SF6断路器液压机构的油缸缓冲器的设计,试验与调整

SF6断路器液压机构的油缸缓冲器的设计,试验与调整
SF6断路器液压机构的油缸缓冲器的设计,试验与调整

维普资讯

高压断路器液压机构故障的预防及处理(正式)

编订:__________________ 单位:__________________ 时间:__________________ 高压断路器液压机构故障的预防及处理(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4947-28 高压断路器液压机构故障的预防及 处理(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 为防止高压断路器液压机构故障的发生,特制定如下措施: 1. 每小时对升压站各开关液压机构油压、油位等进行一次全面检查,发现异常及时采取措施处理。 2. 控制室值班员发现液压机构运行时间过长(一般正常为5~7秒)或压力异常信号时,应立即断开直流馈线屏对应分支的“110KV配电装置”断路器,立即检查并隔离故障开关液压机构油泵回路后,再及时恢复对其他正常开关液压机构油泵电源。 3. 压力升高≥22.2Mpa时,应注意检查油泵是否停运,否则应立即手动停运,并及时泄压至额定值,通知检修处理。 4. 当断路器运行中,液压机构油压下降至0(简

称零压闭锁)时的处理: 4.1. 处理原则 4.1.1. 高压断路器出现零压闭锁时必须迅速采取措施,防止开关慢分闸; 4.1.2. 尽快查明油压下降的原因,并处理; 4.1.3. 缺陷消除后要尽快恢复正常运行。 4.2. 处理步骤 4.2.1. 断开故障断路器液压机构油泵电源刀闸,因为这种情况下故障开关的液压机构重新建压,很容易造成开关慢分爆炸,这是紧急情况下处理最关键的步骤。 4.2.2. 断开故障开关的控制回路电源,防止电气闭锁失灵时人员远方操作或保护动作等原因造成开关慢分闸。 4.2.3. 迅速用专用卡板将开关的传动机构卡死,可以最有效的防止开关慢分闸。 4.2.4. 采取上述措施后,及时调整运行方式隔离故障开关。

缓冲液压油缸

缓冲液压缸 开放分类:机械制造、机械、机械设计、机械原理、液压 目录 ? 基本概念 ? 缓冲装置 ? 理想缓冲定位 ? 拉杆缓冲液压缸 ? 柱塞式缓冲液压油缸 ? 活塞式单作用缓冲液压缸 ? 二级缓冲液压缸 ? 外置式缓冲液压缸 基本概念 [编辑本段] 缓冲液压缸是具有缓冲功能的液压缸。 缓冲装置 [编辑本段] 公开的是一种置于挖掘机的液压缸中的液压缸缓冲装置,该液压缸缓冲装置阻止活塞与端凸缘碰撞并吸收碰撞产生的冲击。由于设置该缓冲装置,即使在外力施加在液压缸上,不会发生压力高于液压缸的设计强度的情况。在设在液压缸中的液压缸缓冲装置中,该液压缸包括构成液压油的收集室的管子,进行直线运动的杆,固定在杆上、并分隔了管子的收集室的活塞,和端凸缘,该液压缸缓冲装置包括装在杆上与活塞接近的缓冲套,如果在杆的直线运动中活塞接近杆侧端凸缘,在杆侧室中产生预定的缓冲压力,还包括设在缓冲套上的弹性体,阻止活塞与杆侧端凸缘碰撞并通过其弹性吸收冲击。 理想缓冲定位 [编辑本段] 用理想曲线实现液压缸的缓冲定位问题。理论分析、仿真及实验证明:理想曲线是实现液压缸缓冲定位的最佳曲线,用理想曲线实现液压缸的缓冲定位,在伺服控制的条件下定位精度可达±0.02mm,定位时压力冲击小,缓冲定位的行程和初速度可根据需要任意设定,解决了定位精度和工作速度之间的矛盾,既提高了定位质量又提高了工作效率。理想曲线控制的对象是液压系统。要实现缓冲定位有两种手段,一种是比例控制系统,另一种是伺服控制系统。伺服控制的效果要好于比例控制。在控制衍也有两种方式:PID 控制器和自组织模糊控制器。用高次曲线作为输入信号,用PID控制器作为控制算法,对伺服系统进行实验,得到上升时间0.2秒,超调量7﹪以内,定位精度±0.02MM。 拉杆缓冲液压缸 [编辑本段] YGC系列和YGD系列拉杆液压缸,YGC系列为差动缸,YGD系列为等速缸,具有重量轻,结构简单,工作可靠,安装方便,易于维修,安装形式多样等特点,符合ISO6020/2(1991)和DIN24554标准,

液压油缸设计

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。— 液压缸工作腔的压力(Pa ) 错误!未找到引用源。— 液压缸回油腔的压力(Pa ) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D —液压缸内径 d —活塞杆直径 F — 液压缸推力 (N ) v —液压缸活塞运动速度 液压缸内径D 的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D 。液压缸内径D 和活塞杆直径d 可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: ()212 1212 4F d p D p p p p π=---有杆腔进油并不考虑机械效率时: ()221 1212 4F d p D p p p p π=+--

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = ==,按照GB/T2348-2001对液压缸内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

断路器的各种操作机构的区别

我们在现场碰到的开关一般分为多油(比较老的型号,现在几乎见不到了)、少油(一些用户站还有)、SF6、真空、GIS(组合电器)等类型。这些讲的都是开关的灭弧介质,对我们二次来说,密切相关的是开关的操作机构。机构类型可分为电磁操作机构(比较老,一般在多油或少油断路器配的是这种);弹簧操作机构(目前最常见的,SF6、真空、GIS一般配有这种机构);最近ABB又推出一种最新的永磁操作机构(比如VM1真空断路器)。 6.2 电磁操作机构 电磁操作机构完全依靠合闸电流流过合闸线圈产生的电磁吸力来合闸同时压紧跳闸弹簧,跳闸时主要依靠跳闸弹簧来提供能量。所以该类型操作机构跳闸电流较小,但合闸电流非常大,瞬间能达到一百多个安培。这也是为什么变电站直流系统要分合闸母线控制母线的缘故。合母提供合闸电源,控母给控制回路供电。合闸母线是直接挂在电池组上,合母电压即电池组电压(一般240V左右),合闸时利用电池放电效应瞬间提供大电流,同时合闸时电压瞬间下降的很厉害。而控制母线是通过硅链降压和合母连在一起(一般控制在220V),合闸时不会影响到控制母线电压的稳定。 因为电磁操作机构合闸电流非常大,所以保护合闸回路不是直接接通合闸线圈,而是接通合闸接触器。跳闸回路直接接通跳闸线圈。合闸接触器线圈一般是电压型的,阻值较大(一般几K)。保护同这种回路配合时,应注意合闸保持一般启动不了。但这问题也不大,跳闸保持TBJ一般能启动,所以防跳功能还存在。该类型机构合闸时间较长(120ms~200ms),分闸时间较短(60~80ms)。 6.3 弹簧操作机构 该类型机构是目前最常用的机构,其合闸分闸都依靠弹簧来提供能量,跳合闸线圈只是提供能量来拔出弹簧的定位卡销,所以跳合闸电流一般都不大。弹簧储能通过储能电机压紧弹簧储能。对弹操机构,合闸母线主要给储能电机供电,电流也不大,所以合母控母区别不太大。保护同其配合,一般没什么特别需要注意的地方。 合闸弹簧和跳闸弹簧是独立的,储能机构一般只给合闸弹簧储能,而跳闸弹簧一般是靠断路器合闸动作储能.在合闸回路中串联有开关储能接点,也就是说开关未储能就不能进行合闸。但分闸回路中没有串联有开关未储能接点。所以就算开关未储能,也可以跳开。(注意:这里的开关未储能指的是合闸弹簧未储能,而分闸弹簧未储能是没有接点出来的)。 在断路器断开时,分闸弹簧是还没储能的,而合闸弹簧已储能。合闸时,合闸弹簧释放能量,合闸同时给分闸弹簧储能。以确保开关在合上的时候能跳开。合闸弹簧释放完能量时(开关刚合上),电机开始给合闸弹簧储能,这个大概需要十秒钟,此时就算合于故障,因为分闸弹簧已储能,所以能跳开。这也说明在手合于故障时,开关能马上跳开,但这种跳开之后不能马上再次重合(需要区别于重合闸),因为合闸还没储能,要等储能结束后才能再次送电。而如果是开关本来是合上的,此时开关的合闸弹簧和分闸弹簧都已储能。 有故障时,分闸弹簧释放能量分闸。再过1秒左右,(由于合闸弹簧已储能)合闸弹簧释放能量进行合闸。而在合闸结束的时候,分闸弹簧已储能结束,但合闸弹簧还没有储能好。如果这次合闸于故障,由于分闸弹簧以储能结束,所以开关

SF6断路器液压操作机构运行中常见的故障原因及预防措施

SF6断路器液压操作机构运行中常见的故障原因及预防措施 摘要:根据SF6断路器液压操作机构常见的故障现象,分析了产生故障的原因,提出了相应故障处理的方法、步骤、注意事项及所应采取的预防措施。 关键词:断路器:液压操作机构;故障;检修; 宁夏固原变电所所采用的110kV断路器是从河南平顶山开关厂引进的,并于1993年开始使用。下面就断路器在我所使用中出现的液压操作机构故障进行分析,并提出故障处理方法及预防措施。 1液压操作机构运行中常见的故障 液压操作机构在运行中,常见的故障主要有:高压油路渗漏、油泵自动打压和控制回路故障、氮气预压力异常、压力过高或过低等 1.1运行中失压导致零表压 运行中,液压机构压力降到零时报出的信号有:"压力降低"、"压力异常",开关的位置指示红、绿灯均不亮,机构压力表指示为零,原因多为高压油路严重渗漏:。此时,油泵启动回路已被闭锁(零压闭锁微动开关接点,将油泵控制回路断开),不再打压,机构压力降到零,对开关的安全运行不利。如果万一发生慢分闸,开关将可能发生爆炸。 处理方法主要有: 1)拔掉开关的操作保险,拉开其储能电源,用专用卡板将开关的传动机构卡死,以防慢分闸。卡死传动机构应注意务必使卡板固定牢靠。汇报上级派人检修。若在短时间内不能检修好,有旁母的先将负荷倒旁母带,将故障开关停止运行(用刀闸拉无阻抗并联支路的方法将开关隔离)。也可以将该开关倒至单独在一段母线上,与母联开关串联运行(双母线接线),然后检修机构。可以停电检修时,尽量停电。不能停电时,带电检修机构。 2)停电检修处理完毕时,应先启动油泵打压至正常工作压力,再进行一次合闸操作(可以用手打合闸铁心顶杆),使机构阀系统处于合闸保持状态,才能去掉卡板,装上操作保险。这样可以防止在油泵打压时,油压上升过程中出现慢分闸;去掉卡板时,应先检查卡板不受力,这样说明机构已处于合闸保持状态。 1.2油泵打压时间超过规定 油泵打压储能时,一般规定压力从零上升到正常工作压力时间不应超过3分钟。如果油泵长时间打压,可能会烧坏电动机;如果在油泵打压时自动停泵接点打不开,会使机构压力过高.影响安全运行。 这种故障的原因包括了油泵频繁启动的各种因素,但程度比它更严重,往往是各级阀门发生严重的渗漏。见的故障还包括:放油阀、控制阀关闭不严或合闸二级阀处于半分半合状态;油泵的吸油管压扁,进油不通畅;油泵低压侧有气体或漏气。其主要原因为: 1)油泵吸油阀作用不良。 2)滤油器不畅、油泵进油管路不畅。 3)油泵柱塞间隙大。 4)油泵低压侧有空气。 5)高压放油阀关闭不严。 6)阀系统内部密封不严。 7)油泵控制回路中。自动停泵接点打不开、有油泵高压力闭锁的,闭锁功能不可靠。 如果油泵打压时只报出"油泵运转"信号,超时以后仍只有这一个信号,说明油泵打压时压力不上升;如果"油泵运转"信号报出,经一定时间后又报出"压力异常"信号,说明属于油泵不能自动停止打压引起的。处理方法主要有: 应立即拉开其储能电源。为了防止机构的压力过高,或者长时间打压损坏电动机,可以在控制室拉开储能总电源,再到设备前拉开开关的储能电源,然后重新合上总电源。

几种常用液压缸缓冲装置结构设计

几种常用液压缸缓冲装置结构设计 摘要:本文对高速液压缸;大缸径、长行程液压缸及各种自卸车液压缸的缓冲装置提出了不同的结构设计,有针对性的解决了液压缸活塞与缸盖发生机械碰撞。 关键词:液压缸缓冲装置 1、引言 在液压系统中使用液压缸驱动具有一定质量的机构,当液压缸运动至行程终点时具有较大动能,如未作减速处理,液压缸活塞与缸盖将发生机械碰撞,产生冲击、噪声,有破坏性。为缓和及防止这种危害发生,因此可在液压回路中设置减速装置或在缸体内设缓冲装置。 2、几种液压缸缓冲装置结构设计 2.1高速液压缸缓冲装置结构设计 (1)液压缸特点及缓冲装置结构设计 高速液压缸工作时,活塞终端速度可以达到5m/s以上,若直接与端盖相撞,在惯性力和液压力的作用下,不但会损坏端盖,而且会产生较大的冲击载荷,对系统产生不利的影响。高速液压缸缓冲装置如图1a所示,主要由液压缸体、活塞、挡块、活塞杆、固定螺母、复位弹簧组成。其中活塞杆有四个台阶轴用来放置和固定活塞和挡块,螺母将活塞与活塞杆固定于一体。挡块为圆锥形,所以过流面积不断变化。 (2)工作原理 当活塞杆走到行程末端时,挡块3被液压缸端部限位停止运动,而活塞2、活塞杆4,固定螺母5继续向前运动,这时活塞与挡块形成节流缝隙,活塞与挡块之间的容腔压力增加,与活塞的惯性力和作用在活塞左端的液压力相对抗,从而达到缓冲的目的。 2.2大缸径、长行程液压缸缓冲装置结构设计 (1) 液压缸特点及缓冲装置结构设计 对于水平安装的大缸径长行程液压缸,由于活塞杆和活塞的巨大自重、零件的机械加工误差及安装误差等原因,液压缸在运行的过程中易引起导向部分靠近承重一侧的快速磨损,从而导向元件的偏心,体现到缓冲元件上,就是缓冲环和缓冲孔之间过大同轴度,将引起运行困难或产生机械故障。大缸径、长行程液压

开关操作机构故障的处理方法

开关操作机构故障的处理方法 目前110、220kV开关操作机构大部分为液压操作机构。操作机构的型号较多,操作机构的故障率也相对较高,且开关操作机构时常出现突发性故障。为帮助运行人员掌握开关操作机构故障的处理方法,下面将根据常用开关操作机构故障的不同类型,对故障的原因进行分析,提出探讨性处理方案。 一、打压电源故障的检查处理 在变电站的站用电系统正常运行情况下,开关操作机构的打压电源故障,一般是如下几方面的原因: (1)操作机构箱内打压电源小刀闸保险丝的容量不匹配,或是保险丝安装不规范,造成保险丝熔断: (2)打压电源回路中的电磁小开关因故跳闸或故障; (3)打压电源回路中,在变电站低压屏上的小空气开关或漏电保护器因故跳闸或故障; (4)断路器操作机构的打压电源回路中接线错误或是由于回路导线接头接触不良、断线等。 首先检查该回路中小刀闸的保险、电磁小开关、漏电保护器、空气开关等较容易出现问题并明显、易查的部位,如果未发现异常,再进一步检查打压电源回路的接线有无断线、虚接等问题。 经过检查,如果发现操作机构电源刀闸保险熔断,可根据其保险的熔断情况初步判断保险熔断的原因。若为保险安装不当造成保险丝熔断时,只要故障开关操作机构的压力尚没有达到“零压闭锁状态,运行人员可迅速更换同容量保险丝后恢复打压。如果操作机构的压力已经到达“零压闭锁”状态,严禁运行人员随意通过“零压启动按钮”起泵打压。若保险丝的熔断原因是装设保险丝的螺丝滑扣的缘故,应设法尽快更换小刀闸。判断保险丝熔断原因是过流引起的,应通过查看图纸或其他相关资料,确定保险丝的匹配容量,更换容量适合的保险丝。然后同样处理。判断保险丝熔断原因是短路引起的,应在更换保险丝的同时查找短路点,待消除了短路点后,再恢复打压电源。如果短时间内查不出短路点,也可以更换同容量保险丝后,对小刀闸进行一次试合闸。如合闸后保险丝再次熔断,就必须查出短路点并消除后,方可再次试合小刀闸。

500kV交流场断路器液压弹簧机构的结构与工作原理

500kV交流场断路器液压弹簧机构的结构与工作原理 1.概述 某换流站500kV交流场采用新东北电气(沈阳)高压开关有限公司生产的LW56-550/Y4000-63型断路器,该断路器操动机构采用HMB-8.3型弹簧储能液压操动机构。HMB-8.3型弹簧储能液压操动机构利用了现代化制造技术和模块化组装技术的优势,具有碟簧储能、液压油传递力和转换能量的双重优越性。 2.HMB-8.3型弹簧储能液压操动机构的结构 HMB-8.3型弹簧储能液压操动机构采用模块设计,五个主要功能模块用螺栓和工作缸联接,便于维修。这些功能模块是:动力模块、工作模块、储能模块、监视模块和控制模块。 2.1 动力模块 动力模块(如下图1、图2所示)由电动机、齿轮传动装置、偏心转轴及柱塞泵等组成。用法兰装在工作缸外部。油标安装在低压油箱外侧,以便观察油位。 图1 储能电机图2 动力模块 2.2 工作模块 工作模块包括工作缸、工作缸活塞杆缓冲系统。工作缸是操动机构的关键零件。所有其它模块都用法兰径向装在工作缸的周围。这些模块与工作缸间用密封联结件作为液压油的通道,不需要采用任何管道。 2.3 储能模块 储能模块采用安装在碟片弹簧装置上部的三个蓄能活塞储蓄能量。碟片弹簧装置采用八个双片弹簧,正反叠装,以取得较大作用力。三个储能活塞直接作用在碟片弹簧装置上,确保一定的油压,建立一定的碟簧压缩变形量。机械储能的优点是长期稳定、可靠和不受温度影响。

图3 工作模块图4 储能模块 2.4 监测模块 监测模块(如下图5所示)由带凸轮装置的限位开关、位于碟片弹簧装置圆盘上的齿条齿轮啮合装置、标志碟片弹簧压缩量的信号灯和压力释放阀等组成。限位开关监测碟片弹簧的储能状态。由于限位开关的转动与碟片弹簧的轴向运动关联,可以直接反映后者的储蓄能量值。且这一测量值不受温度影响。限位开关可以对电磁阀分、合闸操作进行闭锁,以防止碟片弹簧压力变形不满足规定值,而出现断路器误操作。断路器进行分、合闸操作造成的油压降低,通过限位开关可控制油泵自动启动打压,以补充能量。如果因为规定保压时内部泄漏造成的压力降低,油泵也会自动启动打压。控制压力释放和加压的压力释放阀装在限位开关的上方。 2.5 控制模块 控制模块(如下图6所示)装有调速螺栓,可精密调节断路器的分合闸速度。一级阀位于控制模块座上,与工作缸、低压油箱、储能模块相连通。一级阀中的活塞动作由电磁铁控制。 图5 监测模块图6 控制模块

框架式断路器操作机构剖析讲课讲稿

框架式断路器操作机构剖析 倪文元 操作机构是框架式断路器的关键部件,断路器的储能、闭合、断开由操作机构承担;操作机构应具备自由脱扣功能,以保证操作者的人生安全;断路器配置的辅助开关与相关脱扣器串接,以保证脱扣器正常动作。辅助开关的动作由操作机构操纵,它的通断与断路器同步对外可提供断路器的通断状态电气信号。操作机构由储能合闸机构和自由脱扣分闸机构组成,操作机构按合闸储能和分闸储能可以分成两类,两类操作机构结构不同各具特点:前者结构复杂零部件多,两套机构各自相对独立,能分别完成储能合闸和脱扣分闸功能;后者具有结构简单零部件少,两套机构融为一体相互借用,装配维修方便,能降低生产成本。两种操作机构孰优孰劣难下定论,前者由于闭合后已储能,所以当断路器断开后,能立即闭合。但是,实际使用中框架断路器遇故障断开后,应查明原因排除故障后,才能合闸。因此,其积极意义并不显现。而后者的经济性比较突出,虽然,分闸后才能储能,但数秒的储能时间不会影响框架断路器的正常工作,利用其良好的经济性可以设计出价廉物美的框架式断路器,这样的产品更符合中国的国情。当然,在设计框架式断路器时应作市场调研,根据市场需求、产品定位等具体情况,选择符合要求的操作机构类型进行设计。 目前,国内框架式断路器的主流产品DW45年销量已达二十余万台,产品质量稳步提高,完全可与施耐德的M型断路器相媲美。DW45及其延伸产品W2、W3的操作机构属于合闸储能类型,以下对DW450操作机构(其结构、原理、功能完全一致)与业内同仁进行共同剖析,深入了解掌握它的结构、原理和功能,为改进以致设计操作机构打下基础。 1储能合闸机构剖析 1.1 储能 见图1所示,由手柄操作或电动操作机构驱动储能轴2带动凸轮1逆时针转动,凸轮1的外轮廓推动储能滚子5使储能杠杆3以O3为支点逆时针转动,在储能杠杆3的推动下,不断压缩储能弹簧13,如图2所示,当安装在凸轮1上释能滚子4压住储能扣片6的下端,储能扣片6以O2为支点顺时针转动,它的另一端扣在储能半轴8缺口处,凸轮1被锁扣,储能结束。此时,手柄操作或电

液压缸缓冲结构和缓冲原理的研究

1-缸盖;2-单向阀;3-端盖凹缘;4-锥形柱塞; 5-活塞;6-缸体;7-压力油;8-活塞杆;9-调节螺钉 图 1 节流缓冲原理图 液压缸缓冲结构和缓冲原理的研究 李艳利 1 刘志奇 1 董 朋 2 许保亮 3 熊 喆 1 ( 1.太原科技大学机械工程学院 山西太原 030024 2.燕山大学机械工程学院 河北秦皇岛 066004 3.莱芜钢铁集团有限公司型钢炼铁厂 山东莱芜 271104 ) 摘 要:介绍具有不同缓冲结构的液压缸,并对不同缓冲结构液压缸的缓冲过程进行分析,建立了五种缓冲结构液压 缸在缓冲过程不同阶段的流量方程,探讨了各缓冲结构的主要结构参数对缓冲的影响规律,指出了相应缓冲结构适用 的场合,总结了设计缸内缓冲装置要考虑的一些因素。 关键字:液压缸;缓冲结构;缓冲原理 中图分类号:TH137.51 文献标志码:A 文章编号:1672-8904-(2013)06-0005-004 液压缸有时运动速度很快,当活塞运动到液压缸 两端时,会与端部发生冲击,产生噪声,严重时会引起 损坏。为了防止这种冲击,一些特定工况下应用的液 压缸上需设置缓冲装置。液压缓冲是利用油液的不 可压缩性和流动性。缓冲装置一般是基于这样的原 理:当活塞运动到接近端部时,使回油阻力增大,活塞 在回油腔受到较大的反压力或者使进油腔卸荷,降低 运动速度,从而达到避免冲击缸盖的目的。 液 压 缸 缓 冲 方 法 可 以 分 为 节 流 缓 冲 和 卸 压 缓 冲。从装置方式上也分为两种:一种是外置式缓冲液 压缸,也就是在液压系统中设置溢流阀、顺序阀、节流 阀或者蓄能器等这类流量控制装置进行缓冲,外置缓 冲的优点是,在工况变化时,容易对缓冲元件进行调 整,缺点是系统回路复杂,且缓冲效果易受系统其他 部分的影响。另一种是内置式缓冲液压缸,是在液压 缸内部设计一定的缓冲结构来实现缓冲,而不需要另 加元件,结构简单,加工和使用方便,因而得到广泛的 应用。本论文主要对内置式缓冲液压缸进行讨论。 间的节流环隙中流出,从而在封闭空间造成高压,迫 使活塞减速制动而实现缓冲。 图 1 所示为节流缓冲原理,锥形柱塞 4 进入端盖 凹缘 3 处开始减速,限制了缸体内的液压油向油口的 流量。当柱塞进入最后部位时,液压油应通过调节螺 钉 9 处的可调油口排出。缓冲器上装有一个单向阀 2 允许活塞反向时液压油能自由流入。 1 液压缸缓冲结构介绍及原理分析 内置式缓冲液压缸一般是利用与活塞相连的缓 冲柱塞和与缸体相连的缓冲孔之间的间隙,在油流过 时产生阻力,达到缓冲目的,故称之为节流缓冲。在 工作中,利用了节流阻尼的作用,当缓冲柱塞插入排 油孔口中后,使活塞与液压缸端盖之间形成封闭空 间,封闭空间中油只能从节流小孔或柱塞和排油孔之 图 1 所示为圆锥形缓冲装置,除此之外,缓冲柱 塞还有圆柱形、台阶形、抛物线形或排孔形等不同类 型,即缓冲装置会有不同的缓冲结构。这些结构中只 收稿日期:2013-08-07 作者简介:李艳利(1988-),女,硕士研究生。研究方向为流体传动与 控制。

高压断路器液压机构故障的预防及处理

高压断路器液压机构故障的预防及处理 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

高压断路器液压机构故障的预防及处理为防止高压断路器液压机构故障的发生,特制定如下措施: 1.每小时对升压站各开关液压机构油压、油位等进行一次全面检查,发现异常及时采取措施处理。 2.控制室值班员发现液压机构运行时间过长(一般正常为5~7秒)或压力异常信号时,应立即断开直流馈线屏对应分支的“110KV配电装置”断路器,立即检查并隔离故障开关液压机构油泵回路后,再及时恢复对其他正常开关液压机构油泵电源。 3.压力升高≥22.2Mpa时,应注意检查油泵是否停运,否则应立即手动停运,并及时泄压至额定值,通知检修处理。 4.当断路器运行中,液压机构油压下降至0(简称零压闭锁)时的处理: 4.1.处理原则

4.2.处理步骤4.3.注意事项

发生上述情况之一,是故障开关发生慢分闸的前兆,相关人员必须迅速撤离现场,情况危急时,也可就地迅速寻找能够有效防止开关爆炸碎片伤人的处所躲避。 5.液压机构压力降低(>9.8Mpa,并<21.6Mpa)时,及时检查机构有无明显泄漏、电源是否正常、启动回路是否正常,及时手动打压至额定值,并通知检修处理。若机构明显泄漏压力不断下降不能立即消除时、或液压机构压力异常降低(<9.8Mpa)时,应立即按第4条进行处理。 6.“压力降低闭锁合闸”、“压力降低闭锁分闸”信号发出时,严禁擅自解除闭锁进行操作.

7.当开关液压机构故障不能可靠动作开关时,应立即请示值长,及时隔离故障开关,防止开关所保护的回路故障时,无法分断而扩大故障。 8.加强对各开关液压机构油泵运转情况的统计,以便通过油泵启动频繁、油泵运转时间过长、油泵启动间隔过长等异常现象提前发现液压机构可能存在的问题,有上述异常情况时应及时汇报处理。 9.其他未尽事宜按规程及相关规定执行。 发电部

高压断路器液压机构故的原因分析和处理正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 高压断路器液压机构故的原因分析和处理正式版

高压断路器液压机构故的原因分析和 处理正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过 程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 110kV以上高压断路器,一般都配置CY型液压操作机构。液压机构体积小、功率大,但其故障率明显高于弹簧和电磁操作机构。 笔者对近年遂溪供电分公司管辖配备液压机构的断路器故障进行了分析,发现引起液压机构故障的主要原因有4个:(1)密封圈损坏;(2)微动开关失灵;(3)球阀密封不良;(4)油压过高闭锁。前3种原因是引起油泵频繁打压的主要原因。这4个原因引起的故障占总故障的88%以上,如果能解决这4个问题就能大幅度

降低液压机构的故障率。 1故障原因的分析 1.1密封圈损坏 密封圈材料性能差。国产液压机构多使用三元乙丙烯为材料的尼龙垫和聚氯乙烯橡胶的密封圈,其使用温度不能在感动45℃,而夏季的油温常超过50℃,在高压力不容易被冲坏。 1.2微动开关失灵 微动行程开关和电接点压力表使用时间过长,加之机构箱体内湿度过大,使其触点严重氧化而接触不良,或触点压缩弹簧生锈而动作不可靠,造成油泵频繁补压,或油泵不能正常补压而压力低闭锁,

断路器操纵机构

直流断路器的永磁操纵机构 1.1 地铁用直流断路器操纵机构概述 在输配电系统中常采用的高压开关电器主要是断路器,然而断路器大多是靠触头的打开、关合来实现电路的开断和接通,而触头的打开、关合必须由操动机构去完成。因此,操动机构对断路器的发展有着很大影响。目前,我国地铁牵引供电系统大多采用直流供电的方式。在地铁牵引供电系统中起着故障跳闹、保护牵引供电系统和其它电力设备的关键器件就是直流断路器,它是地铁供电系统中不可或缺的控制和保护器件。由于地铁供电系统故障时电流较大,在直流断路器动作时产生的电弧对其破坏严重,这就使得必须对直流断路器经常进行维护和更换。因此,加强对直流断路器的研究是实现安全可靠的地铁输配电系统的关键。 直流断路器的操动机构不仅要满足灭弧特性对操动机构的要求,而且要确保断路器长时间的动作可靠性,所采用的操动技术与断路器的动态特性有很大关系。长期的经验表明,断路器故障的很大比重是操动机构的故障率。因此,在要求断路器向大容量、高电压、高可靠性发展的今天,为了使电力系统对高可靠性的要求得以满足,从事于提高传统操动机构可靠性和质量的同时,要求突破传统意义上的机构动作原理,发展和研制新的断路器操动机构。 1.2 传统的操纵机构 用于高压断路器的传统的操动机构主要有气动操动机构、弹黃操动机构和液压操动机构三种。(一)、气动操动机构是采用压缩空气通过阀门控制气虹内活塞以保证开关分合闸的机构,但操作时噪音大、需要一套空气压缩装置,使得其应用场合受到较大的限制,遂渐被弹簧操动机构和液压操动机构所取代。(二)、弹賛操动机构是釆用已经储能的弹賛装置,在释放位能的同时所产生的力使得开关合闹的机构,它采用小功率交流或手动电动机储能,它的合闹功基本上不受电源电压影响,比较恒定,这样不但能够获得较高的合闹速度,而且可以完成快速的自动重合闹操作。然而这种机构完全依靠机械传动,零部件总数多,传动机构比较复杂,故障率较高,运动部件数目多,要求制造工艺较高。(三)、液压操动机构是采用液体作为力传递的介质,一般是用高压油来推动工作活塞运动,使开关合阐的操动机构。然而,液压机构本身结构复杂,管路的密封和零件的加工精度都要求很高,装配、调整和维修难度也较大。 因此,传统操动机构主要由锁扣和连杆等能量供应系统和传动机构组成,装置复杂、效率不高,且动作时间慢、响应时间分散。切除直流故障的主要问题是希望断路器尽快的动作,在故障电流未达到预期短路水平时切除故障。传统的操动机构明显无法满足快速的反应和快速的幵断动作,所以研制幵发具有以下意义的操动机构是目前的发展趋势。 1.3 永磁操纵机构

【CN209671319U】一种液压缸用缓冲装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920282911.6 (22)申请日 2019.03.06 (73)专利权人 焦作市广成液压机械制造有限公 司 地址 454000 河南省焦作市山阳区工业路 39号60幢 (72)发明人 成富安 李英霞 韩修春 张学勤  (74)专利代理机构 焦作市科彤知识产权代理事 务所(普通合伙) 41133 代理人 郑菊梅 (51)Int.Cl. F15B 15/22(2006.01) F16F 15/04(2006.01) (54)实用新型名称 一种液压缸用缓冲装置 (57)摘要 本实用新型公开了一种液压缸用缓冲装置, 包括缸筒和活塞杆,所述活塞杆远离缸筒的一端 固定安装有一个固定块,所述活塞杆与缸筒连接 处设有安装板,所述固定块与安装板之间安装有 缓冲装置,所述缸筒的内槽设有减震装置,所述 缸筒的两侧外壁对称安装有防护装置。优点在 于:本实用新型在缸筒底部安装了减震装置,且 在缸筒与固定块之间安装了缓冲装置,通过第一 弹簧和第二弹簧的回弹力作用下,使得活塞杆不 会快速压进缸筒中,避免了活塞杆对缸筒的破 坏,其次,在缸筒的外壁上安装了防护装置,可以 保护缸筒减少所受到的水平冲击力作用。权利要求书1页 说明书3页 附图3页CN 209671319 U 2019.11.22 C N 209671319 U

权 利 要 求 书1/1页CN 209671319 U 1.一种液压缸用缓冲装置,包括缸筒(1)和活塞杆(2),其特征在于,所述活塞杆(2)远离缸筒(1)的一端固定安装有一个固定块(5),所述活塞杆(2)与缸筒(1)连接处设有安装板(10),所述固定块(5)与安装板(10)之间安装有缓冲装置,所述缸筒(1)的内槽设有减震装置,所述缸筒(1)的两侧外壁对称安装有防护装置,所述减震装置包括挡板(3)和第一弹簧(4),所述缸筒(1)远离活塞杆(2)一端的内壁上固定安装有第一弹簧(4),所述第一弹簧(4)靠近活塞杆(2)的一端固定安装有挡板(3),所述缓冲装置包括伸缩杆(6)和第二弹簧(7),所述固定块(5)与安装板(10)相靠近的两个外壁之间等距离的安装有多个伸缩杆(6),每个所述伸缩杆(6)上均套设有第二弹簧(7),且第二弹簧(7)位于固定块(5)与安装板(10)之间,每个所述伸缩杆(6)两端均固定安装有安装块(8),所述安装板(10)与固定块(5)相靠近的两个外壁上对称开设有插槽,所述安装板(10)和固定块(5)的外壁上均等距离插设有螺栓(9),每个所述螺栓(9)均贯穿固定块(5)和安装板(10)的外壁并延伸至插槽中,每个所述安装块(8)上均开设有螺纹孔,所述螺纹孔与螺栓(9)螺纹啮合,所述防护装置包括保护板(12)、弹杆(13)和第三弹簧(14),所述缸筒(1)的两侧外壁上均等距离安装有多个弹杆(13),每侧所述弹杆(13)远离缸筒(1)的一端均共同安装有保护板(12),每个所述弹杆(13)上均套设有第三弹簧(14),且第三弹簧(14)位于保护板(12)与缸筒(1)之间,所述安装板(10)与缸筒(1)之间设有密封圈(11)。 2

高压断路器液压机构故的原因分析和处理(正式版)

文件编号:TP-AR-L5909 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 高压断路器液压机构故的原因分析和处理(正式 版)

高压断路器液压机构故的原因分析 和处理(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 110kV以上高压断路器,一般都配置CY型液压 操作机构。液压机构体积小、功率大,但其故障率明 显高于弹簧和电磁操作机构。 笔者对近年遂溪供电分公司管辖配备液压机构的 断路器故障进行了分析,发现引起液压机构故障的主 要原因有4个:(1)密封圈损坏;(2)微动开关失 灵;(3)球阀密封不良;(4)油压过高闭锁。前3 种原因是引起油泵频繁打压的主要原因。这4个原因 引起的故障占总故障的88%以上,如果能解决这4个 问题就能大幅度降低液压机构的故障率。

1故障原因的分析 1.1密封圈损坏 密封圈材料性能差。国产液压机构多使用三元乙丙烯为材料的尼龙垫和聚氯乙烯橡胶的密封圈,其使用温度不能在感动45℃,而夏季的油温常超过50℃,在高压力不容易被冲坏。 1.2微动开关失灵 微动行程开关和电接点压力表使用时间过长,加之机构箱体内湿度过大,使其触点严重氧化而接触不良,或触点压缩弹簧生锈而动作不可靠,造成油泵频繁补压,或油泵不能正常补压而压力低闭锁,或补压过高而闭锁。另外,电接点压力表的接点接触不良,也是一个非常危险的因素。该公司曾经发生2起因微动行程开关和电接点压力表的触点同时接触不良的故

SF6断路器液压操作机构的异常处理 罗夫旗

SF6断路器液压操作机构的异常处理罗夫旗 发表时间:2018-06-15T10:06:45.360Z 来源:《电力设备》2018年第5期作者:罗夫旗[导读] 前言:液压机构广泛用做高压断路器的操作机构,其操作性好,但对加工工艺和检修维护水平要求较高。在此对遇到的一些常见故障和严重故障进行分析,介绍处理方法。 (河北西柏坡发电有限责任公司河北石家庄 050400) 前言:液压机构广泛用做高压断路器的操作机构,其操作性好,但对加工工艺和检修维护水平要求较高。在此对遇到的一些常见故障和严重故障进行分析,介绍处理方法。 关键词:断路器;液压操作机构;故障分析;处理方法; 一.常见故障 1.油泵启动频繁 油泵频繁启动是开关投运初期和运行后期最常见的异常情况。断路器在没有任何操作的情况下,按厂家要求和有关规定,每天启动1-2次属正常,6次左右要引起运行注意,加强监视,10次以上应安排检修。 油泵频繁启动是由于液压机构存在渗漏引起的,可分为外部渗漏和内部渗漏。 外部渗漏是由于机构组件间的高压连接管接头返松、变形损坏,这种故障用肉眼很容易从机构外表观察到漏油点,处理也较简单,收紧高压连接管接头螺帽即可,如果收紧螺帽仍有渗漏,则必须更换接头螺帽、卡套和密封垫圈。 内部渗漏是机构组件内部高压区和低压区之间的阀门密封不严引起的,表现在阀门的密封阀线有变形或损坏,安全阀弹簧疲劳不能逆止,液压油内有杂质卡在各阀门或密封圈处。这种故障不能用肉眼从机构外表观察到,只能根据高压油渗漏时发出的声音寻找渗漏点,也可以根据油管温度、开关分合闸状况等综合判断渗漏位置。打起压力,通过查看油箱内部高低压泄油管是否不断有油冒出,根据冒油的油管,判断泄漏的油回路,进一步查找泄漏回路的泄漏部位或元件。找出内部渗漏位置很大程度上取决于检修人员在这方面的经验,处理也较复杂。需要装拆组件,研磨阀线,更换损坏的阀针、疲劳的弹簧、受损的密封垫圈,过滤或更换带杂质的液压油,工艺要求高,还要进行性能测试。内部渗漏是处理难度较高的故障。 2.油泵长时间打不上压 断路器正常操作后,液压系统的压力下降,油泵启动,若经过长时间打压(超过3分钟),油压仍然达不到额定的压力。这种故障的原因,往往是各级阀门发生严重的渗漏。常见的故障包还括:放油阀、分合闸阀关闭不严或合闸二级阀处于半分半合状态;油泵的吸油管压扁,进油不通畅;油泵低压侧有气体或漏气。要找出故障点,就必须全面分析机构的状况,它可能是上述因素的一个或多个引起的,需要修理甚至更换放油阀、控制阀、油泵或吸油管等。这种故障的处理难度和工艺要求都很高。 3.液压操作系统压力异常 液压操作系统正常的油压范围是31.6-32.6Mpa(温度为15℃),超出这个范围就属于压力异常。 液压操作系统的油回路或电气回路出现故障,都会引起系统的液压异常升高或降低,具体的故障原因及相应的处理方法如下:(1)控制电动机停止触点损坏,应检查、修理微动开关及接触器; (2)中间继电器“粘住”或接触器卡滞,油泵电动机一直处于运转状态,应更换故障的中间继电器或接触器。 (3)储压器漏氮气或氮气侧进油,应检查内壁粗糙度和更换密封圈,严重时更换储压筒; (4)压力表失灵或存在误差,不能正确反映油压,应更换压力表; 4.微动开关接触不良 (1)微动开关内弹簧老化,触点氧化,油污,会引起微动开关不能正常接通和断开,应及时清理和更换; (2)压力组件的微动开关顶杆弹力下降,顶杆弯曲,引起对微动开关的压力不足,造成微动开关接触不良,要及时更换。 5.油泵不能启动 油泵不能启动时,首先检查电源线路和电机机械转动是否灵活,然后检查控制回路:(1)时间继电器、接触器损坏的,更换相应继电器和接触器; (2)零压闭锁使电机不能启动,若是微动开关接触不良引起,处理微动开关即可消除缺陷,若因油压下降,则应处理相关渗漏点。 6.油泵打压时间不足 油泵从零表压开始打压,不到2分钟就停止,应是时间继电器闭合时间不足,调整误差较大,应更换质量合格的时间继电器。 二.严重故障 1.运行中失压至零表压 断路器处在合闸位置的静止状态时,由于液压系统严重泄漏造成压力急剧下降,快速降至零表压。运行中失压导致零表压一般是由于液压机构的严重内部泄漏或高压油管开裂大量跑油引起的,是液压操作系统压力异常最严重的表现。由于失去液压动力,该断路器已不能进行分合闸操作,须立即退出运行进行处理。 2.脱管故障 断路器在合/分过程中,其常高压管或合闸指令管脱落,高压油大量喷出,断路器合分动作不正常,且液压很快失压至零。造成这种故障的原因是: (1)常高压管或合闸指令管的安装工艺差,紧固不足,承受不了合/分操作的冲击而脱落; (2)由于断路器运行时间长,常高压管或合闸指令管的接头老化返松(特别是发生过接头渗漏油而多次紧固过的管子),承受能力下降。 此种故障发生时,断路器也应立即退出运行,修复前,该断路器严禁再进行任何分合闸操作。 3.故障情况下紧急处理步骤 (1)断开断路器储能电机的电源;

液压油缸设计.(DOC)

液压油缸主要几何尺寸的计算: 上图中各个主要符号的意义: 错误!未找到引用源。—液压缸工作腔的压力(Pa) 错误!未找到引用源。—液压缸回油腔的压力(Pa) 错误!未找到引用源。—液压缸无杆腔工作面积 错误!未找到引用源。—液压缸有杆腔工作面积 D—液压缸内径 d—活塞杆直径 F —液压缸推力(N) v—液压缸活塞运动速度 液压缸内径D的计算 根据载荷力的大小和选定的系工作统压力来计算液压缸内径D。液压缸内径D 和活塞杆直径d可根据最大总负载和选取的工作压力来定,对单杆缸而言,无杆腔进油并不考虑机械效率时: D= 有杆腔进油并不考虑机械效率时: D=

一般情况下,选取回油背压 ,这时,上面两式便可简化,即无杆腔进油时 D = 有杆腔进油时: D = 设计调高油缸为无杆腔进油。 所以,216.91D mm = =,按照GB/T2348-2001对液压缸 内径进行圆整,取错误!未找到引用源。,即缸内径可以取为mm 250。 2.2活塞杆直径d 的计算 在液压油缸的活塞往复运动速度有一定要求的情况下,活塞杆的直径d 通常根 据液压缸速度比2 1v v v =λ的要求已经缸内径D 来确定。其中,活塞杆直径与缸内 径和速度比之间的关系为: d = 式中 D —液压缸内径 d —活塞杆直径 v λ—往复速度比 液压缸的往复运动速度比v λ,一般有2、1.46、1.33、1.25和1.15等几 种下表给出了不同往复速度比v λ时活塞杆直径d 和液压缸内径D 的关系。 v λ 1.15 1.25 1.33 1.46 2 d 0.36D 0.45D 0.5D 0.56D 0.71D 液压缸往复速度比v λ推荐值如下表所示:

CY.SF6高压断路器液压操作机构有关说明

CY型SF6开关液压机构有关说明 PSAF组件(包括四组微动开关) 1、KP1油泵启停:液压机构内部的油压下降至31.6MPa时,油压开关中的微动开关KP1的接点闭合,电动机启动,带动油泵打压储能;当油压上升至32.6MPa时,微动开关KP1返回,KM失电返回,电机电源被切除。 2、KP2合闸闭锁:闭锁值27.8±0.8Mpa。表示断路器若原在分闸位置时,液压机构内部的油压下降至此值,合闸闭锁(即不能合闸)。 3、KP3分闸闭锁:闭锁值25.8±0.8Mpa。表示断路器若原在合闸位置时,液压机构内部的油压下降至此值,分闸闭锁(即不能分闸,不允许分闸)。 4、KP4零压闭锁:(包括:开关失压到零压,油泵电机不打压,在开关于合闸位 置情况不能打压。) 备注: 1、控制阀、三极阀两边弹簧、钢球为防慢分用; 2、供排油阀兰区锥阀应在黄区左侧,弹簧为复位弹簧,在分闸时失去压力收缩; 3、工作缸两边的点点为缓冲弹簧; 4、防震容器兰区为自动释放阀; 5、PSAF下端为手动释放阀; 6、辅助储压器作用是维护三极阀压力; 7、PSAF氮气维护该组件压力; 8、主储压器维护整套设备压力; 六氟化硫开关液压机工作原理 以图纸为例 油泵打压原理: 在分闸位置时,红区常高压,兰区为低压,黄区为无压(但不等于无油)。 1、压力低到31.6兆帕时,PSAF组件下部钢珠下移,上部微动接点闭合,(常压时接点打开)启动电机打压,32.6MPA停止。 2、油泵打压,机油泵由左向右移动,循环动作,左兰区活塞阀封闭,机油泵区低压油顶开钢珠阀进入高压区打压。(进入防震容器)防震容器兰区为高压释放阀,正常时闭锁,油压过高时打开,过高的油进入主油箱,打压后油进入所有红色油区。 3、油泵打压要求每日不超过2次。 合闸过程: 1、合闸时,合闸电磁铁启动,向下压开钢珠阀(控制阀中的合闸一级阀,时间80毫秒)高压油过钢珠阀进入控制阀的二级阀,此时,分闸一级阀(钢珠

相关文档
最新文档