清华数学实验复习试题八

合集下载

广东省深圳市清华实验学校公立部八年级数学期末复习试

广东省深圳市清华实验学校公立部八年级数学期末复习试

广东省深圳市清华实验学校公立部八年级数学期末复习试卷一1.下列方程组中,是二元一次方程组的是( ).(A )2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩ (D )24795x y x y +=⎧⎨-=⎩ 2.方程53=+y kx 有一组解是⎩⎨⎧==12y x ,则k 的值是( ).(A )1 (B )—1 (C )0 (D )2. 3.已知12x y =⎧⎨=⎩ 是方程组120.ax y x by +=-⎧⎨-=⎩, 的解,则a+b= ( ).(A)2 (B)-2 (C)4 (D) -4 4.若220a ba b xy -+--=是二元一次方程,那么a 、b 的值分别是( )。

(A)1,0 (B)0,-1 (C)2.1 (D)2,-35.甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .⎩⎨⎧=-=+360)(24360)(18y x y xB .⎩⎨⎧=+=+360)(24360)(18y x y xC .⎩⎨⎧=-=-360)(24360)(18y x y xD .⎩⎨⎧=+=-360)(24360)(18y x y x6.如果⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,则一次函数y=mx+n 的解析式为( ) A .y=-x+2 B .y=x -2 C .y=-x -2 D .y=x+27.函数y=ax -3的图象与y=bx+4的图象交于x 轴上一点,那么a ∶b 等于( ) A .-4∶3 B .4∶3 C .(-3)∶(-4) D .3∶(-4)8、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

2023届北京市海淀区清华附中八年级数学第一学期期末复习检测试题含解析

2023届北京市海淀区清华附中八年级数学第一学期期末复习检测试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+()2.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .123S S S +=B .222123S S S +=C .123S S S +>D .123S S S +<3.甲、乙、丙、丁四人进行 100m 短跑训练,统计近期 10 次测试的平均成绩都是 13.2s ,10次测试成绩的方差如下表,则这四人中发挥最稳定的是( ) 选手 甲 乙 丙 丁 方差2()s0.20 0.19 0.21 0.22 A .甲 B .乙 C .丙 D .丁4.如图,在ABD ∆和ACE ∆中,AD AE =,AB AC =,BAD CAE ∠=∠,那么ADC AEB ∆≅∆的根据是( )A .SASB .ASAC .AASD .SSS 5.x ,y 满足方程235497x y x y -=-⎧⎨+=-⎩,则x y +的值为( ) A .2- B .0 C .13- D .136.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.函数21y x =--与5y x =+的图象相交于点,M 则点M 的坐标是( ) A .()2,3- B .()1,1- C .()1,3- D .()2,3--8.在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,1,6,1.则这组数据的中位数是( ) A .5 B .6 C .7 D .19.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解10.化简25的结果为( )A .5±B .5C .-5D .5二、填空题(每小题3分,共24分)11.多项式2224a b ab -中各项的公因式是_________.12.如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,AD 恰好平分∠BAC ,若DE =1,则BC 的长是_____.13.把多项式32244m m n mn -+分解因式的结果为__________________.14.如果a+b=5,ab=﹣3,那么a 2+b 2的值是_____.15.若m +n =1,mn =2,则11m n+的值为_____. 16.点P (-2,-3)到x 轴的距离是_______.17.已知方程2x 2n ﹣1﹣3y 3m ﹣n+1=0是二元一次方程,则m=_____,n=_____.18.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m ,用科学记数法表示是_______。

清华大学_计算方法(数学实验)试题附答案

清华大学_计算方法(数学实验)试题附答案

计算方法(数学实验)试题(第1组) 2000.6.22班级 姓名 学号 说明:(1)1,2题必做,答案直接填在试题纸上;(2)3,4题任选1题,将简要解题过程和结果写在试题纸上; (3)解题程序以网络作业形式提交,文件名用英文字母。

1. A 工人5天的生产能力数据和B 工人4天的生产能力数据如下:A 87 85 80 86 80; B 87 90 87 84。

要检验:A 的生产能力不低于85,你作的零假设是 ,用的Matlab 命令是 ,检验结果是 。

要检验:A 工人和B 工人的生产能力相同,你作的零假设是 ,用的Matlab 命令是 ,检验结果是 。

作以上检验的前提是 。

2.用电压V =14伏的电池给电容器充电,电容器上t 时刻的电压满足:)exp()()(0τtV V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。

试用下列数据确定0V 和τ。

你用的方法是 ,结果是0V = ,τ= 。

3. 小型火箭初始质量为900千克,其中包括600千克燃料。

火箭竖直向上发射时燃料以15千克/秒的速率燃烧掉,由此产生30000牛顿的恒定推力。

当燃料用尽时引擎关闭。

设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米)。

重力加速度取9.8米/秒2.A. 建立火箭升空过程的数学模型(微分方程);B. 求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时间和高度。

4. 种群的数量(为方便起见以下指雌性)因繁殖而增加,因自然死亡和人工捕获而减少。

记x k (t )为第t 年初k 岁(指满k-1岁,未满k 岁,下同)的种群数量,b k 为k 岁种群的繁殖率(1年内每个个体繁殖的数量),d k 为k 岁种群的死亡率(1年内死亡数量占总量的比例),h k 为k 岁种群的捕获量(1年内的捕获量)。

今设某种群最高年龄为5岁(不妨认为在年初将5岁个体全部捕获),b 1=b 2=b 5=0,b 3=2,b 4=4,d 1=d 2=0.3,d 3=d 4=0.2,h 1=400,h 2=200,h 3=150,h 4=100。

深圳清华实验学校 北师大版 八年级数学12月月考试卷

深圳清华实验学校 北师大版 八年级数学12月月考试卷
三、解答题(共计52分)
17、实数化简(每题5分,共10分)
(1) (2)
18、(5分)解)中按要求画出图形并解答:
(1)将△ABC向下平移5格得△A1B1C1。
(2)将△ABC以点O为旋转中心,沿顺时针方
向旋转90°得△A2B2C2。
20、(7分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE。(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小。
21、(7分)某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示。
类型
价格
A型
B型
进价(元/盏)
40
65
标价(元/盏)
60
100
(1)这两种台灯各购进多少盏?
(2)若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?
22、(8分)如图直线l1:y=-x+2与直线l2交于点P,直线l2过点B(0,1)与点A(-1,0),(1)求直线l2的函数表达式。(2)求点P的坐标。(3)设直线l1与x轴交于点C,求四边形OCPB的面积。
23、(9分)如图,在矩形OABC中,BC=8, OC=4,顶点A在x轴上,顶点C在y轴上,把△OBC沿OB翻折,使点C落在点D的位置,BD与OA交于E。
(1)求△OEB的面积。
(2)若过点D的直线l把矩形OABC的面积分成相等的两部分,求直线l的解析式。
(3)在矩形OABC的边(原点除外)上是否存在点P,使△PEB是等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由。
A.汽车在高速公路上的行驶速度为100km/hB.乡村公路总长为90km

深圳清华实验学校数学分式填空选择单元测试卷(含答案解析)

深圳清华实验学校数学分式填空选择单元测试卷(含答案解析)

深圳清华实验学校数学分式填空选择单元测试卷(含答案解析)一、八年级数学分式填空题(难)1.已知关于x 的分式方程1a x +-221a x x x--+=0无解,则a 的值为____________. 【答案】-1或0或12【解析】若关于x 的分式方程1a x +-221a x x x--+=0无解,则最简公分母为零或所化成的整式方程无解.解:去分母方程两边同乘(1)x x + 得, (21)0ax a x ---=210ax a x -++=(1)210a x a +-+=(1)21a x a +=-当10a += 即1a =-时,整式方程无解,即分式方程无解;当10a +≠时,有0x =或1x =-时,分式方程无解,此时12a =或0a = 故答案为-1或0或12点睛:本题主要考查分式方程无解问题.本题的易错点在于只考虑到了最简公分母为零的情况,而忽略了化为整式方程后,整式方程无解这一情况,从而导致答案不全.2.若以x 为未知数的方程()22111232a a x x x x +-=---+无解,则a =______. 【答案】1-或32-或2-. 【解析】【分析】首先解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或2,据此即可求解a 的值.【详解】去分母得()()()2121x a x a -+-=+,整理得()134a x a +=+,①当1a =-时,方程①无解,此时原分式方程无解;当1a ≠-时,原方程有增根为1x =或2x =.当增根为1x =时,3411a a +=+,解得32a =-; 当增根为2x =时,3421a a +=+,解得2a =-. 综上所述,1a =-或32a =-或2a =-. 【点睛】本题主要考查了方程增根产生的条件,如果方程有增根,则增根一定是能使方程的分母等于0的值.3.计算22111m m m---的结果是_____. 【答案】11m - 【解析】 【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式=22111m m m +-- =()()111m m m ++- =11m -, 故答案为11m -. 【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.4.若11a b+=3,则22a b a ab b +-+的值为_____. 【答案】35【解析】【分析】 由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a b a ab b+-+即可求解. 【详解】 ∵113a b +=,∴3a b ab +=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35. 【点睛】本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.5.化简:(1221121x x x x x ++÷=--+)_____. 【答案】11x x -+. 【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果.【详解】 (1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x-+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】 本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.6.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 【答案】n <2且3n 2≠【解析】【分析】【详解】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2.又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠. ∴n 的取值范围为n <2且3n 2≠.7.已知实数a ,b ,c 满足a +b =ab =c ,有下列结论:①若c≠0,则=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a ,b ,c 中只有两个数相等,则a +b +c =8.其中正确的是____.(把所有正确结论的序号都选上)【答案】①③④【解析】试题分析:在a+b=ab 的两边同时除以ab (ab=c≠0)即可得,所以①正确;把a=3代入得3+b=3b=c ,可得b=,c=,所以b+c=6,故②错误;把 a=b=c 代入得,所以可得c=0,故③正确;当a=b 时,由a+b=ab 可得a=b=2,再代入可得c=4,所以a+b+c=8;当a=c 时,由c=a+b 可得b=0,再代入可得a=b=c=0,这与a 、b 、c 中只有两个数相等相矛盾,故a=c 这种情况不存在;当b=c 时,情况同a=c ,故b=c 这种情况也不存在,所以④正确.所以本题正确的是①③④.考点:分式的基本性质;分类讨论.8.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 【答案】1【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【详解】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.关于x 的方程12ax x +-=−1的解是正数,则a 的取值范围是________. 【答案】a>-1且a≠-0.5【解析】 112+=--ax x 方程两侧同时乘以最简公分母(x -2),得 ()12ax x +=--,整理,得 ()11a x +=,①(1) 当a =-1时,方程①为01x ⋅=,此方程无解.(2) 当a ≠-1时,解方程①,得11x a =+. ∵原分式方程有解, ∴11x a =+不为增根, ∴当11x a =+时,最简公分母x -2≠0, ∴1201a -≠+, ∴12a ≠-. ∵原分式方程的解为正数, ∴101x a =>+, ∴1a >-. 综上所述,a 的取值范围应该为1a >-且12a ≠-,即a >-1且a ≠-0.5. 故本题应填写:a >-1且a ≠-0.5.点睛:本题考查了分式方程的解的相关知识. 本题的难点在于准确且全面地理解分式方程的解为正数这一条件. 一方面,既然分式方程所转化成的整式方程只有一个解,那么这个解就不应该是增根;另一方面,当分式方程的解为正数时该整式方程的解也应该为正数. 另外,在去分母后,由于未知数x 的系数中含有未知参数a ,所以不能直接进行“系数化为1”的步骤,应该对参数a 的值进行讨论.10.方程 的解是_____________.【答案】x =2【解析】 试题分析:此题是分式方程的解法问题,先把方程两边同乘以x-3,化为整式方程为2-x=(x-3)+1,再解这个整式方程求得x=2,然后把x=2代入x-3≠0,检验出x=2是原分式方程的解即可.故答案为:x=2.点睛:解分式方程的步骤为:1、确定最简公分母;2、方程两边同乘以最简公分母,化为整式方程;3、解整式方程;4、代入检验,确定是否为分式方程的解.二、八年级数学分式解答题压轴题(难)11.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭ ∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.12.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.(注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.13.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031sn n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数,∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520=7720﹣2520=5200(元),不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520=7520﹣2520=5000(元),符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520=7320﹣2520=4800(元),不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台.【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.14.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;(2)乙商场定价有两种方案:方案①将该商品提价20%;方案②将该商品提价1元。

深圳清华实验学校八年级上册期末数学模拟试卷及答案

深圳清华实验学校八年级上册期末数学模拟试卷及答案

深圳清华实验学校八年级上册期末数学模拟试卷及答案一、选择题1.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .88203x x+= B .88133x x =+ C .88203x x =+ D .81833x x+= 2.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数. 解:在ABC 和△ADC 中,AB ADCB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等) 因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°, 所以∠BCD =360°﹣2∠BCA =※. 则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC3.若分式3xx +有意义,则实数x 的取值范围是( ) A .3x >- B .0x > C .3x ≠- D .0x ≠ 4.下列长度的三条线段,哪一组不能构成三角形( )A .3,3,3B .3,4,5C .5,6,10D .4,5,95.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A.12B.112C.2 D.36.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动。

同时,点Q在线段CA上由C点向A点运动。

2020-2021深圳清华实验学校初二数学下期末一模试卷附答案

2020-2021深圳清华实验学校初二数学下期末一模试卷附答案

2020-2021深圳清华实验学校初二数学下期末一模试卷附答案一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等 3.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形 4.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C 5.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .726.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米7.如图,在Y ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠8.对于函数y =2x +1下列结论不正确是( )A .它的图象必过点(1,3)B .它的图象经过一、二、三象限C .当x >12时,y >0 D .y 值随x 值的增大而增大9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3 10.二次根式()23-的值是( ) A .﹣3 B .3或﹣3 C .9 D .311.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法不一定成立的是( )A .∠ABC=90°B .AC=BDC .OA=OBD .OA=AD12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.14.如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.15.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.16.如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___17.2019x -x 的取值范围是_____.18.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时)0 1 2 3 y (升) 100 92 84 76由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.19.已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.如图,在Rt △ABC 中,∠A=90°,∠B=30°,D 、E 分别是AB 、BC 的中点,若DE=3,求B C 的长.22.如图,在平行四边形ABCD 中,点E ,F 分别是边AD ,BC 上的点,且AE=CF ,求证:AF=CE .23.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm ).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差223S =甲,数据:11,15,18,17,10,19的方差2353S =乙: (1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关? (3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.24.计算:0164(51)1235---+⨯--.25.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A 【解析】【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.3.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.4.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.5.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.6.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:2222=68BC AC++=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.7.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.8.C解析:C【解析】【分析】利用k 、b 的值依据函数的性质解答即可.【详解】解:当x =1时,y =3,故A 选项正确,∵函数y =2x +1图象经过第一、二、三象限,y 随x 的增大而增大,∴B 、D 正确,∵y >0,∴2x +1>0,∴x >﹣12, ∴C 选项错误,故选:C .【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.9.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.10.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.11.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC 的中位线,即可得DE=12BC=3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二、填空题13.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.14.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出F G即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE1【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵FG∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.15.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠=o o.AB AD AE ==150.BAE o ∴∠= ABE △是等腰三角形15.AEB ∴∠=o 故答案为15.o16.5【解析】【分析】由是的垂直平分线可得AD=CD 可得∠CAD=∠ACD 利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B 可得CD=BD 可知CD=BD=AD=【详解】解:∵是的解析:5【解析】【分析】由DE 是AC 的垂直平分线可得AD=CD ,可得∠CAD=∠ACD ,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B ,可得CD=BD ,可知CD=BD=AD=152AB = 【详解】解:∵DE 是AC 的垂直平分线∴AD=CD∴∠CAD=∠ACD∵10AB =,8AC =,6BC =又∵2226+8=10∴222AC BC AB +=∴∠ACB=90°∵∠ACD+∠DCB=90°, ∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=152AB = 故答案为5【点睛】本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.17.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x>2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-2019≥ 0,所以x的取值范围是x≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.18.5【解析】【分析】由表格可知开始油箱中的油为100L每行驶1小时油量减少8L据此可得y与t的关系式【详解】解:由题意可得:y=100-8t当y=0时0=100-8t解得:t=125故答案为:125【解析:5【解析】【分析】由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【详解】解:由题意可得:y=100-8t,当y=0时,0=100-8t解得:t=12.5.故答案为:12.5.【点睛】本题考查函数关系式.注意贮满100L汽油的汽车,最多行驶的时间就是油箱中剩余油量为0时的t的值.19.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1.考点:1.众数;2.算术平均数.20.y=6+03x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC的长即可.【详解】∵D、E是AB、BC的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.22.见解析【解析】【分析】根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵AE=CF,∴四边形AECF为平行四边形,∴AF=CE.【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.24.【解析】【分析】原式第一项利用平方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】解:原式=8-1+4-5=6.【点睛】本题考查实数的运算;零指数幂;负整数指数幂.25.需要爬行的最短距离是cm.【解析】【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm ,AD=CH=15cm ,在Rt △ABD 中,根据勾股定理得:22BD AD +2cm ;将长方体沿DE 、EF 、FC 剪开,向上翻折,使面DEFC 和面ADCH 在同一个平面内, 连接AB ,如图2,由题意得:BH=BC+CH=5+15=20cm ,AH=10cm ,在Rt △ABH 中,根据勾股定理得:22BH AH +5,则需要爬行的最短距离是2cm .连接AB ,如图3,由题意可得:BB′=B′E+BE=15+10=25cm ,AB′=BC=5cm ,在Rt △AB ′B 中,根据勾股定理得:22BB AB ''+26,∵2<526∴则需要爬行的最短距离是2cm .考点:平面展开-最短路径问题.。

深圳清华实验学校八年级数学上册第五单元《分式》检测卷(含答案解析)

深圳清华实验学校八年级数学上册第五单元《分式》检测卷(含答案解析)

一、选择题1.关于分式2634m n m n --,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变2.关于x 的分式方程5222m x x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-3.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13D .12 4.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .25.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<- C .x 2> D .x 2< 6.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④7.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .28.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3- 9.若分式()22222x y x y a x a y ax ay +-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15- 10.下列式子的变形正确的是( ) A .22b b a a = B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 11.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .112.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1 B .1 C .-3 D .3二、填空题13.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.14.已知5,3a b ab -==,则b a a b +的值是__________. 15.计算:111x x---的结果是________. 16.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x ++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.17.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 18.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.19.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________ 20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.已知M =222111x x x x x ++---, (1)化简M ;(2)请从-2,1,2这三个整数中选一个合适的数代入,求M 的值.22.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 23.某高速公路有300km 的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km ?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.24.已知点()0,A y 在y 轴正半轴上,以OA 为边作等边OAB ,其中y 是方程31222y +-31y =-的解. (1)求点A 的坐标;(2)如图1,点P 在x 轴正半轴上,以AP 为边在第一象限内作等边APQ ,连QB 并延长交x 轴于点C ,求证:OC BC =;(3)如图2,若点M 为y 轴正半轴上一动点,点M 在点A 的上边,连MB ,以MB 为边在第一象限内作等边MBN △,连NA 并延长交x 轴于点D ,当点M 运动时,DN AM -的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.25.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米?26.解方程:312(2)x x x x -=--【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的基本性质即可求出答案.解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可.由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.4.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.5.C解析:C【分析】 根据题意列得2x 131x x 1+<---,求解即可得到答案. 【详解】 ∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-, ∴x 2-<-,解得x 2>.又x 1≠,∴x 2>符合题意.故选:C.【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.6.C解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()a a 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数, 则1101a 2<<-. 故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 7.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.8.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.9.C解析:C【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解.【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a =, 解得,15a =, 经检验,15a =是原方程的解, 故选C【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.10.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.11.D解析:D【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】1131112311n n n n n n n x x x x x x x x+-+++++--++==,故选:D【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.B解析:B【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可.【详解】原式=()()16333y x y x y x y --+- =()()3633x y y x y x y +-+-=()()333x y x y x y -+- =13x y+, 当227x ,y ==-,原式=112221=-, 故选B .【点睛】 本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.二、填空题13.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3=2a -4-(-8)b 2-(-3),=2a 4b 5.故答案为:2a 4b 5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则. 15.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键 解析:21x x-. 【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】 解:111x x --- =()111111x x x x x x------- =2111x x x x-+-+- =21x x- 故答案为21x x-. 【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.16.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得 解析:113,112,11 【分析】 根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可【详解】解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y , 则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③,①+②+③,得6(x+y+z )=xy+yz+zx ,④④﹣①,得3(x+y+z )=yz⑤,④﹣②,得2(x+y+z )=zx⑥,④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11 【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .17.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.18.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 19.且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)M =11x -;(2)当x=-2时,A =13-;当x=2时,A =1. 【分析】(1)根据异分母分式的加减法法则进行计算即可;(2)根据分式成立的条件选取合适的x 的值代入化简结果进行计算即可.【详解】 解:(1)M =222111x x x x x ++---=22221(1)11x x x x x x +++--- =222211x x x x x ++--- =(1)(1)1x x x ++- =11x - (2)∵M =11x - ∴x≠1,∴x 可以取-2或2.当x=-2时,A =11x -=-13. 或者当x=2时,A =11x -=1. 【点睛】本题考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.22.1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯--1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.23.(1)甲、乙工程队每天能完成维修公路的长度分别是8km 和4km ;(2)能,理由见解析【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x -=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =,经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.24.(1)()0,4A ;(2)见解析;(3)DN AM -的值不变,其值为12.【分析】(1)解分式方程求出y 即可知道A 点坐标;(2)证明△AOP ≌△ABQ ,进而得到∠ABQ=∠AOP=90°,再由∠AOB=∠ABO=60°得到∠BOC=∠OCB=30°,由此可以证明CO=CB ;(3)证明△ABN ≌△OBM ,得到OM AN =,60BAN BOM ∠=∠=︒,进而求出∠DAO=60°,在Rt △DAO 中求出DA=2AO=8,最后DN-AM=(DA+AN)-(MO-AO)= (DA+AN)-(AN-AO)=8+4=12.【详解】解:(1)∵y 是方程3132221y y +=--的解, 方程两边同时乘以最简公分母2(1)-y :解得4y =经检验4y =是原方程的解∴点()0,4A .(2)∵APQ 、ABO 都是等边三角形∴AO AB =,AP AQ =,60BAO PAQ ∠=∠=︒,∴PAO BAQ ∠=∠,∴()≌PAO QAB SAS △△,∴90QBA POA ∠=∠=︒, ∵ABO 是等边三角形,∴60AOB ABO ∠=∠=︒,∴30COB CBO ∠=∠=︒∴CO BC =.(3)其值不会变化,且12DN AM -=,理由如下:∵AOB ∆、MBN ∆都是等边三角形,∴4BO AB AO ===,MB BN =,60BAO ABO MBN ∠=∠=∠=︒,∴OBM ABN ∠=∠,∴()ABN OBM SAS ≌△△, ∴OM AN =,60BAN BOM ∠=∠=︒,∴4AN OM OA AM AM ==+=+,∵18060OAD OAB BAN ∠=︒-∠-∠=︒,∴30ADO ∠=︒∴28AD AO ==∴4812DN AM AN AD AM AM AM -=+-=++-=即DN AM -的值不变,其值为12.【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.25.原计划每天铺地75平方米.【分析】设原计划每天铺x平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米,根据题意锝:112511253341.5xx x-⎛⎫-+=⎪⎝⎭解得:75x=经检验,75x=是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.26.32 x=【分析】按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x-,得()223x x x--=.解得32x=,检验:当32x=时,()20x x-≠.∴原分式方程的解为32x=.【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.。

深圳清华实验学校数学全等三角形单元测试卷(含答案解析)

深圳清华实验学校数学全等三角形单元测试卷(含答案解析)

深圳清华实验学校数学全等三角形单元测试卷(含答案解析)一、八年级数学轴对称三角形填空题(难)1.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.∥,2.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.PF AC∥,若ABC的周长为12cm,则PD PE PF【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.3.如图,在△ABC中,AB的中垂线交BC于D,AC的中垂线交BC于E,若∠BAC=126°,则∠EAD=_____°.【答案】72° 【解析】【分析】根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD .【详解】根据AB 的中垂线可得BAD ∠=B根据AC 的中垂线可得EAC ∠=C ∠18012654B C ︒︒︒∠+∠=-=又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=+C+126B DAE ︒∴∠∠∠=72DAE ︒∴∠=【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.4.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.5.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:012122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上 又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC, ∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.6.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】 如图1,当点D 在线段AB 上,且A DBC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.7.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 2=4,则△A n B n A n +1的边长为_____.【答案】2n .【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2…进而得出答案.【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∵∠MON =30°,∵OA 2=4,∴OA 1=A 1B 1=2,∴A 2B 1=2,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2=32,以此类推△A n B n A n +1的边长为 2n .故答案为:2n .【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA 5=2OA 4=4OA 3=8OA 2=16OA 1是解题的关键.8.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM 垂直于OA 于M ,作PN 垂直于OB 于点N ,证明△PMD ≌△PND ,进而求出DF 长度,从而求出OF 的长度.【详解】如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP,∠PND=∠PMD=90°,∴△PND≌△PMD,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .10.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠=01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠ = 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠=1()2A B ∠+∠ =360【点睛】 此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.二、八年级数学轴对称三角形选择题(难) 11.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论. 【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.12.如图,ABC,分别以AB、AC为边作等边三角形ABD与等边三角形ACE,连接BE、CD,BE的延长线与CD交于点F,连接AF,有以下四个结论:①BE CD=;②FA平分EFC∠;③FE FD=;④FE FC FA+=.其中一定正确的结论有()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据等边三角形的性质证出△BAE≌△DAC,可得BE=CD,从而得出①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的补角相等得出∠AEM=∠CAN,由AAS可证△AME≌△ANC,得到AM=AN,由角平分线的判定定理得到FA平分∠EFC,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.在坐标平面上有一个轴对称图形,其中A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,﹣32)C.(﹣32,﹣9)D.(﹣2,﹣1)【答案】A【解析】【分析】先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.【详解】解:∵A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,∴点A与点B关于直线y=﹣4对称,∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).故选:A.【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.14.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.15.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().A.B.C.D.【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.16.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2 B.3 C.4 D.5【答案】A【解析】【分析】首先证明△DOB≌△COA(SAS),推出S△DOB﹣S△AOE=S△EOC,再证明△OEC是等腰直角三角形即可解决问题.【详解】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC12=⨯2×2=2.故选A.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明△OEC是等腰直角三角形.17.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。

清华实验公立初三数学二模复习题答题卡8

清华实验公立初三数学二模复习题答题卡8

清华实验公立初三数学二模复习题答题卡8解答题(本题共7小题,其中第17题5分,第18题5分,第19题6分,第20题8分,第21题9分,第22题9分,第23题10分,共52分)17.计算:-22+27+(π-1)0-3×︒+-60tan 118.阅读理解:在数学中,我们称记号db ca 为行列式,它表示a ·d -b ·c ,即bc ad db ca -=.例如:232414231-=⨯-⨯= 问题解决:根据以上内容,解决下列问题: (1)计算:5342-= ;(2)在等式1341141=---x x x 中,求出x 的值.19.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)若AB=6,∠B=60°,BC=10.求四边形ABEF 的面积.20.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止. (1)请你通过画树状图的方法求小颖获胜的概率.(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.21.今年以来,某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图所示),根据图象解下列问题: (1)某用户四月份的用电量是150度,他应交电费多少元?(2)某用户六月份的用电量是五月份的用电量的2倍,且两个月的电费共165元.求五、六月份的用电量各是多少度?A BCDEF D ′ 甲乙22.如图,AB是⊙0的直径,BC是⊙0的弦,半径OD⊥BC,垂足为E,若BC=36,DE=3 求:(1)⊙0的半径;(2)弦AC的长;(3)阴影部分的周长.23.如图1,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且E(2,0).(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由.(第22题图)(图1)(图2)。

清华实验公立八年级十月检测试卷B

清华实验公立八年级十月检测试卷B

清华实验公立八年级十月检测试卷B数学 命题:曹永启一、选择题:(每小题3分,共36分)1、下列各组线段能构成直角三角形的一组是( )A . 30,40,50B . 7,12,13C . 5,9,12D . 3,4,6 2、由下列条件不能判定△ABC 为直角三角形的是( )A . ∠A+∠B=∠CB . ∠ A :∠B :∠C=1:3:2C . (b+c )(b ﹣c )=a 2D . a=3+k ,b=4+k ,c=5+k (k >0) 3、在实数中π,0,5,-3.14,37中无理数有( ) A .1个 B .2个 C .3个 D .4个 4、下列说法正确是( )A.25的平方根是5B. 22-的算术平方根是2C. 8.0的立方根是2.0D. 65是3625的一个平方根5、一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A .第三边一定为10 B.三角形周长为24 C.三角形面积为24 D.第三边可能为10 6、若230a b -+-=,则2a b -=______.7、如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( ) A . 8米 B . 10米 C . 12米 D . 14米8.32-的绝对值是 ( )A.32+B.32--C.23-D.32- 9.若x ,y 为实数,且022=-++y x ,则2010)(yx的值为( )A.2B.2-C.1D.1-10.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 2㎝B. 3㎝C. 4㎝D. 5㎝11.a 、b 、c 、m 都是有理数,并且a+2b+3c=m,a+b+2c=m,那么b 与c ( ) A 、互为相反数 B 、互为倒数 C 、互为负倒数 D 、相等12.已知:如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8cm 2C. 10cm 2D. 12cm 2二、填空题:(每小题3分,共12分)13.2)3(-=________,327- =_________, 0)5(-的立方根是 ;14.比较大小:2_______2, -2________-4.2,3-π______015.在△ABC 中,AB=13cm ,AC=20cm ,BC 边上的高为12cm ,则△ABC 的面积为 cm 2.16.如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,△CEF 是直角三角形,∠ECF=90°,且它的面积为200,则BE 的值为第7题第10题第12题第16题图FEDCBA清华实验公立八年级十月检测试卷B 答题卡数 学 命题:曹永启一、选择题:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:(每小题3分,共计12分)题 号 13 14 15 16 答 案三、解答题:(共52分) 17、(9分)(1)122154+⨯(2)()()()721683131-÷-+- ⑶ )322)(223(-+18、(5分)如图,△ABC 中,D 是BC 上的一点,若AB =10,BD=6,AD=8,AC=17,求△ABC 的面积.19、(5分)已知x =10,求x 2-8x +16+x 2-6x +9的值.20、(8分)如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,(1)求△BCD 的面积; (2)求BD 的长。

深圳清华实验学校八年级数学上册第十二章《全等三角形》经典题(专题培优)

深圳清华实验学校八年级数学上册第十二章《全等三角形》经典题(专题培优)

一、选择题1.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 2.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠D .PC PE = 3.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c4.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒5.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°6.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA7.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 8.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④9.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF 10.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL11.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 12.如图,AC 与DB 相交于E ,且BE CE =,如果添加一个条件还不能判定ABE △≌DCE ,则添加的这个条件是( ).A .AC DB = B .A D ∠=∠C .B C ∠=∠D .AB DC = 13.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等14.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 15.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题16.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.17.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.18.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.19.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.20.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 21.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .22.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____23.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.24.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.25.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.26.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.三、解答题27.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.28.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.29.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 30.如图,点P 是锐角∠ABC 内一点,BP 平分∠ABC ,点M 在边BA 上,点N 在边BC 上,且PM =PN .求证:∠BMP +∠BNP =180°.。

深圳清华实验学校八年级数学上册第十三章《轴对称》经典题(专题培优)

深圳清华实验学校八年级数学上册第十三章《轴对称》经典题(专题培优)

一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③B解析:B【分析】 由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .11B解析:B【分析】 根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.3.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm B解析:B【分析】 过P 作PC 垂直于MN ,由等腰三角形三线合一性质得到MC=CN ,求出MC 的长,在直角三角形OPC 中,利用30度角所对的直角边等于斜边的一半求出OC 的长,由OC-MC 求出OM 的长即可.【详解】解:过P 作PC ⊥MN ,∵PM=PN ,∴C 为MN 中点,即MC=NC= 12MN=1, 在Rt △OPC 中,∠AOB=60°,∴∠OPC=30°,∴OC= 12OP=4, 则OM=OC-MC=4-1=3cm ,故选:B .【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.4.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.5.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大D解析:D【分析】 先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大,故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.6.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个D解析:D【分析】 由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACE S S =故④正确;综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.7.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .12B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B .【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解. 8.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】 根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.9.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】 延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.二、填空题11.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.16【分析】根据线段的垂直平分线的性质得到EB =EAAF =FC 根据三角形的周长公式计算得到答案【详解】解:∵DE 是AB 边的垂直平分线∴EB =EA ∵FG 是AC 边的垂直平分线∴AF =FC ∴△AEF 的周长 解析:16【分析】根据线段的垂直平分线的性质得到EB =EA 、AF =FC ,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 边的垂直平分线,∴EB =EA ,∵FG 是AC 边的垂直平分线,∴AF =FC ,∴△AEF 的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A =30°过B 作BD ⊥AC 于D ∵∠A =30°AB =1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A =30°,过B 作BD ⊥AC 于D ,∵∠A =30°,AB =10,∴BD =12AB =5, ∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键. 13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA 如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF 是AB 的垂直平分线EG 是AC 的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA 、EA ,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF 是AB 的垂直平分线,EG 是AC 的垂直平分线,∴DA=DB ,EA=EC ,∴∠B=∠DAB ,∠C=∠EAC ,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质. 15.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.30【分析】由等边三角形三线合一可知:点B 和点C 关于AD成轴对称连接BE 交AD 于点F 此时取得最小值进而求出的度数即可【详解】∵是等边三角形是边上的中线∴AD ⊥BCAD 平分∠BAC ∴点B 和点C 关于AD 解析:30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°, ∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.16.如图,在△ACB中,∠ACB=∠90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,DC=4cm,则D到AB的距离为________cm.4【分析】先根据线段的垂直平分线的性质得到DB=DA则有∠A=∠ABD而∠C=∠DBC=利用三角形的内角和可得∠A+∠ABD=得到∠ABD=在Rt△BED中根据含角的直角三角形三边的关系即可得到DE解析:4【分析】先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90︒,∠DBC=︒-︒=︒,得到∠ABD= 30︒,在30︒,利用三角形的内角和可得∠A+∠ABD=903060Rt△BED中,根据含30︒角的直角三角形三边的关系即可得到DE的长度.【详解】解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,∵∠C=90︒,∠DBC=30︒,DC=4cm,︒-︒=︒,∴BD=8cm,∠A+∠ABD=903060∴∠ABD=30︒,在Rt△BED中,∠EBD=30︒,BD=8cm,∴DE=14BD=cm,2即D到AB的距离为4cm,故答案为:4.【点睛】本题考察线段垂直平分线的性质、等腰三角形的性质以及含30︒角的直角三角形的性质,解题关键是掌握相关性质.17.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部,如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.⨯的正方形网格,每个小正方形的顶点称为格点,且边长为1,点,A B均在18.右图是44⨯的正方形网格的格点上,且格点上,在网格中建立平面直角坐标系.如果点C也在此44∆是等腰三角形,请写出一个满足条件的点C的坐标_______;满足条件的点C一共ABC有_______个.(答案不唯一符合题意即可)8【分析】分别以AB 为圆心AB 为半径作圆弧寻找在圆弧上的格点即可【详解】①如图以A 为圆心AB 为半径作圆弧符合题意的格点有5个;②如图以B 为圆心AB 为半径作圆弧符合题意的格点解析:()2,2--(答案不唯一,符合题意即可) 8【分析】分别以A ,B 为圆心,AB 为半径作圆弧,寻找在圆弧上的格点即可.【详解】①如图,以A 为圆心,AB 为半径作圆弧,符合题意的格点有5个;②如图,以B 为圆心,AB 为半径作圆弧,符合题意的格点有3个;③如图,在AB 的垂直平分线上时,无符合题意的格点;综上,符合题意的格点共有8个,故答案为:()2,2--(答案不唯一,符合题意即可);8.【点睛】本题考查在网格中作等腰三角形,根据已知边可作为底边或者腰进行分类讨论,熟练掌握尺规作图方法是解题关键.19.如图,在△ABC 中,AB =AC ,∠BAC=36°,AD 、CE 是△ABC 的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.10【分析】连结CP 利用等腰三角形顶角平分线所在直线为对称轴得BP=CPBD=CD=5当点CPE 在一直线是BP +EP 最小值最小值为BP +EP=EC 由∠BAC=36°AB=AC 求出∠ABC=∠ACB=解析:10【分析】连结CP ,利用等腰三角形顶角平分线所在直线为对称轴得 BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,最小值为BP +EP= EC ,由∠BAC=36°,AB=AC ,求出∠ABC=∠ACB=72°,又CE 是△ABC 的角平分线有∠BCE=36°,求出∠BEC=72º,得CE=BC =10即可.【详解】连结CP ,点P 在AD 上运动,∵AB=AC ,AD 平分∠BAC ,∴AD 所在直线为对称轴,∴BP=CP ,BD=CD=5,当点C 、P 、E 在一直线是BP +EP 最小值,∴BP +EP=PC+EP=EC ,∵∠BAC=36°,AB=AC ,∴∠ABC=∠ACB=()1180-36=722︒︒︒, ∵CE 是△ABC 的角平分线,∴∠BCE=1ACB=36∠︒,2∴∠BEC=180º-∠EBC-∠BCE =180º-72º-36º=72º,∴∠BEC=∠EBC,∴CE=BC=BD+CD=10.故答案为:10.【点睛】本题考查等腰三角形的判定和性质,角平分线性质,轴对称性质,掌握等腰三角形的判定和性质,角平分线性质,线段和最短问题经常利用轴对称性质作出对称线段,三点在一线时最短作出图形是解题关键.20.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=8cm,DE=3cm,AE=2,求AC的长为_____cm.7【分析】根据已知条件BFCF分别平分∠ABC∠ACB的外角且DE∥BC可得∠DBF=∠DFB∠ECF=∠EFC根据等角对等边得出DF=BDCE=EF根据BD-CE=DE即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∠DBF=∠DFB,∠ECF=∠EFC,根据等角对等边得出DF=BD,CE=EF,根据BD-CE=DE即可求得.【详解】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD-CE=FD-EF=DE,∴EF=DF-DE=BD-DE=8-3=5cm,∴EC=5cm ,∴AC=AE+EC=2+5=7cm ,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.三、解答题21.如图,BD 是ABC 的角平分线,点E 在边AB 上,且//DE BC ,AE BE =. (1)若5BE =,求DE 的长;(2)求证:AB BC =.解析:(1)DE=5;(2)证明见解析.【分析】(1)根据角平分线和平行线的性质可得∠ABD=∠EDB ,从而可得DE= BE=5;(2)根据等边对等角得出∠A=∠ADE ,根据平行线的性质可得∠C=∠ADE ,从而可得∠A=∠C ,根据等角对等边可证得结论.【详解】解:(1)∵BD 是ABC 的角平分线,∴∠ABD=∠DBC ,∵DE//BC ,∴∠EDB=∠DBC ,∴∠ABD=∠EDB ,∴BE=DE ,∵BE=5,∴DE=5;(2)∵AE=BE ,BE=DE ,∴AE=DE ,∴∠A=∠ADE ,∵DE//BC ,∴∠C=∠ADE ,∴∠A=∠C ,∴AB=BC .【点睛】本题考查等腰三角形的性质和判定,平行线的性质.解决此题的关键是借助等腰三角形的性质和判定完成边相等与角相等之间的互相转化.22.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.解析:(1)4;(2)见解析【分析】(1)证△ADE ≌△CDF (ASA ),得AE=CF=2,即可得出答案;(2)由全等三角形的性质得DE=DF ,则△DEF 是等腰直角三角形,得∠DEF=∠DFE=45°,再由三角形的外角性质即可得出结论.【详解】(1)解:∵△ABC 中,∠BAC=90°,AB=AC ,AD 是高,∴BD=CD=AD=12BC ,∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°, ∵DF ⊥DE ,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中, ADE CDF AD CDBAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ),∴AE=CF=2,∵AC=AB=6,∴AF=AC-CF=6-2=4;(2)证明:由(1)得:△ADE ≌△CDF ,∴DE=DF ,又∵∠EDF=90°,∴△DEF 是等腰直角三角形,∴∠DEF=∠DFE=45°,∵∠AGF=∠DAE+∠AEG=45°+∠AEG ,∠AED=∠DEF+∠AEG=45°+∠AEG ,∴∠AGF=∠AED .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.23.如图,ABC 中,,90,AB AC BAC =∠=︒点D 是直线AB 上的一动点(不和A B 、重合),BE CD ⊥交CD 所在的直线于点,E 交直线AC 于F .()1点D 在边AB 上时,证明:AB FA BD =+;()2点D 在AB 的延长线或反向延长线上时,()1中的结论是否成立?若成立,请给出证明;若不成立,请画出图形,并直接写出,,AB FA BD 三者之间数量关系.解析:(1)证明见解析;(2)结论不成立.图见解析,三者关系为AF AB BD +=或,BD AB AF +=【分析】(1)易证∠FBA=∠FCE ,结合条件容易证到△FAB ≌△DAC ,从而有FA=DA ,就可得到AB=AD+BD=FA+BD .(2)如图2中,当D 在AB 延长线上时,AF=AB+BD .如图3中,当D 在AB 反向延长线上时,BD=AB+AF .证明方法类似(1).【详解】解:(1)证明:如图1,∵BE ⊥CD ,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE .∵∠FAB=180°-∠DAC=90°,∴∠FAB=∠DAC .∵AB=AC ,∴△FAB ≌△DAC .∴FA=DA .∴AB=AD+BD=FA+BD .(2)如图2,当D 在AB 延长线上时,AF=AB+BD ,理由是:∵BE ⊥CD 即∠BEC=90°,∠BAC=∠BAF=90°∴∠F+∠FBA=90°,∠F+∠FCE=90°∴∠FBA=∠FCE ,∵∠FAB=180°-∠DAC=90°∴∠FAB=∠DAC在△FAB 和△DAC 中,FAB DAC AB ACFBA DCA ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△FAB ≌△DAC (ASA ),∴FA=DA ,∴AF=AD=BD+AB .如图3,当D 在AB 反向延长线上时,BD=AB+AF ,理由是:∵BE ⊥CD 即∠BEC=90°,∠BAC=∠CAD=90°∴∠AFB+∠FBA=90°,∠EFC+∠FCE=90°,∵∠AFB=∠EFC ,∴∠FBA=∠FCE ,在△FAB 和△DAC 中,90FAB DAC AB ACFBA DCA ∠∠=︒⎧⎪⎨⎪∠∠⎩=== ∴△FAB ≌△DAC (ASA ),∴AF=AD ,∴BD=AB+AD=AB+AF .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质等知识,当条件没有改变仅仅是图形的位置发生变化时,常常可以通过借鉴已有的解题经验来解决问题.24.已知在ABC 中,CAB ∠的平分线AD 与BC 的垂直平分线DE 交于点D ,DM AB ⊥于M ,DN AC ⊥交AC 的延长线于N .(1)证明:BM CN =;(2)当80BAC ∠=︒时,求DCB ∠的度数.解析:(1)证明见解析;(2)∠DCB=40°.【分析】(1)根据角平分线的性质和线段垂直平分线的性质可得到DM=DN ,DB=DC ,根据HL 证明Rt △DMB ≌Rt △DNC ,即可得出BM=CN ;(2)根据角平分线的性质得到DM=DN ,根据全等三角形的性质得到∠ADM=∠ADN ,线段垂直平分线的性质和等腰三角形的性质得到∠EDC=50°于是得到结论.【详解】(1)证明:连接BD ,DC ,如图所示:∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,∵DE 垂直平分BC ,∴DB=DC ,在Rt △DMB 和Rt △DNC 中,DB DC DM DN=⎧⎨=⎩, ∴Rt △DMB ≌Rt △DNC (HL ),∴BM=CN ;(2)解:由(1)得:∠BDM=∠CDN ,∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,在Rt △DMA 和Rt △DNA 中,DA DA DM DN =⎧⎨=⎩∴Rt △DMA ≌Rt △DNA (HL ),∴∠ADM=∠ADN ,∵∠BAC=80°,∴∠MDN=100°,∠ADM=∠ADN=50°,∵∠BDM=∠CDN ,∴∠BDC=∠MDN=100°,∵DE 是BC 的垂直平分线,∴DB=DC ,∴∠EDC=12∠BDC=50°, ∴∠DCB=90°-∠EDC=40°,∴∠DCB=40°.【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质、线段垂直平分线的性质,熟悉角平分线的性质和线段垂直平分线的性质,证明三角形全等是解决问题的关键. 25.已知:90,A D AB DC ︒∠=∠==,点,E F 在直线BC 上,位置如图所示,且BE CF =.(1)求证:AF DE =;(2)若PO 平分EPF ∠,求证:PO 垂直平分线段BC .解析:(1)证明见解析;(2)证明见解析.【分析】(1)根据已知条件证明Rt △ABF ≌Rt △DCE(HL)即可得出结论;(2)根据Rt △ABF ≌Rt △DCE 可得出∠E=∠F ,即△PEF 为等腰三角形,又因为PO 平分∠EPF ,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】(1)证明:∵BE=CF ,BC=CB∴BF=CE ,在Rt △ABF 与Rt △DCE 中,BF CE AB DC =⎧⎨=⎩∴Rt △ABF ≌Rt △DCE(HL),∴AF=DE ;(2)∵Rt △ABF ≌Rt △DCE ,∴∠E=∠F∴△PEF 为等腰三角形,又∵PO 平分∠EPF∴PO ⊥BC(三线合一),EO=FO(三线合一)又∵EB=FC∴BO=CO ,∴PO 垂直平分线段BC.【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力. 26.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)作出ABC 关于y 轴的对称图形A B C ''';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA PC +最短(不写作法).解析:(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析 【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.27.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .解析:(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ). ∴P 1的坐标是(﹣a ﹣4,b ).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,28.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______)(2)在图中作出ABC 关于y 轴对称的图形222A B C △.(3)求ABC的面积.解析:(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A(3,3),B(1,1),C(4,−1).∴点A关于x轴的对称点A1(3,−3),B关于x轴的对称点B1(1,−1),C关于x轴的对称点C1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC的面积为:3×4−12×2×2−12×2×3−12×1×4=5.【点睛】本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.。

2020-2021深圳清华实验学校初二数学上期末一模试卷附答案

2020-2021深圳清华实验学校初二数学上期末一模试卷附答案

2020-2021深圳清华实验学校初二数学上期末一模试卷附答案一、选择题1.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣62.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-43.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个4.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

A .9B .7C .5D .35.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .106.如图①,在边长为a 的正方形中剪去一个边长为b (b <a )的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是( )A .a 2+b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=(a +b )(a -b )7.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④8.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 9.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .3210.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1 11.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D12.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围二、填空题13.若一个多边形的内角和是900º,则这个多边形是 边形.14.等腰三角形的一个内角是100 ,则这个三角形的另外两个内角的度数是__________.15.已知2m =a ,32n =b ,则23m +10n =________.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设 x 管道,那么根据题意,可得方程 .17.如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=12,CF=3,则AC = .18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.若n 边形内角和为900°,则边数n= .20.如图,ABC V 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABO BCO CAO S S S V V V =______.三、解答题21.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.22.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的中垂线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明);(2)连接BD ,求证:BD 平分∠CB A .23.计算:(1)()()22x y x y -+--;(2)2111x x x ---. 24.如图,已知AB 比AC 长2cm ,BC 的垂直平分线交AB 于点D ,交BC 于点E ,△ACD 的周长是14cm ,求AB 和AC 的长.25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF.小华的想法对吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.2.D解析:D【解析】【详解】 2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .3.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB =5,AC =3,BC =2,GD =5,DE =2,GE =3,DI =3,EI =5,所以G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B .点睛:本题考查了全等三角形的判定,关键是根据SSS 证明全等三角形.4.A解析:A【解析】【分析】根据题意画出图形,分别以OA 、OB 、AB 为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.【详解】如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解. 5.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.6.D解析:D【解析】【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b).故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.7.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.8.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.9.C解析:C【解析】【分析】把x+1x=6两边平方,利用完全平方公式化简,即可求出所求.【详解】把x+1x=6两边平方得:(x+1x)2=x2+21x+2=36,则x 2+21x =34, 故选:C . 【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.10.B解析:B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .11.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选C.12.A解析:A【解析】【分析】将M,N 代入到M-N 中,去括号合并得到结果为(a ﹣1)2≥0,即可解答【详解】∵M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1, ∴M ﹣N=(2a ﹣3)(3a ﹣1)﹣2a (a ﹣32)+1, =6a 2﹣11a +3﹣2a 2+3a +1=4a 2﹣8a +4=4(a ﹣1)2∵(a ﹣1)2≥0,∴M ﹣N ≥0,则M ≥N .故选A .【点睛】此题考查整式的混合运算,解题关键是在于把M,N 代入到M-N 中计算化简得到完全平方式为非负数,从而得到结论. 二、填空题13.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b2解析:a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b216.【解析】因为原计划每天铺设xm管道所以后来的工作效率为(1+20)x根据题意得解析:() 12030012030120%120180 (30)1.2x xx x-+=++=或【解析】因为原计划每天铺设xm管道,所以后来的工作效率为(1+20%)x根据题意,得12030012030(120%)x x-+=+.17.15【解析】试题分析:因为EF是AB的垂直平分线所以AF=BF因为BF=12CF=3所以AF=BF=12所以AC=AF+FC=12+3=15考点:线段垂直平分线的性质解析:15【解析】试题分析:因为EF是AB的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12,所以AC =AF+FC=12+3=15.考点:线段垂直平分线的性质18.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.19.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.20.【解析】【分析】首先过点O作OD⊥AB于点D作OE⊥AC于点E作OF⊥BC于点F 由OAOBOC 是△ABC 的三条角平分线根据角平分线的性质可得OD=OE=OF 又由△ABC 的三边ABBCCA 长分别为40解析:4:5:6【解析】【分析】首先过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,由OA ,OB ,OC 是△ABC 的三条角平分线,根据角平分线的性质,可得OD=OE=OF ,又由△ABC 的三边AB 、BC 、CA 长分别为40、50、60,即可求得S △ABO :S △BCO :S △CAO 的值.【详解】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD=OE=OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(12AB •OD ):(12BC •OF ):(12AC •OE ) =AB :BC :AC=40:50:60=4:5:6.故答案为:4:5:6.【点睛】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题21.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【解析】【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1); (2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换22.(1)作图见解析;(2)证明见解析.【解析】【分析】(1)分别以A、B为圆心,以大于12AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.【详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD 平分∠CB A .【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.23.(1)224x y -;(2)211x -. 【解析】【分析】(1)原式利用平方差公式化简即可;(2)根据分式的加减法运算法则计算即可.【详解】(1)()()22x y x y -+--()()22x y x y =-+-+()222244y x x y =-=--; (2)222111111x x x x x x x +-=----- 211=-x . 【点睛】 本题主要考查平方差公式和分式的加减运算,解题的关键是熟练掌握分式的运算法则和平方差公式.24.AB=9cm ,AC=6cm .【解析】根据线段垂直平分线上的点到两端点的距离相等可得CD=BD ,然后求出△ACD 的周长=AB+AC,再解关于AC 、AB 的二元一次方程组即可.解:∵DE 垂直平分BC ,∴BD=DC,∵AB =AD+BD ,∴AB=AD+DC.∵△ADC 的周长为15cm ,∴AD+DC+AC=15cm ,∴AB+AC=15cm .∵AB 比AC 长3cm ,∴AB -AC=3cm .∴AB=9cm ,AC=6cm .25.对,理由见解析.【解析】【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【详解】解:∵O 是CF 的中点,∴CO=FO(中点的定义)在△COB和△FOE中CO FOCOB EOF EO BO=⎧⎪∠=∠⎨⎪=⎩,∴△COB≌△FOE(SAS)∴BC=EF,∠BCO=∠F∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),【点睛】本题考查了三角形的全等的判定和性质;做题时用了两直线平行内错角相等,同旁内角互补等知识,要学会综合运用这些知识.。

2021年北京市清华附中高考数学统练试卷(8)(附答案详解)

2021年北京市清华附中高考数学统练试卷(8)(附答案详解)

2021年北京市清华附中高考数学统练试卷(8)一、单选题(本大题共10小题,共40.0分)1.(2021·云南省曲靖市·月考试卷)已知集合A={−1,0,1},集合B={x∈Z|x2−2x≤0},那么A∪B等于()A. {−1}B. {0,1}C. {0,1,2}D. {−1,0,1,2}2.(2020·湖南省邵阳市·模拟题)设复数z满足(2−i)z=2+i,则z在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.(2014·广东省汕头市·期末考试)函数f(x)=lnx+x−6的零点所在区间为()A. (2,3)B. (3,4)C. (4,5)D. (5,6)4.(2016·天津市·模拟题)在(x22−1√x)6的二项展开式中,含x2的系数为()A. 152B. 154C. −152D. −1545.(2021·北京市市辖区·模拟题)某四面体的三视图如图所示,该四面体的最长的棱长为()A. 4B. 2√5C. 2√7D. 4√26.(2021·北京市市辖区·模拟题)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离最小值为()A. 4B. 5C. 6D. 77.(2021·北京市市辖区·模拟题)已知双曲线C:x2a2−y2b2=1(a>0,b>0)的一个焦点为F(4,0),并且双曲线C的渐近线恰为矩形OAFB的边OA,OB所在直线(O为坐标原点),则双曲线C的方程是()A. x28−y28=1 B. x24−y212=1 C. x232−y232=1 D. x212−y24=18. (2021·北京市市辖区·模拟题)已知α,β∈R ,则“α=β+kπ,k ∈Z ”是“sin2α=sin2β”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9. (2019·浙江省杭州市·期中考试)等比数列{a n }的前n 项和为S n ,其中n ∈N ∗,则下列说法正确的是( )A. 若a 3>a 1>0,则a n >0B. 若a 3>a 1>0,则S n >0C. 若a 3+a 2+a 1>a 2+a 1>0,则a n >0D. 若a 3+a 2+a 1>a 2+a 1>0,则S n >010. (2021·北京市市辖区·模拟题)若函数f(x)的图象上任意一点M(x,y)的坐标满足条件|x|>|y|,则称函数f(x)具有性质P.下列函数中具有性质P 的是( )A. f(x)=x +1B. f(x)=x 2C. f(x)=e x −1D. f(x)=sinx二、单空题(本大题共5小题,共25.0分)11. (2021·北京市市辖区·模拟题)函数f(x)=√x +1+lg(4−x)的定义域是______ . 12. (2021·北京市市辖区·模拟题)已知正方形ABCD 的边长为√3,若BP ⃗⃗⃗⃗⃗ =3PD ⃗⃗⃗⃗⃗ ,则PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的值为______ .13. (2021·北京市市辖区·模拟题)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 在抛物线上,PQ ⊥l 于点Q.若△PQF 是钝角三角形,则点P 的横坐标的取值范围是______ 14. (2021·北京市市辖区·模拟题)若函数f(x)=sin(x +π4)+cos(x +φ)的最大值为2,则常数φ的一个取值为______ .15. (2021·北京市市辖区·模拟题)如图是国家统计局发布的2020年2月至2021年2月全国居民消费价格涨跌幅折线图.说明:(1)在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2021年2月与2020年2月相比较;环比是指本期统计数据与上期统计数据相比较,例如2020年4月与2020年3月相比较.(2)同比增长率=本期数−同期数同期数×100%,环比增长率=本期数−上期数上期数×100%.给出下列三个结论:①2020年11月居民消费价格低于2019年同期;②2020年3月至7月居民的消费价格持续增长;③2020年7月的消费价格低于2020年3月的消费价格.其中所有正确结论的序号是______ .三、解答题(本大题共6小题,共85.0分)16.(2021·北京市市辖区·模拟题)如图,在四棱锥P−ABCD中,平面PAD⊥平面ABCD,AD⊥DP,AB//CD,∠ADC=90°,且AD=CD=PD=2AB=2.(Ⅰ)求证:AB//平面PCD;(Ⅱ)求证:AB⊥平面PAD;(Ⅲ)求二面角A−PB−C的余弦值.17.(2021·北京市市辖区·模拟题)在△ABC中,a=√3,A=π3,____.(Ⅰ)求sin B;(Ⅱ)求c 以及S △ABC 的值. 从①cosB =−34,②b 2=2√63asinB ,③sinB =3sinC ,这三个条件中选一个,补充在上面问题中,使△ABC 存在并作答.18. (2021·北京市市辖区·期末考试)某公司为了解用户对其产品的满意程度,从A 地区随机抽取了400名用户,从B 地区随机抽取了100名用户,请用户根据满意程度对该公司产品评分.该公司将收集到的数据按照[20,40),[40,60),[60,80),[80,100]分组,绘制成评分频率分布直方图如图:(Ⅰ)从A 地区抽取的400名用户中随机选取一名,求这名用户对该公司产品的评分不低于60分的概率;(Ⅱ)从B 地区抽取的100名用户中随机选取两名,记这两名用户的评分不低于80分的个数为X ,求X 的分布列和数学期望;(Ⅲ)根据频率分布直方图,假设同组中的每个数据用该组区间的中点值代替,估计A 地区抽取的400名用户对该公司产品的评分的平均值为μ1,B 地区抽取的100名用户对该公司产品的评分的平均值为μ2,以及A ,B 两个地区抽取的500名用户对该公司产品的评分的平均值为μ0,试比较μ0和μ1+μ22的大小.(结论不要求证明)19.(2021·北京市市辖区·模拟题)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为23,A1,A2分别为椭圆C的左、右顶点,B为椭圆C的上顶点,F1为椭圆C的左焦点,且△A1F1B的面积为√52.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点D(1,0)的动直线l交椭圆于E、F两点(点E在x轴上方),M,N分别为直线A1E,A2F与y轴的交点,O为坐标原点,求|OM||ON|的值.20.(2021·北京市市辖区·模拟题)已知函数f(x)=e x⋅(1x−lnx+a),其中a∈R.(Ⅰ)若曲线y=f(x)在x=1处的切线与直线y=ex平行,求a的值;(Ⅱ)若函数f(x)在定义域内单调递减,求a的取值范围;(Ⅲ)若不等式f(x)≥2e对x∈(0,1]恒成立,求a的取值范围.21.(2021·北京市市辖区·模拟题)首项为0的无穷数列{a n}同时满足下面两个条件①|a n+1−a n|=n(n=1,2,3,…);②a n≤n−12(n=1,2,3,…).(Ⅰ)请写出a4的所有可能值;(Ⅱ)求证:对任意正整数n,a n,a n+1中至少有一个小于0;(Ⅲ)对于给定的正整数k,求a1+a2+⋯+a k的最大值.答案和解析1.【答案】D【知识点】并集及其运算【解析】解:∵集合A={−1,0,1},集合B={x∈Z|x2−2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={−1,0,1,2}.故选:D.先分别求出集合A,B,再由并集定义能求出A∪B.本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.【答案】A【知识点】复数的代数表示及其几何意义【解析】解:由(2−i)z=2+i,得z=2+i2−i =(2+i)(2+i)(2−i)(2+i)=3+4i5=35+45i,则z在复平面内所对应的点的坐标为(35,45),位于第一象限.故选:A.把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.【答案】C【知识点】函数零点存在定理【解析】解:∵f(2)=2+ln2−6<0,f(3)=4+ln3−6<0,f(4)=4+ln4−6<0,f(5)=5+ln5−6>0,f(6)=6+ln6−6>0,∴f(4)⋅f(5)<0,∴函数f(x)=lnx+x−6的零点所在区间为(4,5).故选C.据函数零点的判定定理,判断f(2),f(3),f(4),f(5),f(6)的符号,即可求得结论.考查函数的零点的判定定理,以及学生的计算能力.解答关键是熟悉函数的零点存在性定理,此题是基础题.4.【答案】B【知识点】二项展开式的特定项与特定项的系数 【解析】解:(x 22−1√x)6二项展开式的通项公式为: T r+1=C 6r⋅(x 22)6−r ⋅(−1√x)r =(−1)r ⋅(12)6−r ⋅C 6r⋅x 12−5r2,令12−5r 2=2,解得r =4;所以展开式中含x 2项的系数为:(−1)4C 62(12)2=154.故选:B .利用二项展开式的通项公式求出求出展开式中含x 2项的系数即可.本题考查了二项式定理的应用问题,也考查了利用通项公式求特定项的问题,是基础题目.5.【答案】C【知识点】空间几何体的三视图【解析】解:根据几何体的三视图转换为直观图为:该几何体为底面为钝角三角形,高为2的三棱锥体A −BCD ; 如图所示:所以:DE =DC =2,BE =2√3,AD =2.故:BD =√(2√3)2+22=4,BC =√42+(2√3)2=2√7,AB =√22+42=2√5,AC =2√2.故最长为棱长为BC=2√7.故选:C.首先把三视图转换为直观图的直观图,进一步利用勾股定理的应用求出个各棱长,最后确定结果.本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的棱长的求法,主要考查学生的运算能力和数学思维能力,属于基础题.6.【答案】B【知识点】点到直线的距离公式【解析】解:设P(x,y),则(x−3)2+(y−4)2≤1,即P在圆(x−3)2+(y−4)2=1内和圆上,则点P到直线3x+4y+5=0的距离最小值为|3×3+4×4+5|√32+42−1=5.故选:B.设P(x,y),则(x−3)2+(y−4)2≤1,即P在圆(x−3)2+(y−4)2=1内和圆上,然后结合圆的性质及点到直线的距离公式可求.本题主要考查了两点间的距离公式及点到直线的距离公式,属于基础题.7.【答案】A【知识点】双曲线的性质及几何意义【解析】解:如图,由题意,c=4,∵双曲线C的渐近线恰为矩形OAFB的边所在直线,∴ba=1,又a2+b2=c2,∴a2+b2=16,解得a=b=2√2.∴双曲线C的方程是x28−y28=1.故选:A .由已知可得c ,且ba =1,结合隐含条件求得a 与b ,则双曲线C 的方程可求. 本题考查双曲线的几何性质,考查数形结合思想,是基础题.8.【答案】A【知识点】必要条件、充分条件与充要条件的判断【解析】解:①当α=β+kπ,k ∈Z 时,则2α=2β+2kπ,k ∈Z , ∴sin2α=sin(2β+2kπ)=sin2β,∴充分性成立,②当sin2α=sin2β时,则2α=2β+2kπ,k ∈Z 或2α+2β=π+2kπ,k ∈Z , ∴α=β+kπ或α+β=π2+kπ,k ∈Z ,∴必要性不成立, 故选:A .利用正弦函数的性质,结合充要条件的定义即可判断.本题考查了三角函数方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9.【答案】D【知识点】等比数列的求和、等比数列的通项公式 【解析】 【分析】本题考查等比数列的通项公式和前n 项和,属于中档题.. 设公比为q(q ≠0),由若a 3>a 1>0,得{a 1>0q >1或q <−1,即可判断A ,B ;由a 3+a 2+a 1>a 2+a 1>0,得{a 1>0q >−1且q ≠0,即可判断C ,D .【解答】解:等比数列{a n }中,设公比为q(q ≠0), 若a 3>a 1>0,即a 1q 2>a 1>0,解得{a 1>0q >1或q <−1,选项A ,当q <−1时,a 2<0,故A 错误; 选项B ,当q <−1,n 为偶数时,S n =a 1(1−q n )1−q<0,故B 错误;若a 3+a 2+a 1>a 2+a 1>0,即a 1q 2+a 1q +a 1>a 1q +a 1>0,解得{a 1>0q >−1且q ≠0,选项C ,当−1<q <0,且n 为偶数时,a n =a 1q n−1<0,故C 错误;选项D ,当−1<q <1时(q ≠0),1−q >0,q n<1,S n =a 1(1−q n )1−q>0,当q >1时,1−q <0,q n >1,S n =a 1(1−q n )1−q>0,当q =1,由a 1>0得S n =na 1>0. 故D 正确. 故选:D .10.【答案】D【知识点】函数图象的作法 【解析】解:不等式|x|≥|y|表示的平面区域如图所示: 函数f(x)具有性质P ,则函数图象必须完全分布在阴影区域内,分别作出函数的对应的图象,由图象可知满足条件的只有函数f(x)=sinx , 故选:D .根据性质P 的定义,只需要满足函数的图象都在区域|x|≥|y|内即可.本题主要考查与函数有关的新定义题,正确理解题意是解决本题的关键,利用数形结合是解决本题的基本方法.11.【答案】[−1,4)【知识点】函数定义域与值域 【解析】解:由题意得{x +1≥04−x >0,解得−1≤x <4, 故函数的定义域[−1,4). 故答案为:[−1,4).根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.12.【答案】98【知识点】向量的数量积 【解析】解:如图,∵正方形ABCD 的边长为√3,∴BD =√6,∵BP ⃗⃗⃗⃗⃗ =3PD ⃗⃗⃗⃗⃗ ,∴BP =34BD =3√64,∴PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(PB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )⋅PB ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗=(3√64)2−√3×3√64×√22=98.故答案为:98.由已知画出图形,求出BD 、BP 的长度,再由PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(PB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )⋅PB ⃗⃗⃗⃗⃗ ,展开后结合数量积公式求解.本题考查平面向量的数量积运算,考查数学转化与数形结合思想,是中档题.13.【答案】(0,1)【知识点】抛物线的性质及几何意义【解析】解:由抛物线的性质可得PQ =PF , 若△PQF 是钝角三角形,只需∠QPF >90°, 只需要P 在过焦点F 垂直x 轴的直线左侧,由抛物线的方程可得焦点F 的坐标(1,0),所以P 的横坐标的范围(0,1), 故答案为:(0,1).由抛物线的方程可得焦点F 的坐标,再由△PQF 是锐角三角形,所以最大角为∠QPF ,只需要P 在焦点F 的右侧,可得P 的横坐标的范围.本题考查抛物线的性质,到焦点的距离等于到准线的距离,属于中档题.14.【答案】π4【知识点】三角函数的最值【解析】解:函数f(x)=sin(x+π4)+cos(x+φ)=√22sinx+√22cosx+cosφcosx−sinφsinx=(√22−sinφ)sinx+(√22+cosφ)cosx,由于函数f(x)的最大值为2,故(√22−sinφ)2+(√22+cosφ)2=4,整理得√2sinφ+√2cosφ=2,所以sin(π4+φ)=1,当φ=π4时,函数的最大值为2,故答案为:π4.首先把函数的关系式进行变换,把函数的关系式转换为正弦型的形式,进一步利用最值建立等量关系求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.15.【答案】①③【知识点】总体密度曲线、命题及其关系【解析】【分析】本题考查的知识要点:频率分布折线图,消费价格的关系式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.直接利用频率分布折线图,消费价格的关系式的应用判断①②③的结论.【解答】解:根据题意:对于①,从2020年11月的同比增长率为−0.5,由同比增长率的计算公式知2020年11月居民消费价格低于2019年同期的,故①正确;对于②,由图可知,2020年3月至6月的环比增长率为负值,由环比增长率的计算公式可知消费价格下降,故②错误;对于③,设2020年3月的居民消费价格为a3,2020年4月的居民消费价格为a4,2020年5月的居民消费价格为a5,2020年6月的居民消费价格为a6,2020年7月的居民消费价格为a7,所以a 4−a 3a 3×100%=−0.9%,解得a 4=0.991a 3,a 5−a 4a 4×100%=−0.8%,解得a 5≈0.983a 4, a 6−a 5a 5×100%=−0.1%,解得a 6≈0.982a 3, a 7−a 6a 6×100%=0.6%,解得a 7≈0.988a 3,所以a 7<a 3,所以2020年7月的消费价格低于2020年3月的消费价格,故③正确. 故答案为:①③.16.【答案】解:(Ⅰ)证明:∵AB//CD ,AB ⊄平面PCD ,CD ⊂平面PCD , ∴AB//平面PCD ;(Ⅱ)证明:∵AB//CD ,∠ADC =90°, ∴AB ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , ∴AB ⊥平面PAD ;(Ⅲ)以点D 为坐标原点,建立如图所示的空间直角坐标系,则D(0,0,0),A(2,0,0),P(0,0,2),B(2,1,0),C(0,2,0), ∴AB⃗⃗⃗⃗⃗ =(0,1,0),PB ⃗⃗⃗⃗⃗ =(2,1,−2),BC ⃗⃗⃗⃗⃗ =(−2,1,0), 设平面PAB 的一个法向量为m ⃗⃗⃗ =(x,y,z),则{m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =y =0m ⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =2x +y −2z =0,则可取m⃗⃗⃗ =(1,0,1),设平面PBC 的一个法向量为n⃗ =(a,b,c),则{n ⃗ ⋅PB ⃗⃗⃗⃗⃗ =2a +b −2c =0n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =−2a +b =0,则可取n ⃗ =(1,2,2), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=1+2√2⋅√9=√22, 又二面角A −PB −C 的平面角为锐角,则二面角A −PB −C 的余弦值为−√22.【知识点】线面垂直的判定、利用空间向量求线线、线面和面面的夹角、线面平行的判定【解析】(Ⅰ)由AB//CD 结合线面平行的判定定理易得证; (Ⅱ)由面面垂直的性质定理易得证;(Ⅲ)建立空间直角坐标系,求得各点的坐标,再求出平面PAB 及平面PBC 的法向量,利用向量的夹角公式求解即可.本题考查线面平行的判定以及线面垂直的判定,考查利用空间向量求解二面角的余弦值,考查推理能力及运算能力,属于中档题.17.【答案】解:(Ⅰ)选条件①时,在△ABC 中,a =√3,A =π3,cosB =−34,所以sinB =√1−cos 2B =√74,(Ⅱ)利用正弦定理:asinA =bsinB ,整理得:b =√72,所以a 2=b 2+c 2−2bccosA , 整理得:3=74+c 2−√72c ,解得c =√7+3√34, 故S △ABC =12bcsinA =7√3+9√732. 选条件②时,2R =asinA =2 b 2=2√63asinB , 整理得sinB =2√63×√32×14=√32, (Ⅱ)由于,B =π3. 所以sinB =√32;所以该三角形为等边三角形, 则c =√3.故S △ABC =12×√3×√3×√32=3√34选条件③时,sinB =3sinC , 故sinB =3sin(A +B), 整理得:sinB =−3√3cosB , 利用sin 2B +cos 2B =1, 解得sinB =3√2114根据正弦定理得:b =3c . 故a 2=b 2+c 2−2bccosA ,整理得3=9c 2+c 2−2×3c ×c ×12,故c =√217.故b =3√217.所以S △ABC =12×√217×3√217×√32=9√328.【知识点】余弦定理、正弦定理【解析】(Ⅰ)选条件①时,直接利用三角函数关系式的变换和余弦定理的应用求出结果; 选条件②时,直接利用三角函数关系式的变换和正弦定理的应用求出结果; 选条件③时,直接利用三角函数关系式的变换和正、余弦定理的应用求出结果; (Ⅱ)直接利用(Ⅰ)的结论,进一步利用三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.18.【答案】解:(Ⅰ)由题知A 地区共抽取400名用户,其中有240名用户对该公司产品的评分不低于60分,所以从A 地区抽取的400名用户中随机选取一名,这名用户对该公司产品的评分不低于60分的概率是240400=0.6.(Ⅱ)由题可知X 的可能取值为0,1,2.P(X =0)=C 902C 1002=89110;P(X =1)=C 901C 101C 1002=211;P(X =2)=C 102C 1002=1110.所以X 的分布列如下表:所以X 的数学期望EX =0×89110+1×211+2×1110=15. (Ⅲ)μ0>μ1+μ22.【知识点】离散型随机变量的期望与方差、频率分布直方图、离散型随机变量及其分布列【解析】(Ⅰ)由频率分布直方图可以确定400名用户中评分不低于60分的人数,利用古典概型的概率公式可以计算;(Ⅱ)由题意分析可以确定X 的取值分别为0,1,2,分别利用古典概型的概率公式求出,即可解决;(Ⅲ)利用频率分布直方图的数据关系可以比较μ0和μ1+μ22的大小.本题考查了统计与概率中的频率分布直方图,期望与方差,属于基础题.19.【答案】解:(Ⅰ)设椭圆C 的左焦点F 1(−c,0),则e =ca =23,则c =23a , 又a 2=b 2+c 2=b 2+49a 2, 所以b 2=59a 2①,又△A 1F 1B 的面积为√52,所以12×|A 1F 1|×b =b(a−c)2=√52,即ab =3√5②,由①②可得a 2=9,b 2=5, 所以椭圆C 的标准方程为x 29+y 25=1;(Ⅱ)由题意,点E 在x 轴上方且过点D(1,0),则直线l 的斜率不等于0, 设直线l 的方程为x =my +1,设E(x 1,y 1),F(x 2,y 2), 联立方程组{x =my +1x 29+y 25=1,可得(m 2+95)y 2+2my −8=0,所以△=4m 2+4×8(m 2+95)>0, y 1+y 2=−2mm 2+95,y 1y 2=−8m 2+95,则y 1+y 2y1y 2=m4,即my 1y 2=4(y 1+y 2),由A 1(−3,0),A 2(3,0), 所以k A 1E =y 1x1+3,则直线A 1E 的方程为y =y 1x 1+3(x +3),令x =0,可得y =3y 1x 1+3,所以M(0,3y 1x 1+3),同理可得,N(0,−3y 2x 2−3),所以|OM||ON|=|3y 1x 1+3||−3y 2x 2−3|=|y 1(x 2−3)||y 2(x 1+3)|=|my 1y 2−2y 1||my 1y 2+4y 2|=|4(y 1+y 2)−2y 1||4(y 1+y 2)+4y 2|=|2y 1+4y 2||4y 1+8y 2|=2|y 1+2y 2|4|y 1+2y 2|=12,故|OM||ON|的值为12.【知识点】直线与椭圆的位置关系【解析】(Ⅰ)利用离心率得到a和c的关系,从而得到a和b的关系,然后由三角形的面积得到ab=3√5,联立方程组求出a,b,即可得到椭圆的标准方程;(Ⅱ)由题意可知直线l的斜率不等于0,直线l的方程为x=my+1,与椭圆的方程联立,得到韦达定理,从而得到my1y2=4(y1+y2),求出直线A1E的方程,得到点M的坐标,同理求出点N的坐标,表示出|OM||ON|,然后化简整理即可得到答案.本题考查了椭圆标准方程的求解、直线与椭圆位置关系的应用,在解决直线与圆锥曲线位置关系的问题时,一般会联立直线与圆锥曲线的方程,利用韦达定理和“设而不求”的方法进行研究,属于难题.20.【答案】解:(I)f(1)=e(1+a),f′(x)=e x(−1x2−lnx+a),f′(1)=e(a−1),∵曲线y=f(x)在x=1处的切线与直线y=ex平行,∴e(a−1)=e,解得a=2.(II)∵函数f(x)在定义域内单调递减,x∈(0,+∞),∴f′(x)=e x(−1x2−lnx+a)≤0,化为:a≤1x2+lnx,令g(x)=1x2+lnx,∴g′(x)=−2x3+1x=x2−2x3,可得x=√2时,函数g(x)取得极小值即最小值,g(√2)=12+12ln2,∴a≤12+12ln2,∴a的取值范围是(−∞,12+12ln2].(Ⅲ)不等式f(x)≥2e对x∈(0,1]恒成立,化为:a≥2ee x +lnx−1x的最大值,x∈(0,1].令ℎ(x)=2ee x +lnx−1x,x∈(0,1].ℎ′(x)=e x(1+x)−2ex2e x x2,令u(x)=e x(1+x)−2ex2,u′(x)=e x(x+2)−4ex=v(x),v′(x)=e x(x+3)−4e,在x∈(0,1]上单调递增.∴v′(x)≤v′(1)=0,∴v(x)在x∈(0,1]上单调递减,v(0)=2,v(1)=−e,∴存在x0∈(0,1).使得函数u(x)在(0,x0)上单调递增,在(x0,1)上单调递减.u(0)=1,u(1)=2e−2e=0,∴ℎ′(x)>0在x∈(0,1)上恒成立,因此ℎ(x)在x∈(0,1]上单调递增.ℎ(1)=1,∴a≥1,∴a的取值范围是[1,+∞).【知识点】利用导数研究闭区间上函数的最值、导数的几何意义、利用导数研究函数的单调性【解析】(I)f(1)=e(1+a),f′(x)=e x(−1x2−lnx+a),可得f′(1),根据曲线y=f(x)在x=1处的切线与直线y=ex平行,可得f′(1)=e,解得a.(II)由函数f(x)在定义域内单调递减,x∈(0,+∞),可得f′(x)≤0,分离参数,利用导数研究函数的单调性极值与最值即可得出a的取值范围.(Ⅲ)不等式f(x)≥2e对x∈(0,1]恒成立,化为:a≥2ee x +lnx−1x的最大值,x∈(0,1].令ℎ(x)=2ee x +lnx−1x,x∈(0,1].利用导数研究函数的单调性极值与最值即可得出a的取值范围.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.21.【答案】(Ⅰ)解:由|a2−a1|=1,又a1=0,所以|a2|=1,又a2≤12,所以a2=−1,则|a3−a2|=2,可得|a3|=−3或1,均满足a3≤3−12=1,当a3=−3时,|a4−a3|=3,可得|a4|=0或−6,均满足a4≤4−12=32,当a3=1时,|a4−a3|=3,可得|a4|=−2或4,均满足a4≤4−12=32,故a4=−2,综上所述,a4的所有可能取值为0,−2,−6;(Ⅱ)证明:假设数列{a n}中存在a i,a i+1同时为非负数,因为|a i+1−a i|=i,若a i+1−a i=i,则有a i+1=a i+i≥i>(i+1)−12,与条件矛盾;若a i+1−a i=−i,则有a i=a i+1+i≥i>i−12,与条件矛盾.故假设不成立,即对任意正整数n,a n,a n+1中至少有一个小于0;(Ⅲ)解:记S k=a1+a2+⋅⋅⋅+a k,由(Ⅱ)可得,a n+1,a n不能都未非负数,当a n≥0,则a n+1<0,根据|a n+1−a n|=n,可得a n=a n+1−n,所以a n+a n+1=2a n−n≤2×n−12−n≤−1,当a n+1≥0,则a n<0,根据|a n+1−a n|=n,可得a n=a n+1−n,所以a n+a n+1=2a n−n≤2×n+1−12−n≤0,所以总有a n+a n+1≤0成立,当n为奇数时,|a n+1−a n|=n,故a n+1,a n的奇偶性不同,则a n+a n+1≤−1,当n为偶数时,a n+a n+1≤0,当k为奇数时,S k=a1+a2+⋅⋅⋅+a k≤0,考虑数列:0,−1,1,−2,2,⋅⋅⋅,−k−12,k−12,⋅⋅⋅,可以验证,所给数列满足条件,且S k=0,所以S k的最大值为0,当k为偶数时,S k=a1+a2+⋅⋅⋅+a k≤−k2,考虑数列:0,−1,1,−2,2,⋅⋅⋅,−k−12,k−12,−k2,⋅⋅⋅,可以验证,所给数列满足条件,且S k=−k2.综上所述,S k的最大值为0.【知识点】数列的递推关系、数列的综合应用【解析】(Ⅰ)根据数列满足的两个条件直接求解即可;(Ⅱ)用反证法,先假设数列{a n}中存在a i,a i+1同时为非负数,然后证明与条件矛盾即可;(Ⅲ)根据题意可得,当n为奇数时,a n+a n+1≤−1,当n为偶数时,a n+a n+1≤0,然后讨论当k为奇数和k为偶数时的情况,即可得到答案.本题考查数列的性质和应用,解题时要注意归纳总结能力的培养,考察了转化能力和运算能力,属于难题.第21页,共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试课程数学实验下午班级姓名学号得分[说明](1)第一、二、三题的答案直接填在试题纸上;(2)第四题将数学模型、简要解题过程和结果写在试题纸上;卷面空间不够时,请写在背面;(3)除非特别说明,所有计算结果小数点后保留4位数字。

(4)考试时间为120分钟。

一、(10分)某厂生产A、B两种产品,1千克原料在甲类设备上用12小时可生产3件A,可获净利润64元;在乙类设备上用8小时可生产4件B,可获净利润54元。

该厂每天可获得55千克原料,每天总的劳动时间为480小时,且甲类设备每天至多能生产80件A。

试为该厂制订生产计划使每天的净利润最大。

1)以生产A、B产品所用原料的数量x1、x2(千克)作为决策变量,建立的数学规划模型是:决策变量:生产A原料x1;生产B原料x2目标函数:y=64*x1+54*x2约束条件:x1+x2 ≤5512*x1+8*x2≤4803*x1≤80x1,x2 0基本模型:max(y)= 64*x1+54*x2. x1+x2 ≤5512*x1+8*x2≤4803*x1≤80x1,x2 0c=[64 54];A1=[ 1 1 ;12 8 ;3 0];b1=[55;480;80];v1=[0 0];[x,z,ef,out,lag]=linprog(-c,A1,b1,[],[],v1)输出结果:x =ans =2)每天的最大净利润是___3070__元。

若要求工人加班以增加劳动时间,则加班费最多为每小时元。

若A获利增加到26元/件,应否改变生产计划____不变___c=[78 54];A1=[ 1 1 ;12 8 ;3 0];b1=[55;480;80];v1=[0 0];[x,z,ef,out,lag]=linprog(-c,A1,b1,[],[],v1)二、(10分) 已知常微分方程组初值问题试用数值方法求__ (保留小数点后5位数字)。

你用的MATLAB命令是______ ode45(@ff, ts,y0)______,其精度为____四阶__。

%待解常微分方程组函数M文件源程序:function dy=ff (x,y)dy=[y(2);-y(2)./x-y(1)*(x.^/(x.^2)];%应用欧拉方法和龙格-库塔方法求解该常微分方程:ts=pi/2:- pi/12:pi/6; !!!!步长必须是可以整除步长区间长度的数y0=[2,-2/pi];[x,y]=ode45(@ff, ts,y0); %龙格-库塔方法求数值解[x, y(:,1)]输出结果:三、(10分) 已知线性代数方程组Ax=b, 其中, , ,若方程组右端项有小扰动,试根据误差估计式估计(分别表示原问题的解和右端项小扰动后对应的解的变化量);若取初值,则用高斯-赛德尔迭代法求解Ax=b时,_, , , _;对本题而言,此迭代方法是否收敛___是__,原因是__谱半径ρ(B)=<1__。

线性代数方程组解的误差分析:故其误差上限为:A=[5 -7 0 1 ;-3 22 6 2 ;5 -1 31 -1 ;2 1 0 23];b=[6 3 4 7];db=[0 0 0 ];d=cond(A,1)*norm(db,1)/norm(b,1)输出结果:A=[5 -7 0 1 ;-3 22 6 2 ;5 -1 31 -1 ;2 1 0 23];D=diag(diag(A));%从稀疏矩阵A中提取DL=-tril(A,-1);%从稀疏矩阵A中提取LU=-triu(A,1); %从稀疏矩阵A中提取Ub=[6 3 4 7]'; %设定方程组右端项向量x= zeros(4,1); %设定方程组初始向量m= inv(D-L)*U;n= inv(D-L)*b; %高斯-赛德尔迭代法for j2=1:5y=m*(x(:,j2));for i=1:4x(i,j2+1)=y(i,:)+n(i,:);endendt2=x(:,end)%输出迭代法最终结果j2输出结果:t2 =判敛:lamda=eig(inv(D-L)*U)pubanjing=max(abs(lamda))输出结果:四、(20分)炮弹射击的目标为一椭圆形区域,在X方向半轴长110m,Y方向半轴长90m.当瞄准目标的中心发射炮弹时,在众多随机因素的影响下,弹着点服从以目标中心为均值的二维正态分布,设弹着点偏差的均方差在X方向和Y方向分别为70m和50m。

今测得一均值假设检验:H0:μ=0;H1:μ≠0;x=[ 47 86 ];y=[ -68 87 85 -32 ];h1=ztest(x,0,70)h2=ztest(y,0,50)输出结果:h1 =0h2 =0方差假设检验:H0:σ2=σ02;H1:σ2≠σ02;x=[ 47 86 ];y=[ -68 87 85 -32 ];function [h]=ktest(x,s0,alpha,tail)n=length(x);k=(n-1)*var(x)/(s0^2) %χ2分布检验方差if tail==0k1=chi2inv(alpha/2,n-1)k2=chi2inv(1-alpha/2,n-1)if k>=k1&k<=k2h=0;elseh=1;endendif tail==1k0=chi2inv(1-alpha,n-1)if k<=k0h=0;elseh=1;endendif tail==-1k0=chi2inv(alpha,n-1)if k>=k0h=0;elseh=1;endh1=ktest(x,70,,0)h2=ktest(y,50,,0)输出结果:h1 =0h2 =02)根据这组数据给出随机变量X和Y相关系数的一个点估计。

相关系数点估计:x=[ 47 86 ];y=[ -68 87 85 -32 ];r=corrcoef(x,y)输出结果:r=3)用蒙特卡罗方法求炮弹落在椭圆形区域内的概率(取10000个数据点;请附程序)。

%炮弹命中椭圆形区域概率源程序:a=110;b=90;sx=70;sy=50;r=;z=0;n=10000;x=unifrnd(-a,a,1,n);y=unifrnd(-b,b,1,n);for i=1:nif (x(i)^2)/(a^2)+y(i)^2/(b^2)<=1u=exp(1-r^2)*(x(i)^2/sx^2-2*r*x(i)*y(i)/(sx*sy)+y(i)^2/sy^2));z=z+u;endendP=4*a*b*z/(2*pi*sx*sy*sqrt(1-r^2)*n)输出结果:P =考试课程数学实验下午班级学号姓名得分[说明](1)第一、二、三题的答案直接填在试题纸上;(2)第四题将数学模型、简要解题过程和结果写在试题纸上;卷面空间不够时,请写在背面;(3)除非特别说明,所有计算结果小数点后保留4位数字。

(4)考试时间为120分钟。

一、(10分)某厂生产A、B两种产品,1千克原料在甲类设备上用12小时可生产3件A,可获净利润64元;在乙类设备上用8小时可生产4件B,可获净利润56元。

该厂每天可获得55千克原料,每天总的劳动时间为480小时,且甲类设备每天至多能生产80件A。

试为该厂制订生产计划使每天的净利润最大。

1)以生产A、B产品所用原料的数量x1、x2(千克)作为决策变量,建立的数学规划模型是:2)每月的最大净利润是_____________元。

若要求工人加班以增加劳动时间,则加班费最多为每小时__________元。

若A获利增加到27元/件,应否改变生产计划_____________二、(10分) 已知常微分方程组初值问题试用数值方法求_______________________(保留小数点后5位数字)。

你用的MATLAB命令是__________________________________________,其精度为_____________。

三、(10分) 已知线性代数方程组Ax=b, 其中, , ,若方程组右端项有小扰动,试根据误差估计式估计_____________ (分别表示原问题的解和右端项小扰动后对应的解的变化量);若取初值,则用高斯-赛德尔迭代法求解Ax=b时,____________________________________________;对本题而言,此迭代方法是否收敛_________________,原因是__________________________________。

四、(20分)炮弹射击的目标为一椭圆形区域,在X方向半轴长100m,Y方向半轴长80m.当瞄准目标的中心发射炮弹时,在众多随机因素的影响下,弹着点服从以目标中心为均值的二维正态分布,设弹着点偏差的均方差在X方向和Y方向分别为70m和50m。

今测得一2)根据这组数据给出随机变量X和Y相关系数的一个点估计。

3)用蒙特卡罗方法求炮弹落在椭圆形区域内的概率(取10000个数据点;请附程序)。

考试课程数学实验参考答案与评分标准A卷(班级-姓名-学号-得分)一、1)(如果进一步要求3x1和4x2为非负整数,不扣分)2)3070元,元;不变二、(或, ode23(或ode45),3级2阶(或5级4阶)(不写3级(或5级)不扣分;个别同学可能用其他命令,则结果相应略有变化)三、, [, , , ]’, 收敛,谱半径为<1(不写出谱半径的具体数值不扣分,但写错要扣分)四、1)对均值做的假设为(X,Y方向相同) X,Y方向均接受H0对X方向的方差做的假设为H0: =4900, H0: 4900(如果做单侧检验,可不扣分)接受H0对Y方向的方差做的假设为H0: =2500, H0: 2500(如果做单侧检验,可不扣分)接受H02) 相关系数的点估计为(用r=corrcoef(x,y)命令)3)大约,结果具有随机性[附]主要程序示例:%1)~2)x=[ (% 47 86 ];h1=ztest(x,0,70), %x方向均值检验y=[ -68 87 85 -32 ];h2=ztest(y,0,50), %Y方向均值检验r=corrcoef(x,y) %相关系数的点估计pausen=20;alpha=;sx2=var(x),sx0=70;chi2=(n-1)*sx2/(sx0^2)chi2alpha=chi2inv(1-alpha,n-1)if chi2<=chi2alpha H0=0else H0=1endsy2=var(y),sy0=50;chi2=(n-1)*sy2/(sy0^2)chi2alpha=chi2inv(1-alpha,n-1)if chi2<=chi2alpha H0=0else H0=1end%3)a=;b=;m=0;z=0;p=;c=;d=;%A% p=;c=1; d=; %Bn=10000;for i=1:nx=2*rand(1,2)-1;y=0;if x(1)^2+x(2)^2<=1y=exp(1-p*p)*(c^2*x(1)^2/a^2+d^2*x(2)^2/b^2-2*p*c*d*x(1)*x(2)/a/b));z=z+y;m=m+1;endendP=4*c*d*z/2/pi/a/b/sqrt(1-p*p)/n,mB卷(班级-学号-姓名)一、1)2)3160元;2元;不变二、(或, 龙格-库塔方法ode23(或ode45),3级2阶(或5级4阶)三、, [,,,]’, 收敛, 谱半径为<1四、1)同A卷。

相关文档
最新文档