基本不等式PPT教学课件
2.2.1 基本不等式 课件(28张)
![2.2.1 基本不等式 课件(28张)](https://img.taocdn.com/s3/m/b160720aa9956bec0975f46527d3240c8447a1b3.png)
【定向训练】
已知a,b,c都是非负实数,试比较 a2+b2+ b2+c2+ c2+a2 与 2 (a+b+c)的大小. 【解析】因为a2+b2≥2ab,
所以2(a2+b2)≥a2+b2+2ab=(a+b)2,
所以 a2+b2(a+b2 ),
2
同理 b2+c2(b +c2),
2
c(2c++aa2), 2
xyz
【证明】因为x,y,z是互不相等的正数,且x+y+z=1,
所以 1-1=1-x= y+z 2 yz ,①
x
x
x
x
1-1=1-y=x+z 2 xz ,②
y
yy
y
1-1=1-z=x+y 2 xy ,③
z
zz
z
又x,y,z为互不相等的正数,由①×②×③,
得 ( 1-1)( 1-1)( 1-1>) 8.
【定向训练】
已知a,b,c为正数,
求证: b+c-a+c+a-b+a+b-c 3.
a
b
c
课堂素养达标
1.下列不等式中,正确的是
()
A.a+ 16 ≥8
B.a2+b2≥4ab
a
C. ab a+b
2
D.
x
2+
3 x2
2
3
【解析】选D.若a<0,则a+ 16 ≥8不成立,故A错;若a=1,b=1,a2+b2<4ab,故B错,
x
C.当x≥2时,x+ 1 的最小值为2
x
D.当0<x≤2时,x-
1
基本不等式-公开课课件-课件ppt
![基本不等式-公开课课件-课件ppt](https://img.taocdn.com/s3/m/f77752d92b160b4e767fcfb8.png)
猜想:关于a+b有怎样的不等式?
ab
a 0, b 0
②基本不等式: ab
2
当且仅当a=b时,等号成立.
a b :算术平均数
2
ab :几何平均数
两个正数几何平均数不大于它们的算术平均
数
几何解释
如图,AB是圆的直径,点C是AB上的一点,过
点C的弦 DD ' 垂直于AB,AC= a ,BC=b.
公开课
3.4 基本不等式
如图,这是2002在北京
召开的第24届国际数学
家大会会标.
创设情境、体会感知:
三国时期吴国的数学家
赵爽
思考:这会标中含有
怎样的几何图形?
思考:你能否在这个图
案中找出一些相等关系
或不等关系?
你能在图中找出一些面积的相等或不等关系吗?
赵爽“弦图”
D
A
a
c
证明
a b c ?
2ab
角形,它们的面积总和是S’=———
D
问3:观察图形S与S’有什么样的大
小关系?易得,s > s’,即
a b 2ab
2
G
H
C
2
问4:那么它们有相等的情况吗?
何时相等?
变化的弦图
E
A
F
a
c
a 2 b2
b
B
①重要不等式:a 2 b 2 2ab (a ,b R )
a 2 b2 2ab
x -1
归纳小结:用基本不等式要注意
,
例题2. 若 > , > , 且 + = , 求的最小值.
变式1. 若 > , > , 且 + = , 求的最小值.
基本不等式课件(共43张PPT)
![基本不等式课件(共43张PPT)](https://img.taocdn.com/s3/m/1af6d4002f3f5727a5e9856a561252d381eb205c.png)
02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式公开课课件完整版
![基本不等式公开课课件完整版](https://img.taocdn.com/s3/m/02b503cced3a87c24028915f804d2b160a4e8653.png)
基本不等式的形式与特点
基本不等式的形式
包括一元一次不等式、一 元二次不等式、分式不等 式等。
2024/1/25
基本不等式的特点
具有普遍性、客观性、可 解性等。
基本不等式的应用
在解决数学问题时,经常 需要运用基本不等式进行 求解或证明。
5
基本不等式的几何意义
1 2
一元一次不等式的几何意义
表示平面直角坐标系中的一条直线将平面分成两 部分,其中一部分为满足不等式的区域。
应用
在证明不等式、求最值等问题中有广泛应用,如利用柯西-施瓦茨不 等式证明均值不等式。
2024/1/25
22
赫尔德不等式
2024/1/25
定义
对于非负实数序列 {a_i} 和正实数 p, q 满足 1/p + 1/q = 1,有 (∑a_i^p)^(1/p) * (∑a_i^q)^(1/q) ≥ ∑a_i,其中“∑”表示求和符号。
感谢观看
2024/1/25
31
26
常见误区与注意事项
2024/1/25
不等式性质理解的误区
学生常常对不等式的基本性质理解不透彻,如反向不等式的错误 使用等。
忽视定义域的问题
在解不等式时,学生有时会忽视定义域的限制,导致解集错误。
解法选择不当
针对不同类型的不等式,应选择适当的解法。学生有时会选择复杂 的解法,导致解题效率低下。
27
例题3
已知函数$f(x) = x^2 - 2ax + 3$在区间$(-infty, 2]$上是减函 数,求$a$的取值范围。
例题4
已知不等式$|x - a| < b$的解集 为${ x | -1 < x < 3 }$,求$a +
基本不等式ppt课件
![基本不等式ppt课件](https://img.taocdn.com/s3/m/f63640062f3f5727a5e9856a561252d380eb201b.png)
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
基本不等式PPT优秀课件
![基本不等式PPT优秀课件](https://img.taocdn.com/s3/m/9ccafbe55022aaea998f0fb6.png)
03.02.2020
江西省赣州一中刘利剑 整理 heishu800101@
例4、某工厂要建造一个长方形无盖贮水池, 其容积为4800立方米,深为3米,如果池底 每平方米的造价为150元,池壁每平方米的 造价为120元,怎样设计水池能使总造价最 低?最低总造价是多少?
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
成立的条件.
x
(2) 已知 ab0,寻找 ab与2的大小关系, ba
并说明理由.
(3) 已知 ab 0, a b 能得到什么结论? 请说明理由. b a
03.02.2020
江西省赣州一中刘利剑 整理 heishu800101@
பைடு நூலகம் 练习1:设a>0,b>0,给出下列不等式
(1)a 1 2 (2)(a1)(b1)4
当且仅当a=b时,等号成立。
03.02.2020
江西省赣州一中刘利剑 整理 heishu800101@
基本不等式2:
abab(a0,b0) 2
当且仅当a=b时,等号成立。
高中数学基本不等式 PPT课件 图文
![高中数学基本不等式 PPT课件 图文](https://img.taocdn.com/s3/m/7c9eaa1558fafab069dc02fe.png)
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前
基本不等式ppt课件
![基本不等式ppt课件](https://img.taocdn.com/s3/m/f3bce43cdcccda38376baf1ffc4ffe473368fdad.png)
12 3
1 4b 3a 1
+
8+ a + b ≥ 8+2
5a b(a+2b)=5
5
4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·
=
5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2
1
2
3
由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1
1
x+ ·
2
m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1
第三节 基本不等式 (高中数学精品课件PPT)
![第三节 基本不等式 (高中数学精品课件PPT)](https://img.taocdn.com/s3/m/e5d25aa2dd88d0d233d46a6a.png)
返回
设a>0,b>0,则a,b的算术平均数为
a+b 2
,几何平均
数为 ab ,基本不等式可叙述为:两个正数的算术平均
数不小于它们的几何平均数.
4.利用基本不等式求最值问题
已知x>0,y>0,则
(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值是
2 p(简记:积定和最小).
(2)如果x+y是定值q,那么当且仅当x=y时,xy有最大值是
返回
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
返回
考点一 利用基本不等式求最值[全析考法过关]
返回
(一) 拼凑法——利用基本不等式求最值
[例1] (1)已知0<x<1,则x(4-3x)取得最大值时x的值
2 为____3____.
[解析]
x(4-3x)=
1 3
·(3x)(4-3x)≤
1 3
A.80
B.77
C.81
D.82
( C)
返回
2.设0<a<b,则下列不等式中正确的是
(B )
A.a<b< ab<a+2 b
B.a< ab<a+2 b<b
C.a< ab<b<a+2 b
D. ab<a<a+2 b<b
解析:因为0<a<b,所以a- ab= a( a- b)<0,
故a< ab;b-a+2 b=b-2 a>0,故b>a+2 b;由基本不等式
2.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R);(2)ba+ab≥2(a,b同号);
(3)ab≤a+2 b2(a,b∈R);(4)a+2 b2≤a2+2 b2(a,b∈R);
(5)a2+abb≤ ab≤a+2 b≤
基本不等式ppt课件
![基本不等式ppt课件](https://img.taocdn.com/s3/m/2a23dd39dcccda38376baf1ffc4ffe473368fd0b.png)
a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b
≥
(1)当积xy等于定值P时,
≥
2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.
基本不等式(共43张)ppt课件
![基本不等式(共43张)ppt课件](https://img.taocdn.com/s3/m/2f353b740812a21614791711cc7931b765ce7bca.png)
解法步骤与技巧
01
02
03
移项
将不等式两边的同类项进 行合并,并把未知数移到 不等式的一边,常数移到 另一边。
合并同类项
将移项后的不等式两边的 同类项进行合并。
系数化为1
将不等式两边的系数化为 1,得到不等式的解集。
解法步骤与技巧
注意不等号的方向
在解不等式时,要注意不等号的方向,特别是在乘以或除以一个负数时,不等 号的方向要发生变化。
基本不等式(共43张)ppt课件
目录
• 基本不等式概念及性质 • 一元一次不等式解法 • 一元二次不等式解法 • 绝对值不等式解法 • 分式不等式和无理不等式解法 • 基本不等式在几何中的应用 • 基本不等式在函数中的应用 • 总结回顾与拓展延伸
01
基本不等式概念及性质
不等式定义与分类
不等式定义
根);
04
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
04
绝对值不等式解法
绝对值概念及性质
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值的性质
非负性、对称性、三角不等式。
绝对值不等式解法步骤
将不等式左边进行因式分解,找出不 等式的临界点。
无理不等式解法
第一步
确定无理不等式的定义域,即根 号内的表达式必须大于等于零。
第二步
通过平方消去根号,将无理不等式 转化为有理不等式。
第三步
利用有理不等式的解法,求解转化 后的不等式,得到原无理不等式的 解集。
综合应用举例
例1
人教版必修五数学《基本不等式》PPT课件
![人教版必修五数学《基本不等式》PPT课件](https://img.taocdn.com/s3/m/6ad2f840ba68a98271fe910ef12d2af90242a828.png)
人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。
过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。
情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。
本节课共分为引入、新课、巩固练习、小结四个部分。
课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。
本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。
030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。
不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。
对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。
若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。
同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。
若a>b>0且c>d>0,则ac>bd 。
特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。
柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。
基本不等式课件(共43张PPT)
![基本不等式课件(共43张PPT)](https://img.taocdn.com/s3/m/7302de18bcd126fff7050bc2.png)
重要不等式:一般地,对于任意实数a、b,总有
立
a2 b2≥2ab 当且仅当a=b时,等号成
适用范围: a,b∈R
文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
即: a b≥ ab (a 0,b 0) 2
通常我们把上式写作: ab≤ a b (a 0,b 0) 2
课堂练习: 已知 a,b,c∈{正实数},且 a+b+c=1.
求证:1a+1b+1c≥9.
解:证明:1a+1b+
1c = a+ab+c + a+bb+c +
a+b+c c
=3+
(ba+ab)+(ac+ac)+(bc+bc)
≥3+2+2+2=9.
当且仅当a=b=c=13时取等号.
小结 基本不等式 ab a b (a 0,b 0)
第三章 不等式
§3.4 基本不等式
这是2002年在北京召开的第24届国际数 学家大会会标.会标根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去象一个 风车,代表中国人民热情好客。
D
a2 b2
b
G
F
A
a HE
探究1:
1、正方形ABCD的
面积S=_a__2 __b2
C 2、四个直角三角形的
例1.(1) 已知 x 0, 求证x 1 2, 并指出等号
成立的条件.
x
(2) 已知 ab 0, 寻找 a b 与2的大小关系, ba
并说明理由.
(3) 已知 ab 0, a b 能得到什么结论? 请说明理由. b a
[例 2] 若 a>b>1,P= lga·lgb,Q=lga+2 lgb,R=lg(a+2 b), 试比较 P、Q、R 的大小.
《基本不等式》PPT课件
![《基本不等式》PPT课件](https://img.taocdn.com/s3/m/bfd75b64443610661ed9ad51f01dc281e43a566e.png)
一元一次不等式的解法
解一元一次不等式的基本步骤
01
去分母、去括号、移项、合并同类项、系数化为1。
解一元一次不等式需要注意的事项
02
在解不等式的过程中,要确保每一步都是等价变换,不改变不
等式的解集。
解一元一次不等式的实例分析
03
通过具体例子展示解一元一次不等式的详细步骤和注意事项。
一元一次不等式的应用举例
课程目标与要求
知识与技能
掌握不等式的定义、性质及基本 不等式,能够运用所学知识解决
相关问题。
过程与方法
通过探究、归纳、证明等方法, 培养学生的数学思维和解决问题
的能力。
情感态度与价值观
培养学生对数学的兴趣和热爱, 认识到数学在解决实际问题中的 重要作用。同时,通过基本不等 式的学习,培养学生的严谨、细
排序不等式的概念与性质
性质 反序和不大于乱序和,乱序和不大于顺序和。
当且仅当$a_i = b_i$($i = 1, 2, ldots, n$)时,反序和等于顺序和。
切比雪夫不等式的概念与性质
概念:对于任意两个实数序列$a_1, a_2, ldots, a_n$和$b_1, b_2, ldots, b_n$,若它们分别单调不 减和单调不增,则有$frac{1}{n}sum_{i=1}^{n}a_i cdot frac{1}{n}sum_{i=1}^{n}b_i leq frac{1}{n}sum_{i=1}^{n}a_ib_i$。
1 2
一元一次不等式在生活中的应用 例如比较两个数的大小、判断某个数是否满足某 个条件等。
一元一次不等式在数学中的应用 例如在解方程、求函数值域等问题中,经常需要 利用一元一次不等式进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
4;
ba
sin2 x 2
e e (3)若x 0,则 1 x 2;(4) x+4 x 4正确的命题是(3)、(4。)
x
解题反思
注意 正:正数 定:定值
等:等号成立条件
巩固练习
1. P100 练习1,2
2. 已知a 0,b 0且2a b 1,求a b的两个不等式 2. 运用不等式注意要点:正、定、等 3. 数学思想:数形结合,转化与化归,函数思想 课堂作业
A 基本不等式
§3.4 基本不等式(第1课时)
ICM2002会标
D D
a2 b2
a
a
E H
b
C
A E(FGH)
b
C
A
F G
B
B
不等式1: 一般地,对于任意实数a、b,我们有
a2 b2 2ab
当且仅当a=b时,等号成立。
A 基本不等式
不等式1:a2 b2 2ab(当且仅当a b时,等号成立 )
课后探究
基督教现在对人们还有无影 响?怎样正确区分“宗教信仰 自由” 的法律规定与“崇尚 科学,反对邪教”之间的界限。
解:(1)设矩形的长为xm,宽为ym,则2 x y 36,
即x y 18, 矩形菜园面积为x y m2.
由 xy x y 9,知xy 81 2
当且仅当x y 9m时, 矩形面积最大,面积为81m2.
A 基本不等式
解题反思
A 基本不等式
例2 下列命题中:(1)a b 2;(2) sin2 x 2
占统治地位的宗教。
二、中世纪的王国与帝国
日耳曼人
在查理(768—814年)统治时期, 进行过50多次战争,法兰克王国的版 图迅速扩大,西欧的绝大部分地区被
征服。
这位几乎统治整个西欧的国王, 为什么要跪在教皇面前接受加冕?
查理为了取得基督教会 的支持,巩固自身统治,需 要加强与教会的关系,而基 督教会为了维护自身的生存, 也需要借助查理的势力,使 西欧开始教权和王权联合统
3.(思考题)对基本不等式进行变形,你可以得到哪些不等式?
祝同学们学习快乐!
第三单元 第二课 欧洲中世纪与基督教文明
基督教 圣经 bible
说一说: 你对基督教了解多少?
一、基督教盛行西欧
基督教
地区 罗马帝国统治 下的巴勒斯坦
时间 公元1世纪
创始人
救世主 耶稣
经典 《圣经》
1、基督教产生时的信徒是哪些人,为什么?
庸”的现象。
后果:这种复杂的关系,在封建主之
间“造成一团乱麻般的权利和义务”, 使封建主之间不断发生争夺和混战
查理曼帝国的分裂
公元843 年
三分帝国
欧
洲 主
法兰西 意大利
要
国
家 形
德意志
英吉利
成
本课总结
在古希腊罗马文明衰落后,欧洲进入了封建社 会。这一时期,欧洲的政治、思想发生了巨大变化。
欧洲的封建政土治地上制:度和等级制度逐步形成; 基督教成为中思世想纪上欧:洲占统治地位的思想;
封臣向领主宣誓效忠 封君与封臣之间通过 “臣服礼”结成封建主从关系
农民
思考:
为什么说“我的附庸的附庸不是我的附
由于封建等级制度是因土地的层层分封而形 成的,各级封君与封臣之间都互有义务。所以, 封臣即附庸只承认自己直接受封的领主为封主, 而对自己封主的封主却没有臣属关系。所以,中 世纪的西欧出现了“我的附庸的附庸不是我的附
并取得了教会的领导权。
影响:上流社会的人士入教并把持 了教会的领导权,使基督教原有的 反抗精神逐渐消失,日愈成为罗马 帝国维护其统治的思想工具。
变化二:许多国王先后皈依了基督教,教 会也利用国王的力量扩大自己的影响。教 会不仅通过各种手段占有大量地产,还经 常干涉和控制各国的事务。
影响:4世纪时,罗马统治者认为基督 教对统治有利,就把基督教定位国教, 使教权与王权联系在一起,为政治统治 所服务,从而使基督教成为中世纪欧洲
2、基督教发展到后来,出现了什么变化? 又
有什么影响?
基督教产生时的信徒: 贫穷的犹太人和各个国家和民族
的穷人。
因为他们长期遭受苦难,渴望“救世 主”的到来,所以基督教是下层人民
的精神寄托和借以斗争的手段
基督教发展到后来,出现的变化有:
变化一:信徒人数越来越多,而且 许多富人和罗马贵族也加入教会,
治的历史。
思考:1.查理是如何管理他所占领的土地和人口的?
2、在帝国的形成过程中农民的地位发生了什么变化?
封建制度逐步形成
想一想:
(1)农民的身份怎样变成了农奴身份?
由于扩张战争,许多自由农民破 产被迫投靠封建主成为农奴;
(2)农奴与封建主之间是什么关系?
农奴和封建主有着人身依附关系;
主人,我是你 的人了!
解:(1)设矩形的长为xm,宽为ym,则xy 100,
篱笆的长为2 x y,
由x y 2 xy, 得x y 20,从而(2 x y) 40 当且仅当 x y 10m时,所用篱笆最短,长为 40m.
A 基本不等式
例1. (2)一段长为36 m的篱笆围成一个的矩形 菜园,问这个矩形的长、宽各为多少时,菜园的 面积最大,最大面积是多少?
令x a2 , y b2
则有 x y 2 xy (x, y 0)
不等式2: ab a b (a,b 0,当且仅当a b时,等号成立)
2
A 基本不等式
基本不等式
ab a b 2
两正数 几何平均数 不大于 算术平均数
A 基本不等式
例1.(1)用篱笆围成一个面积为100m2的矩形菜园, 问这个矩形的长、宽各为多少时,所用篱笆最短。 最短的篱笆是多少?