二次函数与图形面积(1)
人教版初中数学九上 微专题10 二次函数的应用(一)——图形面积问题
1.如图,在平面直角坐标系中,OA=12 cm,OB=6 cm,点 P 从点 O 开始 沿 OA 边向点 A 以 1 cm/s 的速度移动,点 Q 从点 B 开始沿 BO 边向点 O 以 2 cm/s 的速度移动.点 P,Q 同时出发,当其中一点到达终点时,另一点也随 之停止运动.设运动时间为 t s,△ POQ 的面积为 y cm2.当△ POQ 的面积最
解:有最大值和最小值. ∵18-3x≥3,解得x≤5, ∴4≤x≤5. ∵S=-3x2+18x=-3(x-3)2+27, ∴当x=4时,S有最大值,最大值是24; 当x=5时,S有最小值,最小值是15.
3.如图,张大爷用 32 m 长的篱笆围成一个矩形菜园,菜园一边靠墙(墙长 为 15 m),平行于墙的一面开一扇宽度为 2 m 的门,张大爷还在菜园内开辟 出一个小区域存放化肥,两个区域用篱笆隔开,并有一扇宽 2 m 的门相 连.(注:所有门都用其他材料) (1)设平行于墙的一边长度为 y m,垂直于墙的一边长度为 x m,直接写出 y 与 x 之间的函数解析式,并写出自变量 x 的取值范围; (2)设此时整个菜园的面积为 S m2(包括化肥存放处),则 S 的最大值为多 少?
大时,t 的值为 1.5 .
2.如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,一边靠墙,已 知墙长 a=6 m.现有长为 18 m 的篱笆,设花圃的一边 AB 的长为 x m,面积 为 S m2. (1)S 关于 x 的函数解析式为 S=-3x2+18x ,x 的取值范围为 4≤x<6 ; (2)若边 BC 的长不小于 3 m,这个花圃的面积有最大值和最小值吗?如果 有,求出最大值和最小值;如果没有,请说明理由.
解:(1)由题意,得y=36-3x(7≤x<12). (2)由题意,得-3x2+36x(7≤x<12),
初中数学中考二轮6二次函数中的面积问题(1)
中考压轴题:二次函数中的面积问题学生姓名年级学科授课教师日期时段核心内容二次函数中求面积最值,图形平移或折叠面积问题课型一对一/一对N教学目标1.会利用函数的图象性质来研究几何图形的面积最值问题;2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.重、难点割补法求三角形面积,动态问题一般解题思路。
课首沟通1、上次的作业给我看看,完成了没有?还有不会的题吗?2、在初中学习二次函数过程中,是否还存在思维障碍和知识点?3、面对二次函数图象中的图形平移得到面积问题能不能自我总结出一般法则呢?知识导图导学一:二次函数中求面积的最值知识点讲解 1:直接公式法求解图形面积S△ = a ha d (d表示已知点到直线的距离)2、割补(和差)法以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:或S△ =3、平行线等积变换①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC= S△DBC,S△AOB =S△COD例 1. (2015潍坊中考改编)如图,在平面直角坐标系中,抛物线y=mx2-8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2-x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.【学有所获】图形面积的求法常见有三种,分别是:(1)(2)(3)[学有所获答案] (1) 直接公式求法(2) 割补法(3) 平行线等积变换法我爱展示1.(2014海珠一模)如图,已知抛物线y=x2+bx+c与轴交于A,B两点(点A 在点B的左侧)与轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)(1)求抛物线的函数表达式和直线BC的函数表达式;(2)当△CDE是直角三角形,且∠CDE=90°时,求出点P的坐标;(3)当△PBC的面积为时,求点E的坐标.2.(2015越秀期末考试)如图,已知抛物线y=x2+ax+4a与x轴交于点A,B,与y轴负半轴交于点C且OB=OC,点P为抛物线上的一个动点,且点P位于x轴下方,点P与点C不重合.(1)求该抛物线的解析式;(2)若△PAC的面积为,求点P的坐标;(3)若以A,B,C,P为顶点的四边形面积记作S,则S取何值时,对应的点P有且只有2个?导学二:二次函数中的图形平移、折叠问题知识点讲解 1:二次函数、一次函数图象平移法则将()的图像如何平移到的图像。
二次函数与图形面积问题
二次函数与图形面积问题1、阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:y=a(x-1)2+4 ,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△ABC的铅垂高CD及S △ ABC(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使a=-1 ,且S△PAB=9/8 S△CAB若存在,求出P点的坐标;若不存在,请说明理由.2、如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,-2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?3、如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB。
(1)求证:mn=-6;(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由。
4、如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1。
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______ (任写一个即可);(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;(3)设抛物线l2的顶点为C,K为y轴上一点,若S△ABK=S△ABC,求点K的坐标;(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形,若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由。
22_3 第1课时 二次函数与图形面积问题【人教九上数学学霸听课笔记】
(2)S=72-12(6-t)·2t=t2-6t+72(0≤t≤6).
(3)因为S=t2-6t+72=(t-3)2+63,
所以当t=3时,S有最小值,最小值为63.
谢 谢 观 看!
与 围成一个矩形场地ABCD,求该矩形场地的最大面积.
应
用 解:设矩形场地的面积为S m2,平行于墙的
一边BC的长为x m.由题意,得
图22-3-1
S=x·12(80-x)=-12(x-40)2+800,
所以当 x=40 时,S 最大值=800,12(80-x)=20,符合题意.
探 究
所以当所围成的矩形场地ABCD的长为40 m,宽为20 m时,其
故当所围成的矩形场地ABCD的长为30 m,宽为25 m时,其面积最
大,最大面积为750 m2.
探 究
变式 在美化校园的活动中,某兴趣小组想借助如图J22-3
与 -1所示的直角墙角(两边足够长),用28 m长的篱笆围成一个
应
用 矩形花园ABCD(篱笆只围AB,BC两边),在P处有一棵树与墙
CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含
1.用一条长为 40 cm 的绳子围成一个面积为 S cm2 的矩形,S 的
小 检
值不.可.能.为( D )
测 A.20
B.40
C.100
D.120
随 [解析] 设矩形的一边长为x cm,则S=x(20-x)=-x2+20x=-
堂
小 (x-10)2+100.
检 测
可见S的最大值是100,
所以S的值不可能为120.
探 归纳总结
究 与
应用二次函数解决面积最值问题的“三个关键点”
应 用
二次函数应用 图形面积问题
二次函数应用图形面积问题
1、在创建文明城市的活动中,政府想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB x
200m,求AB的
=m.(Ⅰ)若花园的面积是2
长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?
2、如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园
a=,所ABCD,其中AD MN,已知矩形菜园的一边靠墙,另三边一共用了200米木栏.(1)若30
围成的矩形菜园的面积为1800平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.
3、某养鸡专业户用篱笆及一面墙(该墙可用最大长度为36米)围成一个矩形场地ABCD来供鸡室外活动,该场地中间隔有一道与AB平行的篱笆()
EF,如图,BE、EF上各留有1米宽的门(门不需要篱笆),该养鸡专业户共用篱笆58米,设该矩形的一边AB长x米,AD AB
>,矩形ABCD的面积为s 平方米.(1)求出S与x的函数关系式,直接写出自变量x的取值范围;
(2)若矩形ABCD的面积为252平方米,求AB的长.
4、如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的矩形
花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数表达式.(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积为50m2的花圃吗?若能,请说明围法;若不能请说明理由.。
二次函数中的面积问题
二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。
● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。
二次函数与图形面积教案
⼆次函数与图形⾯积教案课题:⼆次函数与图形⾯积撰写:陈天灵审核:______ 授课⽇期:__⽉__⽇教学课时:第 6 周第 1 课教学⽬标知识与技能⽬标通过本节学习,巩固⼆次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。
过程与⽅法⽬标通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为⼆次函数的最值问题,通过动⼿动脑,提⾼分析解决问题的能⼒,并体会⼀般与特殊的关系,了解数形结合思想、函数思想。
情感、态度与价值观⽬标通过学⽣之间的讨论、交流和探索,建⽴合作意识,提⾼探索能⼒,激发学习的兴趣和欲望,体会数学在⽣活中⼴泛的应⽤价值。
教学重点利⽤⼆次函数y=ax2+bx+c(a≠0)的图象与性质,求⾯积最值问题教学难点对函数图象顶点、端点与最值关系的理解与应⽤教学过程环节教学内容调整意见复习旧知导⼊新课1.⼆次函数y=a(x-h)2+k的图象是⼀条抛物线,它的对称轴是直线x=h,顶点坐标是 (h,k) 。
2.⼆次函数的⼀般式是,它的图像的对称轴是,顶点坐标是 . 当a>0时,开⼝向向上,有最低点,函数有最⼩值,是;.当a<0时,开⼝向向下,有最⾼点,函数有最⼤值,是。
3.⼆次函数y=2(x-3)2+5的对称轴是直线x=3, 顶点坐标是 (3 ,5) 。
当x= 3时,y有最⼩值,是 5 .4.5详见课件。
⾃学指导阅读教材P49“问题”,解决下⾯问题。
1、问题1中是通过什么⽅法来求出⼩球在运动中的最⼤⾼度?2.归纳:⼀般地,当a>0(a<0)时,抛物线y=ax2+bx+c的的顶点是最低 ( ⾼_)点,当x=________时,⼆次函数y=ax2+bx+c有最⼤(⼩)值________.阅读教材P49-P50“探究1”,解决下⾯问题1.“探究1”中,场地⾯积S与边长l之间是什么关系?你能写出它们的关系式cbxaxy+ +=2 abx2-=直线) 44,2(2abacab--abac442 -abac442 -吗?2.当l取何值时,S最⼤?3.当场地⾯积S最⼤时,该场地是什么图形?合作探究⽤长为12cm的铁丝围成⼀个矩形,设矩形⼀边长为xcm,⾯积为ycm2,问何时矩形的⾯积最⼤?解:∵周长为12cm, ⼀边长为xcm ,∴另⼀边为(6-x)cm∴ y =x(6-x)(0< x<6)=-x2+6x=-(x2 -6x +9 -9)=-(x-3) 2+9∵ a=-1<0, ∴ y有最⼤值当x=3cm时,y最⼤值=9 cm2答:矩形的两边都是3cm,即为正⽅形时,矩形的⾯积最⼤。
人教九年级数学上册《二次函数与图形面积问题》课件
第1课时 二次函数与图形面积问题
重难互动探究
探究问题 求几何图形的最大(小)面积 例 [教材探究1变式题] 一条隧道的截面如图22-3-2所 示,它的上部是一个以AD为直径的半圆O,下部是一个矩形 ABCD.
图22-3-2
第1课时 二次函数与图形面积问题
(1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(平方米)关于半径r(米)的函数关系 式(不要求写出r的取值范围); ②若2米≤CD≤3米,求隧道截面的面积S的最大值(π取3.14, 结果精确到0.1平方米).
与x间的函数关系,再求解.
解: 不妨设矩形纸较短边长为 a,设 DE=x,则 AE=a -x.
那么两个正方形的面积和为 y=x2+(a-x)2 =2x2-2ax+a2. 当 x=--2×22a=12a 时, y 最小=2×12a2-2a×12a+a2=12a2. 即点 E 选在矩形纸较短边的中点时,剪下的两个正方形的 面积和最小.
[解析] (1)已知AD=4米,即半圆O的半径为2米,直接根 据圆的面积公式计算;(2)①隧道的截面积由两部分组成, 即半圆面积和矩形面积;②注意自变量的取值范围,在实际问 题中求最大(小)值,要注意自变量的范围是否符合实际意义.
第1课时 二次函数与图形面积问题
解:(1)当 AD=4 米时,S 半圆=12π·A2D2=12π×22=2 π(平方米),
数学
新课标(RJ) 九年级上册
22.3 实际问题与二次函数
第1课时 二次函数与图形面积问题
第1课时 二次函数与图形面积问题
新知梳理
► 知识点 用二次函数求几何图形的最大(小)面积 在解答有关二次函数求几何图形的最大(小)面积的问题时 ,应遵循以下规律: (1)利用几何图形的面积(或体积)公式得到关于面积( 或体积)的二次函数关系式; (2)由已得到的二次函数关系式求解问题; (3)结合实际问题中自变量的取值范围得出实际问题的答 案.
二次函数应用几何图形的最大面积问题教学课件
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
17二次函数与图形面积问题教案
二次函数与图形面积问题一、教学目标(一)知识与技能:1.通过探究实际问题与二次函数关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法;2.通过学习和探究“矩形面积”问题,渗透转化的数学思想方法.(二)过程与方法:通过研究生活中实际问题,体会数学知识的现实意义,体会建立数学建模的思想,进一步认识如何利用二次函数的有关知识解决实际问题.(三)情感态度与价值观:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.二、教学重点、难点重点:探究利用二次函数的最值(或增减性)解决实际问题的方法.难点:如何将实际问题转化为二次函数的问题.三、教学过程知识预备1.二次函数y =a (x -h )2+k 的图象是一条______,它的对称轴是_______,顶点坐标是_______.2.二次函数y =ax 2+bx +c 的图象是一条_______,它的对称轴是_____________,顶点坐标是________________.当a >0时,抛物线开口向___,有最___点,即当x =____时,y 最小值=______;当a <0时,抛物线开口向___,有最___点,即当x =____时,y 最大值=_______.问题 从地面坚直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少,小球最高?小球运动中的最大高度是多少?分析:可以借助函数图象解决这个问题,画出函数h =30t -5t 2(0≤t ≤6).可以看出,这个函数图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图像的最高点,也就是说,当t 取顶点的横坐标时,这个函数有最大值.解:由函数h =30t -5t 2(0≤t ≤6)的图象性质可知.当t ===3时,h 有最大值==45.也就是说,小球运动时间是3s 时,小球最高.小球运中的最大高度是45m .探究1用总长为60m 的篱笆墙围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少米时,场地的面积S 最大?解:矩形场地的周长是60m ,一边长为l m ,所以另一边长为(-l )m .场地的面积 S=l (30-l ) (0<l <30)即 S=-l 2+30l (0<l <30)因为,a =-1<0,所以,当 l ===15时,S 有最大值==225.也就是说,当l 是15m 时,场地的面积S 最大.练习已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最ab 2-)5(230-⨯-a b ac 442-)5(4302-⨯-260ab 2-)1(230-⨯-a b ac 442-)1(4302-⨯-大,最大值是多少?解:设直角三角形的一边为x ,则另一边为(8-x ),面积为y .则y 与x 的函数关系式为 y =x (8-x ) (0<x <8) 即 y =-x 2+4x (0<x <8)∵ a =-<0,∴ 当x ==4时,y 最大=8.答:当两条直角边都为4时,这个直角三角形的面积最大,最大值为8.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.212121ab 2。
9 第1课时二次函数与图形面积问题
22.3 实际问题与二次函数第1课时 二次函数与图形面积问题置疑导入 归纳导入 复习导入 类比导入如图22-3-1,用12米长的木料,做一个有一条横档的矩形窗框,为了使窗户透进的光线最多,窗框的长、宽应各是多少?图22-3-1[说明与建议] 说明:通过对周长一定的矩形面积最大值的实际问题的导入,激发学生的学习兴趣和探究新知的欲望,从而引导学生研究二次函数与图形面积问题的一般方法.建议:可以对以上问题挖空让学生填写:设宽为x 米,面积为S 米2.根据题意并结合图形可得S =x (6-32x ) = -32x 2+6x .∵-32 < 0,∴S 有最 大 值,当x = -62×(-32)=2 时,S 最 大 ,此时6-32x = 3 ,即当窗框的长为 3米 ,宽为 2米 时,窗户透进的光线最多.(1)(做一做)请你画一个周长为12厘米的矩形,算一算它的面积是多少.再和周围同学所画的矩形比一比,你发现了什么?谁画的矩形的面积最大?(2)(练一练)已知一个矩形的周长为12米,它的一边长为x 米,那么矩形面积S (平方米)与x (米)之间有怎样的关系?自变量的取值范围是什么?(3)(试一试)若想设计一个周长为12米的矩形广告牌,假如你是设计师,你知道怎么设计才能使广告牌的面积最大吗?[说明与建议] 说明:(1)题比较简单,但对学生有很大的吸引力和挑战性,可有效地激发学生的学习兴趣.(2)题在(1)题的基础上提出问题,引导学生对实际问题与二次函数展开联想.(3)题在(2)题的基础上加入实际背景求最值,这样低起点,快反馈,能有效地提高学生的数学建模能力.建议:教师要重点关注学生能否正确求解,考虑问题是否全面以及学生能否将实际问题转化为数学问题.——第49页探究1用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?【模型建立】利用二次函数解决几何图形的最大(小)面积问题,先利用几何图形的面积公式得到关于面积的二次函数解析式,再由二次函数的图象和性质确定二次函数的最大(小)值,从而确定几何图形面积的最大(小)值.【变式变形】1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,这个矩形菜园的长,宽各为多少时,它的面积最大?最大面积是多少?[答案:长为15 m,宽为7.5 m时,它的面积最大,最大面积为112.5 m2]2.如图22-3-2,用长为24米的篱笆,围成中间隔有一道篱笆的矩形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米):(1)如果所围成的花圃的面积为45平方米,试求花圃的宽AB;(2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?图22-3-2[答案:(1)AB=5米(2)能]3.如图22-3-3,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的矩形花圃.设花圃的边AB长为x米,面积为S平方米.(1)求S与x之间的函数解析式及自变量的取值范围;(2)当x取何值时,所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的花圃的最大面积.图22-3-3[答案:(1)S=-4x2+24x(0<x<6)(2)当x=3时,所围成的花圃面积最大,最大值为36平方米(3)最大面积是32平方米]4.[教材第52页习题22.3第9题]分别用定长为L的线段围成矩形和圆,哪种图形的面积大?为什么?[答案:圆理由略]——第52页习题22.3第7题如图22-3-4,点E,F,G,H分别位于正方形ABCD的四条边上.四边形EFGH也是正方形.当点E位于何处时,正方形EFGH的面积最小?图22-3-4【模型建立】通过设未知数建立函数关系,把几何问题转化为函数问题,把动点问题转化为函数问题,通过对函数的变化规律的研究来解决几何问题.【变式变形】如图22-3-5,在边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形的边上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形的边上时,记为点H;…依此操作下去.(提示:旋转前、后的图形全等.)图22-3-5(1)图②中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长.(2)若经过三次操作可得到四边形EFGH.①四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x之间的函数解析式及面积y的取值范围.[答案:(1)EF=-4 2+4 6(2)y=2x2-8x+16(0<x<4)8≤y<16][命题角度1] 利用二次函数的性质解决图形面积的最值问题此类问题常见题型:(1)利用二次函数解决图形的最大(小)面积问题,如教材P49探究1,P52习题22.3T4,T9.(2)几何图形上点的运动问题,何时面积最大(小),如教材P52习题22.3T6,T7,解决此类问题,关键是求二次函数的最值(二次函数图象的顶点的纵坐标或在使实际问题有意义的自变量取值范围内,根据二次函数的增减性找最值).例福建中考如图22-3-6,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另外三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.图22-3-6[答案:(1)AD的长为10米(2)当a≥50时,S的最大值为1250;当0<a<50时,S 的最大值为50a -12a 2] [命题角度2] 在几何图形运动过程中,判断函数图象此类问题一般作为中考选择题的最后一道题,难度较大.注意把几何图形的性质转化为求函数解析式的条件,然后再判断图象.例 孝感中考如图22-3-7,在△ABC 中,∠B =90°,AB =3 cm ,BC =6 cm ,动点P 从点A 开始沿AB 边向点B 以1 cm /s 的速度移动,动点Q 从点B 开始沿BC 边向点C 以2 cm /s 的速度移动,若P ,Q 两点分别从点A ,B 同时出发,点P 到达点B 时两点同时停止运动,则△PBQ 的面积S 与出发时间t 之间的函数关系图象大致是( C )图22-3-7图22-3-8[命题角度3] 二次函数与周长、面积、线段等最值存在性问题此类问题一般作为中考的压轴题,常与三角形或四边形知识紧密结合,体现了初中数学知识的灵活性和综合性.例 如图22-3-9,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x轴正半轴于点B (4,0),与过点A 的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C.(1)求抛物线的函数解析式;(2)点P 在线段OC 上(不与点O ,C 重合),过点P 作PN ⊥x 轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值.图22-3-9[答案:(1)y=-34x2+114x+1(2)△PCM面积的最大值为2516]1. 如图,已知:正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是()2. 用长度为2l的材料围成一个矩形场地,中间有2个隔墙,要使矩形的面积最大,则隔墙的长度为()A.14l B.13l C.12l D.l3. 已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为.4. 给你长8 m的铝合金条,请问:(1)你能用它制成一矩形窗框吗?(2)怎样设计,窗框的透光面积最大?(3)如何验证?参考答案1.B2.A3.50 cm24.解:(1)能.(2)设计成边长为2 m的正方形时,窗框的透光面积最大.(3)设矩形的一边长为x m,则另一边长为(4-x)m,设矩形窗框的面积为y m2,则y=x(4-x)=-x2+4x=-(x-2)2+4.所以当x=2时,y有最大值,y最大=4.所以当设计成边长为2 m的正方形时,窗框的透光面积最大,最大面积为4 m2.一位仁道主义的数学家——阿涅泽意大利科学家阿涅泽(Maria Gaetana Agnesi,1718~1799)在自然科学与哲学的著作对整个学术世界开启了一扇窗.而她最著名的数学作品,《分析讲义》,被公认是第一部完整的微积分教科书之一。
人教版九年级数学上册22.3.1《二次函数与图形面积问题》教学设计
人教版九年级数学上册22.3.1《二次函数与图形面积问题》教学设计一. 教材分析人教版九年级数学上册22.3.1《二次函数与图形面积问题》这一节主要介绍了二次函数在几何图形中的应用,通过研究二次函数图象与几何图形面积的关系,让学生进一步理解二次函数的性质,提高解决实际问题的能力。
本节内容是初中数学的重要知识,也是中考的热点,对于学生来说,理解并掌握二次函数与图形面积问题的解决方法具有重要意义。
二. 学情分析九年级的学生已经学习了二次函数的基本性质和图象,对于二次函数的解析式、顶点坐标、开口方向等概念有了一定的了解。
但是,将二次函数与几何图形的面积联系起来,可能会对学生造成一定的困扰。
因此,在教学过程中,需要引导学生将已知的二次函数知识与新的面积问题相结合,通过实例分析,让学生体会二次函数与图形面积问题的联系。
三. 教学目标1.理解二次函数图象与几何图形面积的关系。
2.学会利用二次函数解决实际面积问题。
3.提高学生的数学思维能力和解决实际问题的能力。
四. 教学重难点1.重点:二次函数图象与几何图形面积的关系。
2.难点:如何将二次函数与实际面积问题相结合,找出解决问题的方法。
五. 教学方法1.实例分析法:通过具体的实例,让学生观察二次函数图象与几何图形面积的关系。
2.问题驱动法:引导学生提出问题,分析问题,解决问题,培养学生的数学思维能力。
3.小组合作法:让学生分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.准备相关的实例,以便在课堂上进行分析。
2.准备一些练习题,以便在课堂上进行操练。
3.准备多媒体教学设备,以便进行图象展示。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾二次函数的基本性质和图象,为新课的学习做好铺垫。
2.呈现(15分钟)展示一些实际的面积问题,让学生观察并思考这些问题与二次函数图象之间的关系。
3.操练(20分钟)让学生分组讨论,尝试利用已知的二次函数知识解决呈现的面积问题。
九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版
22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。
二次函数综合(一)——面积问题
二次函数综合(一) ——面积问题
一、解决函数综合题中面积问题的常用方法:
1. 割补法
当所求图形的面积没有办法直接求出时,我们采取间接(分割或补全图形再分割)的方法来表示所求图形的面积,如图1:
4. 相似法
利用相似三角形面积比等于相似比的平方进行转化.
二、基本题型
1.如图,在平面直角坐标系中,△AOB的顶点O为原点,已知点A(3,6),B(5,2),求△AOB的面积.
2.已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。
求△ACD的面积。
3已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。
求△BCD的面积。
22.3.1二次函数与图形面积问题
例题:一条隧道的截面如图所示,它的上部是一个以 AD 为直径的半圆 O,下部 是一个矩形 ABCD。 (1) 当 AD=4 米时,求隧道截面上部半圆 O 的面积; (2) 已知矩形 ABCD 相邻两边之和为 8 米,半圆 O 的半径为 r 米。 ①求隧道截面的面积 S(平方米)关于半径 r(米)的函数关系式(不要求写 出 r 的取值范围) ; ②若 2 米≦CD≦3 米,求隧道截面的面积 S 的最大值。 (取 3.14,结果精确 到 0.1 平方米)
我的小组问题
自我评价:
学科长评价:
教师评价:
Hale Waihona Puke 《22..3.1 二次函数与图形面积问题》问题训练案
班级: 姓名: 主备: 审核: 使用时间:
B组
1、小明的家门前有一块空地,空地外有一面长 10m 的围墙,为了美化生活环境, 小明的爸爸准备靠墙修建一个矩形花圃, 他买回了 32m 长的不锈钢管准备作为花 圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通 道及在左右花圃各放一个 1m 宽的门(木质) .花圃的长与宽如何设计才能使花圃 的面积最大?
x
s1
s2
自我评价:
学科长评价:
教师评价:
个半圆形.设矩形的面积为 S1 平方米,半圆形的面积为 S2 平方米 ,半径为 r 米。 请你通过计算帮农场主选择一个围成区域最大的方案( 3 )
篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为 x m 。 (1)、要使鸡场的面积最大,鸡场的长应为多少米? (2)、如果中间有 n ( n 是大于 1 的整数)道篱笆隔墙,要使鸡场 面积最大,鸡场的长应为多少米? (3)、比较(1)、(2)的结果,你能得到什么结论?
22.3 第1课时 二次函数与图形面积问题 课件(共21张PPT)
用.
解:(1)∵矩形的一边长为x m,∴其邻边长为(6-x)m,
∴S=x(6-x)=-x²+6x,其中0<x<6.
(2)∵ S=-x²+6x=-(x-3)²+9, ∴当x=3, 即矩形的一边长为
3 m时, 矩形面积最大, 为9 m², 此时设计费最多, 为9×
问题3 面积S关于的函数解析式是什
么?自变量的取值范围是什么?
自主探究
1.已知二次函数 y=x²+2x-3,在下列各条件下,当x取何值时,
y有最大值或最小值.
(1)x为全体实数; (2)-3≤x≤0;
(3)-10≤x≤-4.
(1)当x=-1时,y有最小值;无最大值.
(2)当x=-3时,y有最大值;当x=-1时,y有最小值.
(2)开口向下,对称轴为直线x=1,顶点坐标(1,-6),当
x=1时,y有最大值-6.
女排精神是永不言败,一排球运动员从地面竖直向上抛出一
排球,排球的高度h(单位:m)与排球的运动时间t(单位:
s)之间的关系式是h=25t-5t2(0≤t≤5).排球的运动时间是多
少时,排球最高?排球运动过程中的最大高度是多少?
6cm/s的速度沿A→D运动,直到两点都到达终点为止.设点P的运动时间 为
t(s),△APQ的面积为S(cm²),则S关于t的函数图象大致是( C)
例2: 某广告公司设计一个周长为12 m的矩形广告牌,广告设计费
为每平方米1 000元,设矩形的一边长为x m,面积为S .
(1)求S与x之间的关系式,并写出自变量x的取值范围;
−
× −
= ,即最
二次函数与几何专题一 面积问题 教案
二次函数与几何专题一 面积问题一、学习目标1、 学生学会在二次函数中解决简单的与二次函数有关的面积问题2、 学生会用代数、几何的方法解决面积最大问题二、重点、难点函数中的坐标与线段的互相转化三、学习过程(一)基础训练1、若抛物线y=-x 2–x+6与x 轴交于A 、B 两点,则AB= 此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为 .2、已知二次函数y=x 2–21x-23与x 轴交于A 、B 两点,顶点为C ,则△ABC 的面积为 . 3、已知二次函数y=-21x 2+x+4的图象与x 轴的交点从右向左为A 、B 两点,与y 轴交点为C ,顶点为D ,求四边形ABCD 的面积.4、已知抛物线y=x 2–4x+1, 与x 轴交于A 、B 两点,在抛物线上有一点N,使△ABN 的面积为43,求点N 的坐标.5、 已知一次函数y=kx+m 的图象与二次函数y=a x 2 +bx+c 相交于A(-2,-1),B(6,3)两点,且二次函数图象与y 轴的负半轴交于C 点,若△ABC 的面积为12,求一次函数及二次函数解析式.(二)能力提升(2011•清远)如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.二次函数与几何专题二直角三角形一、学习目标1、学生学会在二次函数中解决与二次函数有关的直角三角形问题2、学生会用勾股定理、相似的方法解决直角问题二重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形三、学习过程1、如图,抛物线y=(x-1)2+n与x轴交于A、B两点,A在B的左侧,与y轴交于C(0,-3).(1)求抛物线的解析式;(2)点P为对称轴右侧的抛物线上一点,以BP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,求P点的坐标.2、(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.二次函数与几何——相似一、学习目标学生学会在二次函数中解决与二次函数有关的相似问题二、重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形1、(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2、(2013•营口)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C (0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.3、(2013•凉山州)如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.二次函数与几何——全等一、学习目标学生学会在二次函数中解决与二次函数有关的全等问题二重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形1、(2013•贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.(1)求该抛物线的解析式;(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.2、(2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.(1)求该抛物线的表达式;(2)求点P的坐标;(3)试判断CE与EF是否相等,并说明理由;(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由.二次函数与几何——等腰三角形一、学习目标学生学会在二次函数中解决与二次函数有关的等腰三角形问题二、重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形三、学习过程3、(2012•龙岩)在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB 在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.二次函数与几何——平行四边形 4月16日一、学习目标学生学会在二次函数中解决与平行四边形有关的问题二重点、难点函数中的坐标与线段的互相转化;在函数图象中找到几何的基本图形三、学习过程活动一:1、若抛物线y =x 2-bx +16过点(1,10),则b 的值为____ __2、抛物线过(-1,0),(3,0),(1,-5)三点,则这个二次函数的解析式_________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
何时窗户通过的光线最多
y
10
典题精讲
解 : 1由4y
2.窗户面积S
7x
2xy x2
x
2
15得,
x 15 7 x
y
x
15 x7x 24 Nhomakorabeax
.
2
4 2
7 2
x2
15 2
x
7 2
x
15 14
2
225 56
.
或用公式 :当x
b 2a
15 14
1.07时,
y最大值
4ac b2 4a
人教版
九年级 数学 上册
1
22.3
二次函数与图形面积
(第1课时)
2
学习目标
1.掌握图形面积问题中的相等关系的寻找方法, 并会应用函数关系式求图形面积的最值.
2.会应用二次函数的性质解决实际问题.
3
复习导入
1. 二次函数y=2(x-3)2+5的对称轴是 x=3 ,顶点坐标 是 (3,5) .当x= 3 时,y的最小值是 5 .
2 0 2
x 6
13
课堂作业
3. 如图,半圆A和半圆B均与y轴相切于点O,其 直径CD,EF均和x轴垂直,以O为顶点的两条抛 物线分别经过点C,E和点D,F,则图中阴影部
分的面积是 / 2 。
14
课堂小结
1.主要学习了如何将实际问题转化为数学问题, 特别是如何利用二次函数的有关性质解决实际问 题的方法. 2.利用二次函数解决实际问题时,根据面积公式 等关系写出二次函数表达式是解决问题的关键.
s
200 100
O 5 10 15 20 25 30
l
即l是15m时,场地的面积S最大. (S=225㎡)
6
探索新知
解决这类题目的一般步骤
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.
7
8
典题精讲
1.将一条长为20cm的铁丝剪成两段,并以每一段
铁丝的长度为周长各做成一个正方形,则这两个正
方形面积之和的最小值是
25 2
或12.5cm2.
9
典题精讲
2.某建筑物的窗户如图所示,它的上半部是 半圆,下半部是矩形,制造窗框的材料总长(图
中所有的黑线的长度和)为15m.当x等于多少
时,窗户通过的光线最多(结果精确到0.01m)? 此时,窗户的面积是多少?
2. 二次函数y=-3(x+4)2-1的对称轴是 x=-4 ,顶点坐标 是 (-4,-1).当x= -4 时,函数有最__大_ 值,是 -1 .
3.二次函数y=2x2-8x+9的对称轴是 x=2 ,顶点坐标 是 (2,1) .当x= 2 时,函数有最___小____ 值,是 1 .
4
举例讲解
问题:用总长为60m的篱笆围成矩形场地,矩形面积S随 矩形一边长l的变化而变化.当l是多少时,场地的面积S最 大? 分析:先写出S与l的函数关系式,再求出使S最大的l的值. 矩形场地的周长是60m,一边长为l,则另一边长为 (60 ml),场地的面积: S=l(30-l) (即0<Sl=<-l32+03)0l
探索新知
1.由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,所
以当 x b 时,二次函数 y = ax 2 + bx + c 有最小(大) 值 2a
y 4ac b2 . 4a
2.列出二次函数的解析式,并根据自变量的实际意义, 确定自变量的取值范围.
3.在自变量的取值范围内,求出二次函数的最大值或最 小值.
225 56
4.02.
11
课堂作业
1.如图,抛物线的顶点P的坐标是(1,-3), 则此抛物线对应的二次函数有( B ) (A)最大值1 (B)最小值-3 (C)最大值-3 (D)最小值1
12
课堂作业
2. 根据图中的抛物线, 当x <2 时,y随x的增大而增大, 当x >2 时,y随x的增大而减小, 当x =2 时,y有最大值。 y
15
2
请同学们画出此函数的图象
5
举例讲解
可以看出,这个函数的图 象是一条抛物线的一部分, 这条抛物线的顶点是函数 图象的最高点,也就是说, 当l取顶点的横坐标时,这 个函数有最大值.
因此,当l b 30 15时 2a 2 (1)
S有最大值 4ac b2 302 225. 4a 4 (1)