应用时间序列实验报告

合集下载

应用时间序列分析实验报告

应用时间序列分析实验报告

应用时间序列分析实验报告学院名称专业班级应用统计学14-2学生姓名学号齐鲁工业大学实验报告 成绩课程名称 《应用时间序列分析实验》 指导教师 实验日期院(系) 专业班级 实验地点学生姓名 学号 同组人 无实验项目名称 ARIMA 模型、确定性分析法,多元时间序列建模一、 实验目的和要求1.熟悉非平稳序列的确定性分析法:趋势分析、季节效应分析、综合分析2.熟悉差分平稳序列的建模步骤。

3.掌握单位根检验、协整检验、动态回归模型的建立。

二、 实验原理1. 序列的各种变化都归结于四大因素的综合影响:长期趋势(Trend ),循环波动(Circle ),季节性变化(Season ),机波动(Immediate ).常假设它们有如下的相互模型:加法模型 t t t t t X T C S I =+++乘法模型 t t t t tX T C S I =⋅⋅⋅混合模型 模型结构不唯一2.非平稳序列如果能通过适当阶数的差分后实现平稳,就可以对差分后序列进行ARMA 模型拟合了,所以ARIMA 模型是差分运算与ARMA 模型的组合tt d B x B ε)()(Θ=∇Φ3.单位根检验: (1)DF 检验;(2)ADF 检验; (3)PP 检验;4.动态回归模型ARIMAX如果两个非平稳序列之间具有协整关系,则先建立它们的回归模型,再对平稳的残差序列建立ARMA 模型。

⎪⎪⎩⎪⎪⎨⎧ΦΘ=+ΦΘ+=∑=t t t kk it l i i t a B B x B B B y i)()()()(1εεμ三、实验内容1、P202页:第7 题(X11因素分解法)2、P155页:第3题(乘积季节模型)3、P240页:第4题 出口为tx ,进口为ty ,回答以下问题(1)画出tx ,ty 的时序图,用单位根检验序列它们的平稳性; (2)对tt y x ln ,ln 分别拟合模型(提示:建立ARIMA 模型); (3)考察tt x y ln ln ,的协整关系,建立tt x y ln ln 关于的协整模型,同时建立误差修正模型。

时间序列分析试验报告

时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。


间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。

二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。

该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。

三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。

2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。

3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。

四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。

2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。

3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。

五、结论
通过本次实验可以得出结论。

时间序列实验报告心得

时间序列实验报告心得

在本次时间序列实验中,我深刻体会到了时间序列分析在解决实际问题中的重要作用。

通过对时间序列数据的收集、处理、分析和预测,我学会了如何运用时间序列分析方法解决实际问题,以下是我在实验过程中的心得体会。

一、实验背景时间序列分析是统计学和金融学等领域的重要研究方法,通过对时间序列数据的分析,我们可以揭示现象的发展变化规律,预测未来趋势,为决策提供依据。

本次实验以我国某地区1980年1月至1995年8月每月屠宰生猪数量为研究对象,运用时间序列分析方法进行建模和预测。

二、实验步骤1. 数据收集与处理:首先,收集了某地区1980年1月至1995年8月每月屠宰生猪数量数据。

然后,对数据进行初步处理,包括去除异常值、缺失值等。

2. 时间序列图绘制:运用Excel或R等软件绘制时间序列图,观察数据的变化趋势,为后续建模提供依据。

3. 平稳性检验:对时间序列数据进行平稳性检验,以确定是否可以直接进行建模。

常用的平稳性检验方法有ADF检验、KPSS检验等。

4. 模型选择与参数估计:根据时间序列图和平稳性检验结果,选择合适的模型进行拟合。

本次实验选择了ARIMA模型,并对模型参数进行估计。

5. 模型预测与结果分析:利用估计出的模型对未来的数据进行预测,并对预测结果进行分析,评估模型的准确性。

三、实验心得1. 时间序列分析的重要性:通过本次实验,我深刻认识到时间序列分析在解决实际问题中的重要性。

在实际工作中,许多现象都呈现出时间序列特征,运用时间序列分析方法可以揭示现象的发展变化规律,为决策提供依据。

2. 数据处理的重要性:在实验过程中,数据预处理是至关重要的。

只有保证数据的准确性和完整性,才能得到可靠的实验结果。

3. 平稳性检验的必要性:时间序列建模的前提是数据平稳。

通过对数据平稳性进行检验,可以确保模型的准确性。

4. 模型选择与参数估计的重要性:选择合适的模型和参数对于时间序列分析至关重要。

不同的模型适用于不同类型的数据,需要根据实际情况进行选择。

统计实验报告时间序列

统计实验报告时间序列

一、实验背景时间序列分析是统计学中的一个重要分支,它主要研究如何对时间序列数据进行建模、预测和分析。

本实验旨在通过实际数据的时间序列分析,了解时间序列的基本特性,掌握时间序列建模的方法,并尝试进行未来趋势的预测。

二、实验目的1. 理解时间序列的基本概念和特征。

2. 掌握时间序列数据的可视化方法。

3. 学习并应用时间序列建模的基本方法,如自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。

4. 尝试进行时间序列数据的预测。

三、实验数据本实验选用某城市过去一年的月度降雨量数据作为分析对象。

数据包括12个月的降雨量,单位为毫米。

四、实验步骤1. 数据预处理- 读取数据:使用Python的pandas库读取降雨量数据。

- 数据检查:检查数据是否存在缺失值或异常值。

- 数据清洗:如果存在缺失值或异常值,进行相应的处理。

2. 数据可视化- 使用matplotlib库绘制降雨量时间序列图,观察数据的趋势和季节性特征。

3. 时间序列建模- 自回归模型(AR):根据自回归模型的理论,建立AR模型,并通过AIC(赤池信息量准则)和SC(贝叶斯信息量准则)进行模型选择。

- 移动平均模型(MA):建立MA模型,并使用同样的准则进行模型选择。

- 自回归移动平均模型(ARMA):结合AR和MA模型,建立ARMA模型,并选择最佳模型。

4. 模型验证与预测- 使用历史数据进行模型验证,比较不同模型的预测精度。

- 对未来几个月的降雨量进行预测。

五、实验结果与分析1. 数据可视化通过时间序列图可以看出,降雨量存在明显的季节性特征,每年的夏季降雨量较多。

2. 时间序列建模- AR模型:通过AIC和SC准则,选择AR(2)模型作为最佳模型。

- MA模型:同样通过AIC和SC准则,选择MA(3)模型作为最佳模型。

- ARMA模型:结合AR和MA模型,选择ARMA(2,3)模型作为最佳模型。

3. 模型验证与预测- 模型验证:通过比较实际值和预测值,可以看出ARMA(2,3)模型的预测精度较高。

应用时间序列实验报告

应用时间序列实验报告

工程学院课程设计《时间序列分析课程设计》学生学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年 6 月 2 日目录1. 实验一澳大利亚常住人口变动分析 (1)1.1 实验目的 (2)1.2 实验原理 (2)1.3 实验容 (2)1.4 实验过程 (4)2. 实验二我国铁路货运量分析 (9)2.1 实验目的 (10)2.2 实验原理 (10)2.3 实验容 (11)2.4 实验过程 (12)3. 实验三美国月度事故死亡数据分析 (15)3.1 实验目的 (17)3.2 实验原理 (17)3.3 实验容 (18)3.4 实验过程 (18)课程设计体会 (22)1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。

表1-1(1)判断该序列的平稳性与纯随机性。

(2)选择适当模型拟合该序列的发展。

(3)绘制该序列拟合及未来5年预测序列图。

1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。

1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。

(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。

(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。

1.3 实验容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的围有界。

如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。

对自相关图进行检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。

时间序列分析实验报告

时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。

时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。

本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。

正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。

本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。

通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。

时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。

因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。

时间序列分析的实验报告-实验一

时间序列分析的实验报告-实验一

2013——2014学年第二学期
实验报告
课程名称:应用时间序列分析
实验项目:Eviews软件使用初步
实验类别:综合性□设计性□验证性□√专业班级:
姓名:学号:
实验地点:
实验时间:2014.5. 4
指导教师:成绩:
吉首大学数学与统计学院
一、实验目的:
掌握应用Eviews软件完成以下任务:(1)工作文件及建立;
(2)掌握数据分析的常用操作;(3)进行OLS回归;(4)预测二、实验内容:
用拟合的线性回归模型对数据集进行线性趋势拟合;数据来源是1996年黑龙江省伊春林区16个林业局的年木材采伐量和相关伐木剩余物数据。

三、实验方案(程序设计说明)
四. 实验步骤或程序(经调试后正确的源程序)
五.程序运行结果
六、实验总结
学生签名:
年月日
七、教师评语及成绩
教师签名:
年月日
1。

时间序列模型操作实训报告

时间序列模型操作实训报告

一、实训目的本次实训旨在使学生掌握时间序列模型的基本原理,熟悉时间序列模型的构建过程,并能运用时间序列模型进行实际数据的预测分析。

通过本次实训,提高学生对时间序列分析方法的实际应用能力,为以后从事相关领域的研究和工作打下基础。

二、实训内容1. 时间序列分析概述时间序列分析是统计学的一个重要分支,它研究的是一组按时间顺序排列的观测值。

通过对时间序列数据的分析,我们可以揭示数据中的规律性、趋势性、季节性和周期性,从而对未来的数据进行预测。

2. 时间序列模型的构建(1)平稳性检验在构建时间序列模型之前,首先要检验序列的平稳性。

常用的平稳性检验方法有ADF单位根检验、KPSS检验等。

(2)自回归模型(AR)自回归模型(AR)是一种描述序列自身过去值对当前值影响的模型。

AR模型的数学表达式为:Y_t = c + φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} + ε_t其中,Y_t表示时间序列,c为常数项,φ_1, φ_2, ..., φ_p为自回归系数,ε_t为误差项。

(3)移动平均模型(MA)移动平均模型(MA)是一种描述序列过去值对当前值影响的模型。

MA模型的数学表达式为:Y_t = c + ε_t + θ_1ε_{t-1} + θ_2ε_{t-2} + ... + θ_qε_{t-q}其中,Y_t表示时间序列,c为常数项,θ_1, θ_2, ..., θ_q为移动平均系数,ε_t为误差项。

(4)自回归移动平均模型(ARMA)自回归移动平均模型(ARMA)是AR模型和MA模型的结合,它同时考虑了序列自身过去值和过去误差对当前值的影响。

ARMA模型的数学表达式为:Y_t = c + φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} + θ_1ε_{t-1} + θ_2ε_{t-2} + ... + θ_qε_{t-q}(5)自回归差分移动平均模型(ARIMA)自回归差分移动平均模型(ARIMA)是在ARMA模型的基础上,对序列进行差分处理,以消除非平稳性。

时间序列法实验报告

时间序列法实验报告

一、实验目的1. 了解时间序列分析方法的基本原理和应用。

2. 学习如何使用时间序列分析方法对实际数据进行预测和分析。

3. 通过实验,提高对时间序列数据处理的实际操作能力。

二、实验内容本次实验选取了一组某城市过去三年的月均降雨量数据,旨在通过时间序列分析方法预测未来一个月的降雨量。

三、实验步骤1. 数据预处理- 读取实验数据,确保数据格式正确。

- 检查数据是否存在缺失值,如有,进行插补处理。

- 对数据进行初步的描述性统计分析,了解数据的分布情况。

2. 时间序列平稳性检验- 对原始数据进行ADF(Augmented Dickey-Fuller)检验,判断时间序列是否平稳。

- 若不平稳,进行差分处理,直至序列平稳。

3. 时间序列建模- 根据平稳时间序列的特点,选择合适的模型进行拟合。

- 本实验选取ARIMA模型进行拟合,其中AR项数为1,MA项数为1,差分次数为1。

4. 模型参数估计- 使用最小二乘法对模型参数进行估计。

5. 模型检验- 对拟合后的模型进行残差分析,检查是否存在自相关或异方差。

- 若存在自相关或异方差,对模型进行修正。

6. 预测- 使用拟合后的模型对未来一个月的降雨量进行预测。

四、实验结果与分析1. 数据预处理- 实验数据共有36个观测值,无缺失值。

- 描述性统计分析结果显示,降雨量数据呈正态分布。

2. 时间序列平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明原始数据不平稳。

- 对数据进行一阶差分后,再次进行ADF检验,结果显示P值小于0.05,接受原假设,说明一阶差分后的数据平稳。

3. 时间序列建模- 根据平稳时间序列的特点,选择ARIMA(1,1,1)模型进行拟合。

4. 模型参数估计- 使用最小二乘法对模型参数进行估计,得到AR系数为0.8,MA系数为-0.9。

5. 模型检验- 对拟合后的模型进行残差分析,发现残差序列存在自相关,但不存在异方差。

- 对模型进行修正,加入自回归项,得到修正后的ARIMA(1,1,1,1)模型。

时间序列分析试验报告【范本模板】

时间序列分析试验报告【范本模板】
所以得: ,
这时,趋势项 的估计值是回归直线:

利用原始数据 减去趋势项的估计 后得到的数据基本只含有季节项和随机项了。
分解季节项:用第k季度的平均值作为季节项 的估计。如果用 分别表示第j年第k个季度的数据和趋势项,则时刻(j,k)的时间次序指标为 。
在Matlab命令窗口中继续输入下列命令:
dx=B(:)'-(5780.1+21.9*(1:24))
C=[dx(:,1:4);dx(:,5:8);dx(:,9:12);dx(:,13:16);dx(:,17:20);dx(:,21:24)];
s=mean(C)%季节项估计
则得
s = 1.0e+003 *
1。0371 —0.3936 —1。1552 0.5110
即季节项估计为
分解随机项:利用原始数据 减去趋势项的估计 和季节项的估计 后得到的数据就是随机项的估计 .
在Matlab命令窗口中继续输入下列命令:
for j=1:6
for k=1:4
St(k+4*(j—1))=s(k);%求季节项值St
end
end
Rt=dx-St;%求随机项估计
plot(1:24,St,'*—’,1:24,Rt,'〈-')%画出季节项和随机项图形
图2季节项和随机项散点图
预测:为得到1997年的预报值,可以利用公式
表7.1.1某城市居民季度用煤消耗量 (单位:吨)
年份
1季度
2季度
3季度
4季度
年平均
1991
6878.4
5343.7
4847.9
6421.9
5873.0
1992

时间序列分析实验报告

时间序列分析实验报告

时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。

本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。

二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。

数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。

三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。

然后,对数据进行了平稳性检验。

采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。

如果数据不平稳,则需要进行差分处理,使其达到平稳状态。

2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。

通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。

3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。

通过对参数的估计值进行分析,判断模型的合理性和稳定性。

4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。

为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。

四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。

同时,数据的波动范围也较大,存在一定的随机性。

2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。

实验报告关于时间序列(3篇)

实验报告关于时间序列(3篇)

第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。

二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。

2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。

3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。

4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。

5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。

四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。

2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。

3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。

4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。

5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。

五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。

4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。

时间序列分析实习报告

时间序列分析实习报告

实习报告实习单位:某知名科技公司实习时间:2023年7月1日 - 2023年8月31日一、实习背景及目的随着大数据时代的到来,时间序列分析在各个领域中的应用越来越广泛。

为了提高自己在时间序列分析方面的实际操作能力,我选择了某知名科技公司进行为期两个月的实习。

实习的目的主要是通过实际项目操作,掌握时间序列数据的特点,学会使用时间序列分析方法对数据进行处理和分析,并提出合理的预测和解决方案。

二、实习内容及过程在实习期间,我参与了公司的一个时间序列分析项目,负责对某一产品的历史销售数据进行分析,并根据分析结果提出销售预测和建议。

具体实习内容如下:1. 数据收集和处理:首先,我需要从公司的数据库中收集所需的历史销售数据。

在收集数据的过程中,我学会了如何使用SQL语句进行数据查询。

然后,我对收集到的数据进行处理,包括数据清洗、数据整合和数据转换等,以确保分析结果的准确性。

2. 数据分析和建模:在数据处理完成后,我开始进行数据分析。

我首先使用描述性统计方法对数据进行初步分析,了解数据的基本特征。

然后,我使用时间序列分析方法对数据进行建模,包括ARIMA模型、季节性分解模型和趋势预测模型等。

通过对比不同模型的预测效果,我选择了一个最佳的模型进行进一步分析。

3. 结果分析和预测:在确定最佳模型后,我使用该模型对未来的销售数据进行预测,并根据预测结果提出销售建议。

我还对预测结果进行了敏感性分析,以评估预测结果的稳定性和可靠性。

三、实习收获和总结通过这次实习,我掌握了时间序列数据的特点和分析方法,学会了使用SQL语句进行数据查询和处理,提高了自己在实际项目中运用时间序列分析方法的能力。

同时,我也学会了如何根据分析结果提出合理的预测和建议,为公司提供决策支持。

在实习过程中,我认识到时间序列分析不仅仅是一种数据分析方法,更是一种解决问题的思维方式。

通过这次实习,我不仅提高了自己的专业技能,还培养了自己的问题解决能力和团队合作能力。

时间序列实验报告

时间序列实验报告

一、实验目的本次实验旨在通过时间序列分析方法,对一组实际数据进行建模、分析和预测。

通过学习时间序列分析的基本理论和方法,提高对实际问题的分析和解决能力。

二、实验内容1. 数据来源及预处理本次实验所使用的数据集为某地区近十年的年度GDP数据。

数据来源于国家统计局,共包含10年的数据。

2. 数据可视化首先,我们将使用Excel软件绘制年度GDP的时序图,观察数据的基本趋势和周期性特征。

3. 平稳性检验根据时序图,我们可以初步判断数据可能存在非平稳性。

为了进一步验证,我们将使用ADF(Augmented Dickey-Fuller)检验对数据进行平稳性检验。

4. 模型选择由于数据存在非平稳性,我们需要对数据进行差分处理,使其变为平稳序列。

然后,根据自相关函数(ACF)和偏自相关函数(PACF)图,选择合适的模型。

5. 模型参数估计使用最大似然估计法(MLE)对所选模型进行参数估计。

6. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。

接着,使用Ljung-Box检验对残差序列进行白噪声检验,以验证模型的有效性。

7. 预测利用拟合后的模型,对未来几年的GDP进行预测。

三、实验过程及结果1. 数据可视化通过Excel绘制年度GDP时序图,发现数据呈现明显的上升趋势,但同时也存在一定的波动性。

2. 平稳性检验对数据进行一阶差分后,使用ADF检验进行平稳性检验。

结果显示,差分后的序列在5%的显著性水平下拒绝原假设,说明序列是平稳的。

3. 模型选择根据ACF和PACF图,选择ARIMA(1,1,1)模型。

4. 模型参数估计使用MLE法对ARIMA(1,1,1)模型进行参数估计,得到参数值:- AR系数:-0.864- MA系数:-0.652- 常数项:392.4765. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。

使用Ljung-Box检验对残差序列进行白噪声检验,结果显示在5%的显著性水平下拒绝原假设,说明模型拟合效果较好。

时间序列_实验报告

时间序列_实验报告

一、实验目的1. 了解时间序列分析的基本原理和方法;2. 掌握时间序列数据的平稳性检验、模型识别和参数估计等基本操作;3. 通过实例,学习使用ARIMA模型进行时间序列预测。

二、实验环境1. 操作系统:Windows 102. 软件环境:EViews 9.0、R3.6.1三、实验数据1. 数据来源:某城市1980年1月至2020年12月每月的GDP数据;2. 数据格式:Excel表格。

四、实验步骤1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,观察数据的趋势、季节性和周期性;(3)平稳性检验:使用ADF检验判断GDP序列是否平稳。

2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:观察ACF和PACF图,初步确定ARIMA模型的阶数;(2)模型选择:根据ACF和PACF图,选择合适的ARIMA模型。

3. 模型估计(1)模型估计:使用EViews软件中的ARIMA过程,对选择的模型进行参数估计;(2)模型检验:对估计出的模型进行残差检验,包括残差的平稳性检验、白噪声检验等。

4. 时间序列预测(1)预测:使用估计出的ARIMA模型,对2021年1月至2025年12月的GDP进行预测;(2)预测结果分析:对预测结果进行分析,评估预测的准确性。

五、实验结果与分析1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,发现GDP序列存在明显的上升趋势和季节性;(3)平稳性检验:使用ADF检验,发现GDP序列在5%的显著性水平下拒绝原假设,序列是平稳的。

2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:根据ACF和PACF图,初步确定ARIMA模型的阶数为(1,1,1);(2)模型选择:根据ACF和PACF图,选择ARIMA(1,1,1)模型。

时间序列建模实验报告

时间序列建模实验报告

一、实验背景随着信息技术的飞速发展,时间序列数据在各个领域都得到了广泛应用。

时间序列分析作为统计学和数学的一个重要分支,旨在研究随机数据序列所遵从的统计规律,以揭示现象的发展变化规律和预测未来行为。

本实验旨在通过时间序列建模,对某一现象的发展变化规律进行预测和分析。

二、实验目的1. 熟悉时间序列分析的基本原理和方法;2. 掌握时间序列建模的常用模型,如ARIMA、季节分解、指数平滑等;3. 运用时间序列模型对实际数据进行预测和分析,提高数据分析和处理能力。

三、实验数据本次实验数据为某地区近五年的GDP数据,包括2015年至2019年的年度GDP数值。

数据来源于国家统计局网站,具有较好的代表性和可靠性。

四、实验步骤1. 数据预处理首先,对实验数据进行清洗和整理,包括去除异常值、缺失值等。

然后,对数据进行归一化处理,使其符合时间序列建模的要求。

2. 时间序列平稳性检验在进行时间序列建模之前,需要检验序列的平稳性。

常用的平稳性检验方法有ADF (Augmented Dickey-Fuller)检验和KPSS(Kwiatkowski-Phillips-Schmidt-Shin)检验。

本实验采用ADF检验对GDP序列进行平稳性检验。

3. 时间序列建模根据平稳性检验结果,选择合适的时间序列模型进行建模。

本实验分别采用以下模型进行建模:(1)ARIMA模型:ARIMA模型是一种广泛应用的时间序列预测模型,由自回归(AR)、移动平均(MA)和差分(I)三个部分组成。

本实验选取ARIMA(1,1,1)模型进行建模。

(2)季节分解模型:季节分解模型适用于具有季节性的时间序列数据。

本实验采用STL(Seasonal-Trend decomposition using Loess)方法对GDP序列进行季节分解,并分别对趋势项和季节项进行建模。

(3)指数平滑模型:指数平滑模型是一种简单、实用的预测方法,适用于短期预测。

本实验采用Holt-Winters指数平滑模型进行建模。

应用时间序列分析实验报告

应用时间序列分析实验报告

应用时间序列分析实验报告实验名称:解释程序含义及操作步骤指导老师: 霍艳成绩:一、 实验目的1.利用MATLAB 操作程序,得出结果;2.解释每一个步骤的含义;3.了解步骤的含义,把握实验的含义及操作每一步的具体意义;二、 实验理论依据在MATLAB 中所有的变量名的解释都是让学员更好的把握定义,明确每一步的含义,客观的、直接的掌握重点,进而为后续解释结果作出更好的准备,以至于作出更好的实验报告,精准的把握主旨。

三、实验步骤clear,clcclose alldata=xlsread('appl_14.xls',1,'B2:B38');x=zeros(10,1);std_x=x;x(1)=4.99661+data(end)+0.70766*1.5843625;sigama=56.4763;std_x(1)=sqrt(sigama);inf_sup=zeros(10,2);inf_sup(1,:)=[x(1)-1.96*std_x(1),x(1)+1.96*std_x(1)];for i=2:10x(i)=x(i-1)+4.99661;std_x(i)=sqrt(sigama*((i-1)*1.70766^2+1));inf_sup(i,:)=[x(i)-1.96*std_x(i),x(i)+1.96*std_x(i)];endt1=1952:1988;t2=1989:1998;datal=[data-sqrt(56.48763),data+sqrt(56.47863)];hold onplot(t1,data,'*b-',t1,datal(:,1),'r-',t1,datal(:,2),'r-')plot(t2,x,'*b-',t2,inf_sup(:,1),'r-',t2,inf_sup(:,2),'r-')hold on四、结果分析Clear:%清空变量clc::%晴空命令空间close all:%关闭图形窗口data=xlsread('appl_14.xls',1,'B2:B38'); :%引入数据源x=zeros(10,1); :%创建十行一列的零矩阵std_x=x; :%std函数是用来计算x的标准偏差的函数x(1)=4.99661+data(end)+0.70766*1.5843625; :%x的第一个值sigama=56.4763; :%主函数变量值std_x(1)=sqrt(sigama); :%算出x(1)的标准偏差等于求主函数变量值的平方根inf_sup=zeros(10,2); :%算出的结果大于某个数的上确界值为一个十行二列的零矩阵inf_sup(1,:)=[x(1)-1.96*std_x(1),x(1)+1.96*std_x(1)]; :% 算出(1,:)的结果大于某个数的上确界值等于一个具体值for i=2:10:%2到10循环的变量大小x(i)=x(i-1)+4.99661; :%x(i)的一个值std_x(i)=sqrt(sigama*((i-1)*1.70766^2+1)); :% x的标准偏差的函数等于主函数变量乘以一个具体值后平方根inf_sup(i,:)=[x(i)-1.96*std_x(i),x(i)+1.96*std_x(i)]; :%算出(i,:)的结果大于某个值后的上确界等于一个具体值end:%是指不等於/结尾t1=1952:1988; :%t1的具体值t2=1989:1998; :%t2具体值datal=[data-sqrt(56.48763),data+sqrt(56.47863)]; :%data定义的一个值hold on:%启动图形保持功能plot(t1,data,'*b-',t1,datal(:,1),'r-',t1,datal(:,2),'r-') :%画一条t1横坐标,data为纵坐标,*b为蓝色线条,r-为紫色线条,分别位于蓝色线条的上下部分plot(t2,x,'*b-',t2,inf_sup(:,1),'r-',t2,inf_sup(:,2),'r-') :% 画一条t2横坐标,x为纵坐标,*b为蓝色线条,r-为紫色线条,分别位于蓝色线条的上下部分hold off:%关闭图形保持功能。

时间序列分析实验报告 (4)

时间序列分析实验报告 (4)

基于matlab的时间序列分析在实际问题中的应用时间序列分析(Time series analysis)是一种动态数据处理的统计方法。

该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象和其他现象之间的内在的数量关系及其变化规律性,而且运用时间序列模型可以预测和控制现象的未来行为,以达到修正或重新设计系统使其达到最优状态。

时间序列是指观察或记录到的一组按时间顺序排列的数据。

如某段时间内。

某类产品产量的统计数据,某企业产品销售量,利润,成本的历史统计数据;某地区人均收入的历史统计数据等实际数据的时间序列。

展示了研究对象在一定时期内的发展变化过程。

可以从中分析寻找出其变化特征,趋势和发展规律的预测信息。

时间序列预测方法的用途广泛,它的基本思路是,分析时间序列的变化特征,选择适当的模型形式和模型参数以建立预测模型,利用模型进行趋势外推预测,最后对模型预测值进行评价和修正从而得到预测结果。

目前最常用的拟合平稳序列模型是ARMA模型,其中AR和MA模型可以看成它的特例。

一.时间序列的分析及建模步骤(1)判断序列平稳性,若平稳转到(3),否则转到(2)。

平稳性检验是动态数据处理的必要前提,因为时间序列算法的处理对象是平稳性的数据序列,若数据序列为非平稳,则计算结果将会出错。

在实际应用中,如某地区的GDP,某公司的销售额等时间序列可能是非平稳的,它们在整体上随着时间的推移而增长,其均值随时间变化而变化。

通常将GDP等非平稳序列作差分或预处理。

所以获得一个时间序列之后,要对其进行分析预测,首先要保证该时间序列是平稳化的。

平稳性检验的方法有数据图、逆序检验、游程检验、自相关偏相关系数、特征根、参数检验等。

本实验中采用数据图法,数据图法比较直观。

(2)对序列进行差分运算。

一般而言,若某序列具有线性趋势,则可以通过对其进行一次差分而将线性趋势剔除掉。

时间应用序列实验报告

时间应用序列实验报告

一、实验背景时间序列分析是统计学和数据分析领域的一个重要分支,广泛应用于经济、金融、气象、生物等多个领域。

本实验旨在通过实际案例,学习时间序列分析方法,并运用相关模型进行预测和解释。

二、实验目的1. 掌握时间序列数据的基本特征和常见模型。

2. 学习时间序列数据的平稳性检验、模型识别和参数估计。

3. 熟悉时间序列预测方法,并进行实际应用。

三、实验数据本次实验选用某城市近五年月均气温数据作为研究对象,数据来源为气象局官方网站。

四、实验步骤1. 数据预处理- 将数据导入统计软件,进行数据清洗和整理。

- 绘制时间序列图,观察数据的基本特征,如趋势、季节性、周期性等。

2. 平稳性检验- 对数据进行单位根检验(ADF检验),判断数据是否平稳。

- 对非平稳数据,进行差分处理,使其达到平稳。

3. 模型识别- 根据时间序列图和自相关图、偏自相关图,初步判断模型类型。

- 对候选模型进行参数估计,比较不同模型的拟合优度。

4. 模型验证- 对模型进行残差分析,检验模型是否合适。

- 利用预测指标(如均方误差、均方根误差等)评估模型的预测性能。

5. 模型应用- 利用训练好的模型,对未来一段时间内的气温进行预测。

- 分析预测结果,解释气温变化趋势和原因。

五、实验结果与分析1. 数据预处理- 数据清洗:删除异常值,填补缺失值。

- 数据整理:将数据转换为时间序列格式。

2. 平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明数据是非平稳的。

- 对数据进行一阶差分,再次进行ADF检验,结果显示P值大于0.05,接受原假设,说明一阶差分后的数据是平稳的。

3. 模型识别- 根据时间序列图和自相关图、偏自相关图,初步判断模型为ARIMA模型。

- 对ARIMA模型进行参数估计,比较不同模型的拟合优度,最终选择ARIMA(1,1,1)模型。

4. 模型验证- 对模型进行残差分析,发现残差基本符合正态分布,说明模型合适。

应用时间序列eviews实验报告

应用时间序列eviews实验报告

应用时间序列eviews实验报告时间序列分析是数据分析领域中一个重要的分析方法,主要用于研究某个变量随时间变化的趋势或周期性波动模式,具有非常广泛的应用领域,如经济学、金融学、社会学、医学等领域。

Eviews是一个经济学研究软件,具有强大的时间序列分析功能,可以用于时间序列的建模、预测等操作。

本文将对Eviews在时间序列分析实验中的应用进行介绍和分析。

一、实验介绍本次实验使用的数据为GDP数据,区间为1995-2019年,数据来源为国家统计局。

实验目的为使用Eviews进行时间序列分析,研究GDP的时间序列特征,建立合适的模型进行预测。

在实验中,我们将使用Eviews进行ADF检验、白噪声检验、建立ARIMA模型等操作,以充分展示Eviews在时间序列分析中的应用。

二、实验步骤1、数据导入首先打开Eviews软件,新建一个工作文件,导入GDP数据(见下图)。

2、ADF检验ADF检验是检验时间序列平稳性的常用方法,其原理是检验时间序列是否具有单位根。

在Eviews中进行ADF检验的操作如下:依次选择"View-Graph"-"Augmented Dickey-Fuller Test"菜单,弹出窗口后选择要分析的序列名称以及置信水平,单击"OK"按钮,即可看到ADF检验结果(见下图)。

由图可知,GDP序列的ADF检验结果为-3.0949,小于95%置信水平下的临界值-2.889,说明序列是平稳的。

3、白噪声检验4、建立ARIMA模型接下来我们将使用Eviews建立ARIMA模型,对GDP序列进行预测。

首先,在Eviews中进行序列差分,将序列转为平稳序列。

操作如下:差分后的GDP序列如下图所示:我们可以看到,差分后的序列已基本平稳。

接下来,我们可以通过ACF和PACF图查找ARIMA的参数,找到最佳的ARIMA模型进行预测。

操作如下:由图可知,差分后的GDP序列的ACF和PACF图中,第一个序列的ACF和PACF都很显著,因此我们可以考虑建立AR(1) 模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南工程学院课程设计《时间序列分析课程设计》学生姓名学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年6 月2 日目录1. 实验一澳大利亚常住人口变动分析 (1)1.1 实验目的 (1)1.2 实验原理 (1)1.3 实验内容 (2)1.4 实验过程 (3)2. 实验二我国铁路货运量分析 (8)2.1 实验目的 (8)2.2 实验原理 (8)2.3 实验内容 (9)2.4 实验过程 (10)3. 实验三美国月度事故死亡数据分析 (14)3.1 实验目的 (14)3.2 实验原理 (15)3.3 实验内容 (15)3.4 实验过程 (16)课程设计体会 (19)1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。

表1-1(1)判断该序列的平稳性与纯随机性。

(2)选择适当模型拟合该序列的发展。

(3)绘制该序列拟合及未来5年预测序列图。

1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。

1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。

(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。

(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。

1.3 实验内容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。

如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。

对自相关图进行检验时,可以用SAS 系统ARIMA 过程中的IDENTIFY 语句来做自相关图。

而单位根检验我们用到的是DF 检验。

以1阶自回归序列为例:11t t t x x φε-=+该序列的特征方程为:0λφ-=特征根为:λφ=当特征根在单位圆内时:11φ<该序列平稳。

当特征根在单位圆上或单位圆外时:11φ≥该序列非平稳。

对于纯随机性检验,既白噪声检验,可以用SAS 系统中的IDENTIFY 语句来输出白噪声检验的结果。

(2)选择适当模型拟合该序列的发展先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。

ARIMA过程的第一步是要IDENTIFY命令对该序列的平稳性和纯随机性进行识别,并对平稳非白噪序列估计拟合模型的阶数。

使用命令如下:proc print data=example3_20;IDENTIFY VAR =people nlag=8 minic p= (0:5) q =(0:5);run;(3)绘制该序列拟合及未来5年预测序列图模型拟合好之后,利用该模型对序列进行短期预测。

预测命令如下:forecast lead=5 id=time out=results;run;其中,lead指定预期数;id指定时间变量标识;out指定预测后期的结果存入某个数据集。

利用存储在临时数据集RESULTS里的数据,我们可以绘制拟合预测图,相关命令如下:proc gplot data=results;plot people*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=red i=none v=star;symbol2 c=black i=join v=none;symbol3 c=green i=join v=none l=32;run;1.4 实验过程按照实验的过程运行程序,对程序结果的分析如下:(1)判断该序列的平稳性与纯随机性图1-1 1971年9月-1993年6月澳大利亚季度常住人口变动序列时序图时序图显示澳大利亚季度常住人口围绕在52千人附近随机波动,没有明显趋势或周期,基本可视为平稳模式。

图1-2序列自相关图自相关图显示该序列的自相关系数一直都比较小,始终控制在2倍的标准差范围以内,故认为该序列是平稳序列。

图1-3 序列的单位根检验结果根据第五列、第六列输出的结果我们可以判断,当显著性水平 取0.05时,序列非平稳,但当消除线性趋势之后序列平稳。

图1-4 白噪声检验输出结果可以看到延迟6阶、12阶的检验P值均小于0.05,故拒绝原假设,认为该序列为非白噪声序列(非纯随机序列)。

(2)选择适当模型拟合该序列的发展图1-5 IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对于最小的是ARMA(1,3)模型。

图1-6 ESTIMATE命令输出的未知参数结果图1-7 ESTIMATE命令输出的拟合统计量结果图1-8 ESTIMATE 命令输出的系数矩阵图1-9 ESTIMATE 命令输出的残差自相关检验结果从输出结果可以看出由于延迟各阶的LB 统计量的P 值均显著大于α(0.05α≥),所以该拟合模型显著成立。

图1-10 ESTIMATE 命令输出的拟合模型形式该输出形式等价于:23(10.62415B 0.253693B 0.2953B )t t x ε=-++或记为:1230.624150.2536930.2953t t t t t x εεεε---=-++(3)绘制该序列拟合及未来5年预测序列图图1-11 FORECAST 命令输出的5年预测结果拟合效果图如图1-11:图1-12 拟合效果图2.实验二我国铁路货运量分析我国1949—2008年每年铁路货运量(单位:万吨)数据如表2-1所示。

表2-1请选择适当的模型拟合该序列,并预测2009—2013年我国铁路货运量。

2.1 实验目的掌握用SAS软件对数据进行相关性分析,掌握对非平稳时间序列的随机分析,选择合适模型,拟合序列发展。

2.2 实验原理ARIMA模型的预测和ARMA模型的预测方法非常类似。

(p,d,q)ARIMA模型的一般表示方法为:(B)(B)d t t x φε∇=Θ同时可以简记为:(B)(B)d t t x εΘ∇=Φ 式中,{}t ε 为零均值白噪声序列。

我们可以从上式看出,ARIMA 模型的实质就是差分与ARMA 模型的组合,这说明任何非平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进行ARMA 模型拟合。

(1)对差分平稳后的序列可以使用ARIMA 模型进行拟合,ARIMA 建模操作流程如图2-1所示。

图2-1 建模流程2.3 实验内容由于ARMA 模型是ARIMA 模型的一种特例,所以在SAS 系统中这两种模型的拟合都放在ARMA 过程中。

先利用时序图分析模型是否平稳,可以运用实验一的程序来实现。

再对该序平稳性检白噪声检分析结束 通过 差分运算拟合ARMA 模型未通过平稳不平稳获得观察值序列列进行1阶差分运算,同时考虑差分后序列的平稳性,添加如下命令:difhuoyunliang=dif(huoyunliang);命令“difhuoyunliang=dif(huoyunliang);”是指令系统对变量进行的1阶差分后的序列值赋值给变量difhuoyunliang,其中dif()是差分函数。

利用差分函数得出平稳模型。

再对模型进行定阶和进行预测。

模型定阶:identify var=difhuoyunliang(1) nlag=8 minic p=(0:5) q=(0:5);模型预测:forecast lead=5 id=time;2.4 实验过程(1)判断序列的平稳性图2-2 我国1949—2008年每年铁路货运量时序图通过分析可知,该时序图有明显的上升趋势,所以为非平稳序列。

在此,对该序列进行1阶差分运算。

图2-3 1阶差分后序列时序图图2-4 1阶差分后序列自相关图通过分析可知,时序图显示差分后序列没有明显的非平稳特征;自相关图显示序列有很很强的短期相关性,所以可认为1阶差分后序列平稳。

对平稳的1阶查分序列进行白噪声检验,检验结果如图图2-5 1阶差分后序列白噪声检验默认显著性水平为0.05的条件下,由于延迟6阶、12阶的P值为0.0012和0.0098,小于0.05,所以该差分后序列不能视为白噪声序列,即差分后的序列还蕴含着不容忽视的相关信息可供提取。

(2)对平稳非白噪声查分序列进行拟合图2-6 IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有(p,q)ARMA模型中,BIC信息量相对于最小的是(1,0)ARMA模型。

考虑到前面已经进行的1阶差分运算,实际上是用(1,1,0)ARIMA模型拟合原序列。

图2-7 ESTIMATE命令输出的未知参数结果图2-8 ESTIMATE命令输出的拟合统计结果图2-8 ESTIMATE命令输出的残差自相关检验结果α≥),所以显然,拟合检验统计量的P值均显著大于显著性水平α(0.05可以认为改残差序列即为白噪声序列,显著性检验显示两参数均显著,这说明ARIMA模型对该序列建模成功。

(1,1,0)图2-10 ESTIMATE 命令输出的拟合模型形式输出结果显示,序列t x 的拟合模型为(1,1,0)ARIMA ,模型口径为:10.51983tt x Bε∇=-等价记为:121.519830.51983t t t t x x x ε--=-+利用拟合模型对序列做5期预测,结果如图2-10:图2-11 2009-2013我国铁路货运量预测3.实验三美国月度事故死亡数据分析据美国国家安全委员会统计,1973—1978年美国月度事故死亡数据如表3-1所示。

请选择适当模型拟合该序列的发展。

3.1 实验目的掌握用SAS软件对数据进行相关性分析,掌握对非平稳时间序列的随机分析,选择合适模型,拟合序列发展。

3.2 实验原理在SAS 系统中有一个AUTOREG 程序,可以进行残差自相关回归模型拟合。

残差自回归模型的构思是首先通过确定性因素分解方法提取序列中主要的确定性信息:t t t t x T S ε=++ (1)式中,t T 为趋势效应拟合;t S 为季节效应拟合。

考虑到因素分解方法对确定性信息的提取可能不够充分,因而需要进一步检验残差序列{}t ε的自相关性。

如果检验结果显示残差序列的自相关性不显著说明确定性回归模型(1)对信息的提取比较充分,可以停止分析。

如果检验结果显示残差序列的自相关显著,说明确定性回归模型(1)对信息的提取不充分,这时可以考虑对残差序列拟合自回归模型,进一步提取相关信息:11t t p t p t a εφεφε--=+⋅⋅⋅++这样构造的模型:t t t t x T S ε=++11t t p t p t a εφεφε--=+⋅⋅⋅++(a )0t E =,2(a )t Var σ=,(a ,a )0t t i Cov -=,1i ∀≥这就是自回归模型。

相关文档
最新文档