音频编码及常用格式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音频编码及常用格式
音频编码标准发展现状
国际电信联盟(ITU)主要负责研究和制定与通信相关的标准,作为主要通信业务的电话通信业务中使用的语音编码标准均是由ITU负责完成的。其中用于固定网络电话业务使用的语音编码标准如ITU-T G.711等主要在ITU-T SG 15完成,并广泛应用于全球的电话通信系统之中。目前,随着Internet网络及其应用的快速发展,在2005到2008研究期内,ITU-T将研究和制定变速率语音编码标准的工作转移到主要负责研究和制定多媒体通信系统、终端标准的SG16中进行。
在欧洲、北美、中国和日本的电话网络中通用的语音编码器是8位对数量化器(相应于64Kb/s的比特率)。该量化器所采用的技术在1972年由CCITT (ITU-T的前身)标准化为G.711。在1983年,CCIT规定了32Kb/s的语音编码标准G.721,其目标是在通用电话网络上的应用(标准修正后称为G.726)。这个编码器价格虽低但却提供了高质量的语音。至于数字蜂窝电话的语音编码标准,在欧洲,TCH-HS是欧洲电信标准研究所(ETSI)的一部分,由他们负责制定数字蜂窝标准。在北美,这项工作是由电信工业联盟(TIA)负责执行。在日本,由无线系统开发和研究中心(称为RCR)组织这些标准化的工作。此外,国际海事卫星协会(Inmarsat)是管理地球上同步通信卫星的组织,也已经制定了一系列的卫星电话应用标准。
音频编码标准发展现状
音频编码标准主要由ISO的MPEG组来完成。MPEG1是世界上第一个高保真音频数据压缩标准。MPEG1是针对最多两声道的音频而开发的。但随着技术的不断进步和生活水准的不断提高,有的立体声形式已经不能满足听众对声音节目的欣赏要求,具有更强定位能力和空间效果的三维声音技术得到蓬勃发展。而在三维声音技术中最具代表性的就是多声道环绕声技术。目前有两种主要的多声道编码方案:MUSICAM环绕声和杜比AC-3。MPEG2音频编码标准采用的就是MUSICAM环绕声方案,它是MPEG2音频编码的核心,是基于人耳听觉感知特性的子带编码算法。而美国的HDTV伴音则采用的是杜比AC-3方案。MPEG2规定了两种音频压缩编码算法,一种称为MPEG2后向兼容多声道音频编码标准,简称MPEG2BC;另一种是称为高级音频编码标准,简称MPEG2AAC,因为它与MPEG1不兼容,也称MPEG NBC。MPEG4的目标是提供未来的交互多媒体应用,它具有高度的灵活性和可扩展性。与以前的音频标准相比,MPEG4增加了许多新的关于合成内容及场景描述等领域的工作。MPEG4将以前发展良好但相互独立的高质量音频编码、计算机音乐及合成语音等第一次合并在一起,并在诸多领域内给予高度的灵活性。
我国自主知识产权的音频编码标准发展现状
具有自主知识产权的广晟数码数字音频编解码算法(简称广晟数码音频技术,DRATM),它是可以同时支持立体声和多声道环绕声的数字音频编解码技术。其算法的特点是采用自适应时频分块(ATFT)方法实现对音频信号的最优分解,进行自适应量化和熵编码。另外,由多家研究所、大学组成的中国音视频编码技术委员会(AVS)目前正在研究制定AVS第2部分音频标准,并已经申请了部分专利。AVS音频标准的指导原则是:在基本解决知识产权问题的前提下,制定具有国际先进水平的中国音频编码/解码标准,使AVS音频编码的综合技术指标基本达到或超过MPEG AAC编码技术的指标。目前正在开展移动部分AVS-M的音频标准制定工作。
语音编码技术又分为三类:波形编码、参数编码以及混合编码。
波形编码:波形编码是在时域上进行处理,力图使重建的语音波形保持原始语音信号的形状,它将语音信号作为一般的波形信号来处理,具有适应能力强、话音质量好等优点,缺点是压缩比偏低。该类编码的技术主要有非线性量化技术、时域自适应差分编码和量化技术。非线性量化技术利用语音信号小幅度出现的概率大而大幅度出现的概率小的特点,通过为小信号分配小的量化阶,为大信号分配大的量阶来减少总量化误差。我们最常用的G.711标准用的就是这技术。自适应差分编码是利用过去的语音来预测当前的语音,只对它们的差进行编码,从而大大减少了编数据的动态范围,节省了码率。自适应量化技术是根据量化数据的动态范围来动态调整量阶,使得量阶与化数据相匹配。G.726标准中应用了这两项技术,G.722标准把语音分成高低两个子带,然后在每个子带中分别应用这两项技术。
参数编码:利用语音信息产生的数学模型,提取语音信号的特征参量,并按照模型参数重构音频信号。它只能收敛到模型约束的最好质量上,力图使重建语音信号具有尽可能高的可懂性,而重建信号的波形与原始语音信号的波形相比可能会有相当大的差别。这种编码技术的优点是压缩比高,但重建音频信号的质量较差,自然度低,适用于窄带信道的语音通讯,如军事通讯、航空通讯等。美国的军方标准LPC-10,就是从语音信号中提取出来反射系数、增益、基音周期、清/浊音标志等参数进行编码的。MPEG-4标准中的HVXC声码器用的也是参数编码技术,当它在无信号片段时,激励信号与在CELP时相似,都是通过一个码本索引和通过幅度信息描述;在发声信号片段时则应用了谐波综合,它是将基音和谐音的正弦振荡按照传输的基频进行综合。
混合编码:将上述两种编码方法结合起来,采用混合编码的方法,可以在较低的数码率得到较高的音质。它的基本原理是合成分析法,将综合滤波器引入编码器,与分析器相结合,在编码器中将激励输入综合滤波器产生与译码器端完全一致的合成语音,然后将合成语音与原始语音相比较(波形编码思想),根据均方误差最小原则,求得最佳的激励信号,然后把激励信号以及分析出来的综合滤波器编码送给解码端。这种得到综合滤波器和最佳激励的过程称为分析(得到语音参数);用激励和综合滤波器合成语音的过程称为综合;由此我们可以看出CELP编码把参数编码和波形编码的优点结合在了一起,使得用较低码率产生较
好的音质成为可能。通过设计不同的码本和码本搜索技术,产生了很多编码标准,目前我们通讯中用到的大多数语音编码器都采用了混合编码技术。
音乐的主要编码技术
自适应变换编码:利用正交变换,把时域音频信号变换到另一个域,由于去相关的结果,变换域系数的能量集中在一个较小的范围,所以对变换域系数最佳量化后,可以实现码率的压缩。理论上的最佳量化很难达到,通常采用自适应比特分配和自适应量化技术来对频域数据进行量化。在MPEG layer3和AAC标准及Dolby AC-3标准中都使用了改进的余弦变换(MDCT);在ITU G.722.1标准中则用的是重叠调制变换(MLT)。本质上它们都是余弦变换的改进。
心理声学模型:其基本思想是对信息量加以压缩,同时使失真尽可能不被觉察出来,利用人耳的掩蔽效应就可以达到此目的,即较弱的声音会被同时存在的较强的声音所掩盖,使得人耳无法听到。在音频压缩编码中利用掩蔽效应,就可以通过给不同频率处的信号分量分配以不同的量化比特数的方法来控制量化噪声,使得噪声的能量低于掩蔽阈值,从而使得人耳感觉不到量化过程的存在。在MPEG layer2、3和AAC标准及AC-3标准中都采用了心理声学模型,在目前的高质量音频标准中,心理声学模型是一个最有效的算法模型。
熵编码:根据信息论的原理,可以找到最佳数据压缩编码的方法,数据压缩的理论极限是信息熵。如果要求编码过程中不丢失信息量,即要求保存信息熵,这种信息保持编码叫熵编码,它是根据信息出现概率的分布特性而进行的,是一种无损数据压缩编码。常用的有霍夫曼编码和算术编码。在MPEG layer1、2、3和AAC标准及ITU G.722.1标准中都使用了霍夫曼编码;在MPEG4BSAC工具中则使用了效率更高的算术编码。
常用格式
WAV格式
WAV格式是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,被Windows平台及其应用程序广泛支持。WAV格式支持许多压缩算法,支持多种音频位数、采样频率和声道,采用44.1kHz的采样频率,16位量化位数,因此WAV的音质与CD相差无几,但WAV格式对存储空间需求太大不便于交流和传播.WAV来源于对声音模拟波形的采样。用不同的采样频率对声音的模拟波形进行采样可以得到一系列离散的采样点,以不同的量化位数(8位或16位)把这些采样点的值转换成二进制数,然后存入磁盘,这就产生了声音的WAV文件,即波形文件。Microsoft Sound System软件Sound Finder 可以转换AIF SND和VOD文件到WAV格式。该格式记录声音的波形,故只要采样率高、采样字节长、机器速度快,利用该格式记录的声音文件能够和原声基本一致,质量非常高,但这样做的代价就是文件太大。
APE格式