,故本选项正确,符合题意; 故选:D 【点睛】本题主要考查了二次函数和一次函数的图象和性质,根据函数图象,得到,a c 符号是解题的关键.◎考点题型5 根据图像判断式子符号例.(2021·广东湛江·九年级期末)二次函数y =ax 2+bx +c 的图象如图所示,下列结论:∴ac <0;∴a -b +c =0;∴4ac -b 2<0;∴当x >-1时,y 随x 的增大而减小,其中正确的有( )A.4个B.3个C.2个D.1个【答案】B【解析】【分析】根据二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【详解】∴∴抛物线开口向上,且与y轴交于负半轴,∴a> 0,c< 0∴ac<0故结论∴正确;∴从图中可以看出,抛物线经过点(-1,0),当x=-1时,y=0,∴a-b+c=0,故∴正确;∴∴抛物线与x轴有两个交点∴b2- 4ac> 0即4ac- b2< 0故结论∴正确;∴∴抛物线开口向上,且抛物线对称轴为直线x =1所以当x < 1时,y随x的增大而减小故结论∴错误故正确的结论有∴∴∴共3个;故选:B.【点睛】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.变式1.(2022·河北唐山·九年级期末)如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面四条信息:∴c>0;∴b2﹣4ac>0;∴a+b+c<0;∴对于图象上的两点(﹣5,m)、(1,n),有m<n.其中正确信息的个数有()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】由抛物线与y轴交点在x轴上方可判断∴,由抛物线与x轴交点个数可判断∴,由图象可得x=1时y>0可判断∴,根据(-5,m)、(1,n)与对称轴的距离可判断∴.【详解】解:∴抛物线与y轴交点在x轴上方,∴c>0,∴正确.∴抛物线与x轴有2个交点,∴b2-4ac>0,∴正确.由图象可得x=1时y>0,∴a+b+c>0,∴错误.∴抛物线开口向上,对称轴为直线x=-3,且1-(-3)>-3-(-5),∴n>m,∴正确.故选:D.【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.变式2.(2022·山东德州·九年级期末)1.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x…﹣3﹣2﹣101…y…﹣3010﹣3…下列结论正确的是()∴ab>0;∴a+b+c<0;∴若点(﹣7,y1),点(7,y2)在二次函数图象上,则y1<y2;∴方程ax2+bx+c=﹣3有两个不相等的实数根.A.∴∴∴B.∴∴∴C.∴∴∴D.∴∴∴【答案】B【解析】【分析】根据表格中的数据,可以得到此二次函数具有最大值,对称轴为x=1,再根据二次函数的性质,即可判断题目中的各个小题是否正确.【详解】解:由表格可知,该二次函数有最大值,开口向下,对称轴为直线x=-1,顶点坐标为(-1,1),∴a<0,b<0,∴ab>0,故∴正确;由表格可知,当x=1时,y=a+b+c=-3<0,故∴正确;∴点(-7,y1)到对称轴x=-1的距离小于点(7,y2)到对称轴的距离,∴y1>y2,故∴错误,∴图象经过(-3,-3)和(1,-3)两个点,∴方程ax2+bx+c=-3有两个不相等的实数根,故∴正确,故选:B.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.变式3.(2020·黑龙江·北安市教育局九年级期中)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:∴当x>3时,y<0;∴3a+b>0;∴﹣1≤a≤23;∴3≤n≤4中,其中正确的结论有()A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】∴由抛物线的对称轴为直线x =1,一个交点A (-1,0),得到另一个交点坐标,利用图象即可对于选项∴作出判断;∴根据抛物线开口方向判定a 的符号,由对称轴方程求得b 与a 的关系是b =-2a ,将其代入(3a +b ),并判定其符号;∴利用一元二次方程根与系数的关系可得3c a =-,然后根据c 的的取值范围利用不等式的性质来求a 的取值范围;∴把顶点坐标代入函数解析式得到43n a b c c =++=,利用c 的取值范围可以求得n 的取值范围. 【详解】解:∴抛物线的顶点坐标为(1,n ), ∴对称轴直线是x =1,∴抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0), ∴该抛物线与x 轴的另一个交点的坐标是(3,0), 观察图象得:当x >3时,y <0,故∴正确; ∴观察图象得:抛物线开口方向向下, ∴a <0, ∴对称轴12bx a=-=, ∴.2b a =-,∴3320a b a a a +=-=<,即3a +b <0,故∴错误; ∴抛物线y =ax 2+bx +c 与x 轴交于点(-1,0),(3,0), ∴方程ax 2+bx +c =0的两根为-1,3, ∴133c a =-⨯=-,即3ca =-, ∴抛物线与y 轴的交点在(0,2)、(0,3)之间(包含端点),∴23c ≤≤, ∴2133c -≤-≤-,即213a -≤≤-,故∴正确; ∴.2b a =-,3c a =-, ∴223c b a =-=, ∴顶点坐标为(1,n ),∴当x =1时,43n a b c c =++=, ∴23c ≤≤, ∴84433c ≤≤,即843n ≤≤,故∴错误; 综上所述,正确的有∴∴,共2个.故选:B【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定是解题的关键.◎考点题型6 抛物线y =ax 2+bx +c 最值抛物线y =ax 2+bx +c 的三要素:开口方向、对称轴、顶点.求抛物线的顶点、对称轴的方法(难点)⏹ 公式法:y =ax 2+bx +c =a (x +b 2a )2+4ac−b 24a , ∴顶点是(−b 2a ,4ac−b 24a ),对称轴是直线x =−b 2a . ⏹ 配方法:运用配方的方法,将抛物线的解析式化为y =a (x −h )2+k 的形式,得到顶点为(h ,k ),对称轴是直线x =h .【抛物线的性质】由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.例.(2022·浙江金华·九年级期末)飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米【解析】【分析】先根据滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,求出函数的解析式,然后求出函数的最大值即可.【详解】解:∴10t =时,450s m =;20t =时,600s m =,∴1001045040020600a b a b +=⎧⎨+=⎩,解得:3260a b ⎧=-⎪⎨⎪=⎩, ∴23602S t t =-+, ∴()2233602060022S t t t =-+=--+, ∴当20t =时,S 最大,且最大值为600,即飞机的最大滑行距离为600米,故A 正确.故选:A .【点睛】本题主要考查了求二次函数解析式和最大值,根据题意求出二次函数解析式,是解题的关键.变式1.(2022·全国·九年级课时练习)某商场降价销售一批名牌衬衫,已知所获利润y (元)与降价x (元)之间的关系是y =-2x 2+60x +800,则利润获得最多为( )A .15元B .400元C .800元D .1250元【答案】D【解析】【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y =-2x 2+60x +800=-2(x -15)2+1250∴-2<0故当x =15时,y 有最大值,最大值为1250即利润获得最多为1250元故选:D .此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.变式2.(2022·广西贺州·中考真题)已知二次函数y=2x2−4x−1在0≤x≤a时,y取得的最大值为15,则a的值为()A.1B.2C.3D.4【答案】D【解析】【分析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.【详解】解:∴二次函数y=2x2-4x-1=2(x-1)2-3,∴抛物线的对称轴为x=1,顶点(1,-3),∴1>0,开口向上,∴在对称轴x=1的右侧,y随x的增大而增大,∴当0≤x≤a时,即在对称轴右侧,y取得最大值为15,∴当x=a时,y=15,∴2(a-1)2-3=15,解得:a=4或a=-2(舍去),故a的值为4.故选:D.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.变式3.(2022·全国·九年级课时练习)已知抛物线y=x2+(2a﹣1)x﹣3,当﹣1≤x≤3时,函数最大值为1,则a值为()A.12-B.13-C.12-或13-D.﹣1或13-【答案】D 【解析】【分析】根据顶点的位置分两种情况讨论即可.【详解】解:2(21)3y x a x =+--,∴图象开口向上,对称轴为直线212a x -=-, ∵﹣1≤x ≤3, ∴当2112a --时,即12a -,3x =时有最大值1, 9(21)331a ∴+-⨯-=,13a ∴=-, 当2112a --时,即12-a ,1x =-时有最大值1, 1(21)(1)31a ∴+-⨯--=,1a ∴=-,1a ∴=-或13-, 故选:D .【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.◎考点题型7 待定系数法求函数解析式例.(2022·全国·九年级课时练习)在平面直角坐标系xOy 中,二次函数225y x mx m =-+的图象经过点()1,2-.(1)求二次函数的表达式;(2)求二次函数图象的对称轴.【答案】(1)1m =-;(2)直线1x =-【解析】【分析】(1)利用待定系数法求解析式即可;(2)利用对称轴公式2b x a=-求解即可. 【详解】解:(1)∴二次函数y =x 2-2mx +5m 的图象经过点(1,-2),∴-2=1-2m +5m ,解得1m =-;∴二次函数的表达式为y =x 2+2x -5.(2)二次函数图象的对称轴为直线2122b x a =-=-=-; 故二次函数的对称轴为:直线1x =-;【点睛】本题考查了求二次函数解析式和对称轴,解题关键是熟练运用待定系数法求解析式,熟记抛物线对称轴公式.变式1.(2022·全国·九年级课时练习)已知二次函数y =ax 2+c 的图像经过点(﹣2,8)和(﹣1,5),求这个二次函数的表达式.【答案】二次函数的表达式为24y x =+.【解析】【分析】将点(﹣2,8)和(﹣1,5)代入二次函数表达式,列出二元一次方程组,进行求解即可.【详解】 解:二次函数y =ax 2+c 的图像经过点(﹣2,8)和(﹣1,5), ∴485a c a c +=⎧⎨+=⎩,解得:14a c =⎧⎨=⎩. ∴二次函数的表达式为24y x =+.【点睛】本题主要是考查了待定系数法求解二次函数表达式,将已知点代入表达式,再解方程,然后确定二次函数的表达式.变式2.(2022·全国·九年级课时练习)已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式【答案】245y x x =-++【解析】【分析】利用待定系数法设出抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入求解即可.【详解】解:∴抛物线经过点()1,0A -,()5,0B ,()0,5C ,∴设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,∴()()21545y x x x x =-+-=-++.∴该抛物线的函数关系式为245y x x =-++.【点睛】此题考查了待定系数法求二次函数表达式,解题的关键是熟练掌握待定系数法求二次函数表达式. 变式3.(2022·全国·九年级课时练习)已知二次函数2y x bx c =-++的图象与x 轴的一个交点坐标为()1,0-,与y 轴的交点坐标为()0,3.(1)求此二次函数的解析式;(2)用配方法求此抛物线的顶点坐标.【答案】(1)223y x x =-++;(2)()1,4 .【解析】【分析】(1)利用待定系数法,将(1,0)-,(0,3)两个点代入函数解析式求解即可确定函数解析式;(2)根据配方法将函数解析式化为顶点式,即可得出顶点坐标.【详解】解:(1)把(1,0)-,(0,3)代入2y x bx c =-++得:103b c c --+=⎧⎨=⎩, 解得:23b c =⎧⎨=⎩, 所以抛物线解析式为:2y x 2x 3=-++;(2)()222232113(1)4=-++=--+-+=--+y x x x x x ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。
y=a(x-h)²+k y=a(x-h)²+k ±my=a(x-h)² y=a(x-h ±m)²+k 练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。
(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。
2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。
(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称) ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。
(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。
练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。
二、二次函数的系数与图象的关系。
热身练习:1、抛物线y=ax 2+bx+c 的开口方向与 有关。
2、抛物线y=ax 2+bx+c 的对称轴是 .3、抛物线y=ax 2+bx+c 与y 轴的交点坐标是 ,与x 轴的交点坐标是 。
由二次函数2y ax bx c =++(0a ≠)的图象位置判定系数,,a b c 及判别式24b ac ∆=-和相关代数式符号的方法可以归纳成下表:与抛物线的关系判别方法 aa 决定抛物线的开口方向和大小;a 相等,抛物线的形状相同. 开口向上0a ⇔>开口向下0a ⇔<bb 和a 共同决定抛物线对称轴的位置: 左同右异对称轴在y 轴左侧,a b ⇔同号对称轴在y 轴右侧,a b ⇔异号 对称轴为y 轴0b ⇔=c 决定抛物线与y 轴的交点位置交点位于y 轴正半轴0c ⇔> 交点位于y 轴负半轴0c ⇔< 交点是原点0c ⇔=24b ac ∆=- 决定抛物线与x 轴的交点个数抛物线与x 轴有两个交点0⇔∆> 抛物线与x 轴有一个交点0⇔∆= 抛物线与x 轴没有交点0⇔∆<a+b+c 由x=1时抛物线上的点的位置确定 a-b+c 由x=-1时抛物线上的点的位置确定 2a 与b 由抛物线的对称轴直线x=-b2a 确定4a+2b+c 由x=2时抛物线上的点的位置确定 4a-2b+c由x=-2时抛物线上的点的位置确定练习:1、函数y =x 2+mx -2(m <0)的图象是( )2、抛物线y =ax 2+bx +c (a ≠0)的图象如图2所示,那么( )A .a <0,b >0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0第2题图 第3题图 第4题图 第5题图 第6题图 3、已知二次函数y =ax 2+bx +c 的图象如图3所示,则( )A .a >0,c >0,b 2-4ac <0B .a >0,c <0,b 2-4ac >0C .a <0,c >0,b 2-4ac <0D .a <0,c <0,b 2-4ac >0 4、已知二次函数y =ax 2+bx +c 的图象如图4所示,则( ) A .b >0,c >0,∆=0 B .b <0,c >0,∆=0 C .b <0,c <0,∆=0 D .b >0,c >0,∆>05、二次函数y =mx 2+2mx -(3-m )的图象如图5所示,那么m 的取值范围是( ) A .m >0 B .m >3 C .m <0 D .0<m <36、y =ax 2+bx +c (a ≠0)的图象如图6所示,那么下面六个代数式:abc ,b 2-4ac ,a -b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个 7、抛物线图象如图7所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2-x-2 B 、y=121212++-x C 、y=121212+--x x D 、y=22++-x x 8、如图8是二次函数y =ax 2+bx +c 的图象的一部分;图象过点A (-3,0),对称轴为x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是________________.(填序号)第7题图 第8题图 第9题图 9、如图9,看图填空:(1)a +b +c_______0;(2)a -b +c_______0;(3)2a -b _______0; (4)2a +b _______0;(5)4a +2b +c_______0;(6)a +2b +c_______0. 三、抛物线的对称性思考:1、抛物线若与x 轴有两个交点(x 1,0)、(x 2,0),则两交点关于__________对称,对称轴可以表示为____________________。
2、一般地,若抛物线上有两点关于对称轴对称,则它们的纵坐标__________;反之, 若抛物线上有两点的纵坐标相等,则它们关于__________对称.由此可得,若抛物线上有两点(x 1,y )(x 2,y )关于对称轴对称,则该抛物线的对称轴可以表示为____________________。
练习:1、已知二次函数y =ax 2+bx +c (a ≠0),其中a 、b 、c 满足a +b +c =0和9a -3b +c =0,则该二次函数图象的对称轴是( ) A .直线x =-2B .直线x =-1C .直线x =2D .直线x =12、已知点A (2,5),B (4,5)是抛物线y =4x 2+bx +c 上的两点,则这条抛物线的对称轴为_____________________.3、已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23(-则它与x 轴的另一个交点坐标为__________.4、抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.四、二次函数与其他函数、方程、不等式的关系。
1、二次函数与其他函数。
练习:(1)在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )(2)函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )(3)已知函数y =a (x +2)和y =a (x 2+1),那么它们在同一坐标系内图象的示意图是( )(4)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )(5)抛物线y = x 2 + 1与双曲线y = k x 的交点A 的横坐标是1,则关于x 的不等式 k x+ x 2+1 < 0的解集是 ( )A .x > 1B .x < −1C .0 < x < 1D .−1 < x < 02、二次函数与方程、不等式(组)(1)如图1,抛物线y = x 2+ 1与双曲线y = k x的交点A 的横坐标是1,则关于x 的不等式 k x+ x 2+ 1 < 0的解集是 ( )A .x > 1B .x < −1C .0 < x < 1D .−1 < x < 0第1题图 第2题图 第3题图(2)如图2,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 . (3)利用抛物线图象求解一元二次方程及二次不等式①方程ax 2+bx +c =0的根为___________;②方程ax 2+bx +c =-3的根为__________; ③方程ax 2+bx +c =-4的根为__________;④不等式ax 2+bx +c >0的解集为________; ⑤不等式ax 2+bx +c <0的解集为________;xyAy xO y xO C .y xO y xO D .1 1O yyA⑥不等式组-4<ax2+bx+c<0的解集为________.---精心整理,希望对您有所帮助。