初中数学一元一次方程的应用——比例分配
七年级数学上册---一元一次方程应用题归类解题思路PPT课件
1.市场经济问题 【例题】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、 2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供 2280名学生就餐. 〔1〕求1个大餐厅、1个小餐厅分别可供多少名学生就餐; 解:设1个小餐厅可供名学生就餐,那么1个大餐厅可供〔1680-2y〕名学生就 餐,根据题意,得2〔1680-2y〕+y=2280解得:y=360〔名〕所以16802y=960〔名〕 〔2〕假设7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由. 解:因为960x5+360x2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【例题】两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车 车长150米,当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。 ⑴ 两车的速度之和与两车相向而行时慢车经过快车某一窗口所用的时间各是 多少? 解:两车的速度之和=100÷5=20〔米/秒〕 慢车经过快车某一窗口所用的时间=150÷20=7.5〔秒〕 ⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快 车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少 是多少秒? 解:设至少是x秒,〔快车车速为20-8〕 那么〔20-8〕x-8x=100+150 x=62.5 答:至少62.5秒快车从后面追赶上并全部超过慢车。
【例题】与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。 行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一 列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时 间是26秒。 ⑴ 行人的速度为每秒多少米? 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒 骑自行车的人的速度是: 10.8km/时=10800米÷3600秒=3米/秒 ⑵ 这列火车的车长是多少米?
初一数学一元一次方程应用题(完整版)
一元一次方程应用题归类列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.各题型一般模型:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:1、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%,求这个月的石油价格相对上个月的增长率。
2、某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7m³,则按每立方米1元收费;若每月用水超过7m³,则超过部分按每立方米2元收费。
如果某居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为多少m³?3、芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00-22:00,14个小时;谷段为22:00-次日8:00,10个小时。
平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元。
小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元。
(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?4、某工厂食堂第三季度一共节煤7400斤,其中八月份比七月份多节约20%,九月份比八月份多节约25%,问该厂食堂九月份节约煤多少公斤?“等积变形”是以形状改变而体积不变为前提。
一元一次方程的应用(比例分配问题)
2 未知数
未知数是在方程中代表未知量的变量。
一元一次方程定义
一元一次方程是只涉及到一个未知数的一次方程。它的一般形式为: ax + b = c 其中,a、b 、c是已知的数。
比例分配问题的引入
比例分配问题涉及将一个量按比例分配给不同的部分。我们可以使用一元一次方程来解决这类问题。
应用一元一次方程求解比例分配问题
1
步骤一
确定总量和各部分的比例关系。
2
步骤二
设定未知数,并建立方程。
3
步骤三
解一元一次方程,得到各部分的具体数值。
解决实际问题的例子
让我们通过一个实际问题来应用我们所学的知识。假设有一笔资金需要按照比例分配给三个人:
人员A
占比40%
人员B
占比30%
未知数为总资金量x,并建立以下方程: 0.4x + 0.3x + 0.3x = x 通过解这个方程,我们可以得到各人员的具体分配金额。
一元一次方程的应用(比 例分配问题)
本演示将介绍一元一次方程的应用,特别是在比例分配问题中的应用。通过 解决实际问题的例子,我们将探索这个有趣的数学概念。
方程和未知数的介绍
我们首先要了解方程和未知数的基本概念。方程是一个含有等号的数学表达式,未知数则是我们需要求解的量。
1 方程
方程是用来表示数学关系的表达式。
错误分析和解决方法
在解决比例分配问题时,出现错误是常见的。以下是一些常见的错误和解决方法:
错误:未正确设置未知 数。
解决方法:仔细阅读问题, 并明确设置未知数。
错误:方程计算错误。
七年级数学上册 3.2 一元一次方程的应用 第3课时 工程与比例分配问题同步练习 (新版)沪科版-(
3.2 第3课时 工程与比例分配问题知识点 1 工作总量看成单位“1”的应用题1. 某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙共同完成此项工作,设甲一共做了x 天,所列方程为( )A .x +14+x 6=1B .x 4+x +16=1 C .x 4+x -16=1 D .x 4+14+x +16=1 2.某地修一条公路,若甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.现在由甲、乙工程队合作承包,完成任务需要( )A .48天B .60天C .80天D .100天3.某单位开展植树活动,由一人植树要80 h 完成,现由一部分人先植树5 h ,由于单位有紧急事情,再增加2人,且必须在4 h 之内完成剩余的植树任务,若这些人的工作效率相同,则应先安排________人植树.4.[2016·某某校级月考] 一件工作甲单干用20小时,乙单干用的时间比甲多4小时,丙单干用的时间是甲的12还多2小时.若甲、乙合作先干10小时,丙再单干几小时可以完成?知识点 2 有具体工作总量的应用题5.某工程队修一条公路,第一天修了全程的13,第二天修了余下的40%,还剩下480米没修,这条公路长( )A .900米B .1200米C .1000米D .1300米6.某车间接到x 件零件的加工任务,计划每天加工120件,可以如期完成,而实际每天多加工40件,结果提前6天完成,列方程得________________________________________________________________________.7.某地为了打造风光带,将一段长为360 m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m ,乙工程队每天整治16 m .求甲、乙两个工程队分别整治了多长的河道.知识点 3 比例分配问题8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x )=800xB.1000(13-x)=800xC.1000(26-x)=2×800xD.1000(26-x)=800x9.教材例5变式某人将2600元工资做了打算,购书费用、休闲娱乐费用、家庭开支、存款比为1∶3∶5∶4,则此人打算休闲娱乐花去多少元?10.甲、乙两人去商店买东西,他们所带钱数的比是7∶6,甲用掉50元,乙用掉60元,两人余下的钱数之比是3∶2,则甲、乙两人余下的钱数分别是( ) A.140元、120元 B.60元、40元C.80元、80元 D.90元、60元11.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是________.12.甲、乙两队共有480人,如果从乙队调出10%的人到甲队,那么现在甲、乙两队人数比是5∶3.乙队原来有多少人?13.一个水池有两个管可注水,若单开甲管,36小时注满;若单开乙管,24小时注满.(1)由甲管先开若干小时,再由乙管接替甲管工作,甲、乙两管共用32小时注满水池,问乙管开了几小时?(2)若水池下面安装一个排水管丙,单独开丙管18小时可以将一水池的水放完,现三管齐开,几小时可将一空池注满?14.某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成的时间是甲队的2倍;甲、乙两队合作完成需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.若这个项目交给一个工程队独做,根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队,应付工程队的费用为多少元?15.若干名工人装卸一批货物,各工人的装卸速度相同.若这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,刚开始一个人干,以后每隔t(整数)小时增加一个人,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的14.求按改变后的装卸方式,自始至终需多少小时.3.2 第3课时 工程与比例分配问题1.C2.A .3.8 .4.解:设丙再单干x 小时可以完成.根据题意,得10×⎝ ⎛⎭⎪⎫120+124+112×20+2x =1,解得x =1. 答:丙再单干1小时可以完成.5.B .6.x 120-x 40+120=6 .7.解:设甲队整治了x 天,则乙队整治了(20-x)天.由题意,得24x +16(20-x)=360,解得x =5,∴乙队整治了20-5=15(天),∴甲队整治的河道长为24×5=120(m );乙队整治的河道长为16×15=240(m ).答:甲、乙两个工程队分别整治了120 m ,240 m .8.C .9.解:设购书费用、休闲娱乐费用、家庭开支、存款分别为x 元、3x 元、5x 元、4x 元,则x +3x +5x +4x =2600,解得x =200,则3x =600.答:此人打算休闲娱乐花去600元.10.D .11.7 .12.解:设乙队原来有x 人,则甲队有(480-x)人,根据题意可得5×(1-10%)x =3[(480-x)+10%x],解得x =200.答:乙队原来有200人.13.解:(1)设乙管开了x 小时,由题意可得32-x 36+x 24=1, 解得x =8.答:乙管开了8小时.(2)1÷⎝ ⎛⎭⎪⎫136+124-118=72(时).答:72小时可将一空池注满.14.解:设乙队的工作效率为x ,则甲队的工作效率为2x.根据题意,可得x +2x =120, 解得x =160,2x =130. 所以甲、乙单独完成这项工程分别需要30天和60天.若要让这两个工程队单独做,则应付甲队30×1000=30000(元),应付乙队60×550=33000(元),所以公司应选择甲工程队,应付工程队的总费用为30000元.15.解:设按改变后的装卸方式,自始至终需x 小时,则第一个人干了x 小时,最后一个人干了x 4小时,两人共干活⎝ ⎛⎭⎪⎫x +x 4小时,平均每人干活12⎝ ⎛⎭⎪⎫x +x 4小时,由题意知,第二人与倒数第二人,第三人与倒数第三人……平均每人干活的时间也是12⎝ ⎛⎭⎪⎫x +x 4小时, 根据题意,得12⎝ ⎛⎭⎪⎫x +x 4=10, 解得x =16.答:按改变后的装卸方式,自始至终需要16小时.。
一元一次方程的应用(按比例分配问题)
4.甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮之比是1:2, 乙、丙两仓存粮数之比是1:2.5,求三个粮仓各存粮多少吨?
3.2一元一次方程的应用
沪科版数学七年级上册第3章
按比例分配——
根据需要,确定分配对象的不同份额,先算出 总份数,再求出每份的具体数量,然后根据不同份 额求出各自分配到的具体数量。这种分配方法叫按 比例分配.
按比例分配必须具有两个条件:
分配的总数:总量
分配的比:份数
3.2一元一次方程的应用 进阶练习(1)
沪科版数学七年级上册第3章
3.2一元一次方程的应用
沪科版数学七年级上册第3章
一元一次方程的应用:按比例分配问题
一般思路——
设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系——
各部分之和=总量
明湖学校数学课题组
沪科版数学七年级上册第3章
模块三:
新知巩固
3.2一元一次方程的应用
沪科版数学七年级上册第3章
进阶练习(2)
1.某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型 号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?
2.甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车 多运货物12吨,则三辆卡车共运货物多少吨。
1.按人数比分配:
七年级共有1800本图书,要按人数分给七年级三个班,七一班有60人,七二 班有55人,七三班有65人,问七年级三个班每班应分得图书多少本?
2.按含量比分配 水泥、沙子和石子的比是2:3:5,要搅伴20吨这样的混凝土,需要水泥、沙 子和石子各多少吨?
3.2.4一元一次方程的应用-工程与比例
课后练习
1.长方形的长和宽的比为2:5,它的周长
为56cm,求长方形的面积?
2. 兄弟两人合伙从事经营,哥哥入股 25000元,弟弟入股20000元,一年后盈 利8352元。按入股的资金比例分配,兄 弟两人各应分得盈利多少元?
十分钟检测
1.运一批建筑材料,甲车3天可以运,乙 车4天只运了,现在甲乙两车共同运, 几天可以运完这批建筑材料?
3.2.1 一元一次 方程的应用
工程和比例问题
工程问题
工程问题中的基本关系式: 工作总量=工作效率×工作时间 各部分工作量之和 = 工作总量
解ቤተ መጻሕፍቲ ባይዱ下列问题
1.做某件工作,甲单独做要8时才能
完成,乙单独做要12时才能完成,问: ①甲做1时完成全部工作量的几分之几? _____ 。 ②乙做1时完成全部工作量的几分之几? _____ 。 ③甲、乙合做1时完成全部工作量的几 分之几?_____ 。 ④甲做x时完成全部工作量的几分之几? _____ 。
比例问题
1.配制一种混凝土,水泥、沙、石子、水 的质量比是1:3:10:4,要配制这种 混凝土360千克,各种原料分别需要多 少千克?
课本96页例5
2.三个作业队共同使用水泵排涝,如果三 个作业队排涝的土地面积之比为4:5:6, 而这一次装运水泵和耗用的电力费用共计 120元,三个作业队按土地面积比各应该 负担多少钱?
2.一个工人加工一批零件,限期完成,若 他每小时做10个,到期可超额完成3个, 若每小时做11个,则可提前1小时完成任 务,问他共要加工多少个零件,限期多 少小时完成?
3.一项工程,甲单独做要10天完成,乙单独 做要15天完成,两人合做4天后,剩下的部 分由乙单独做,还需要几天完成?
一元一次方程的应用
一元一次方程的应用1.(类型一:和、差、倍、分问题)旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【练习】两水桶中有不同量的水,若从第一桶中舀出1罐水倒入第二桶,两只水桶的水相等,但若从第二桶水中舀出20罐倒入第一桶,则第一桶水将是第二桶水的3倍,原来每桶中各有多少罐水?2.(类型二:比例分配问题)甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?【练习】甲、乙、丙三个数之比为7∶12∶13,甲、乙两数的和减去丙数的差等于36,求这三个数.3.((类型三:销售)某商品的进价是2000元,标价为3000元,商店要求以利润率等于5%的售价打折出售,售货员应该打几折出售此商品?练习1:购买一本书,打八折比打九折少花2元,则该书原价多少元?练习2:某商店有一批商品,按所期望获得50%利润定价,结果只售出70%,为了尽早销售剩余商品,商店决定按原定价打折出售,这样所获得的的全部利润是原来所期望利润的82%,问此商品打了几折?练习3:已知甲、乙两种商品的原单价和为100元。
因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少?4.(类型四:积分问题)阳光中学在兴办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,一共得22分,已知这支球队只输了2场,那么这支球队胜几场?平几场?5.(类型五:行程问题)例题:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?【练习1】小华家距学校2.4km,某天小华从家去上学恰好走到一半路程时,发现离按时到校的时间只有12min了,如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?【练习2】甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。
初中数学 比例关系如何与一元一次方程相关
初中数学比例关系如何与一元一次方程相关比例关系与一元一次方程之间存在着密切的关联。
了解这种关系对于初中学生来说非常重要,因为它们是解决实际问题和建立数学模型的基础。
在本文中,我们将详细探讨比例关系与一元一次方程的关系,并提供一些实例来帮助学生更好地理解这个概念。
首先,我们来理解比例关系的基本概念。
比例是指两个量之间的相对关系。
在比例关系中,两个量的比值始终保持不变。
比如,如果我们有两个物体的长度,一个是另一个的两倍,那么它们的比例关系可以表示为1:2。
比例关系可以用分数、比率或百分比来表示。
与比例关系紧密相关的是一元一次方程。
一元一次方程是指只包含一个未知数的一次方程。
它的一般形式可以表示为ax + b = 0,其中a和b是已知的常数,x是未知数。
解一元一次方程就是要找到未知数的值,使得方程两边的值相等。
那么比例关系与一元一次方程有什么关系呢?事实上,比例关系可以通过一元一次方程来表示。
考虑一个简单的例子:如果A和B两个人一起工作3天可以完成某项任务,而A单独工作需要5天完成,那么我们可以建立如下的比例关系:A+B:A = 3:5。
现在我们将这个比例关系转化为一元一次方程。
令A代表A单独工作一天完成的任务量,B代表B单独工作一天完成的任务量,那么我们可以得到如下的方程:3(A+B) = 5A。
通过解这个方程,我们可以找到A和B的具体值,进而解决实际问题。
比例关系与一元一次方程之间的关系不仅限于上述例子。
在实际生活中,我们可以找到许多与比例关系相关的问题,可以通过一元一次方程来解决。
例如,物体的重量与其体积之间的比例关系,可以通过一元一次方程来表示。
另一个例子是速度和时间之间的比例关系,也可以通过一元一次方程来表示。
通过比例关系和一元一次方程的学习,学生可以培养抽象思维、逻辑思维和解决实际问题的能力。
此外,这些概念也为学生今后学习更高级的数学和科学课程打下了坚实的基础。
在学习比例关系和一元一次方程的过程中,学生可以通过实例和练习来加深理解。
2024七年级数学上册第3章3.3第3课时列一元一次方程解比例分配等问题课件新版沪科版
据题意,得10×15(24+ y )+5×20(36- y )-
(10×15×24+5×20×36)=600,解得 y =12,
答:从生产 B 零件的工人中调出12名工人生产 A 零件.
1
2
3
4
类型3
跨学科问题
4. 在山地和丘陵,气温随海拔升高而降低,大致每升高100
米,气温约下降0.6 ℃.一名同学在山脚下测得此处的海
1
2
3
4
(2)因市场需求,该工厂每天要多生产出一部分 A 零件供
商场零售使用,现从生产 B 零件的工人中调出多少名
工人生产 A 零件,才能使每日生产的零件总获利比调
动前多600元?
1
2
3
4
【解】由(1)知生产 B 零件的工人原有60-24=36(名).
设从生产 B 零件的工人中调出 y 名工人生产 A 零件,根
5(天);若调走乙,则甲还需(1-75%)÷ =7.5(天).
因为9+5=14(天)<15天,9+7.5=16.5(天)>15天,
所以调走甲更合适.
1
2
3
4
3. 某工厂车间有60名工人生产 A 零件和 B 零件,每名工人每
天可生产 A 零件15个或 B 零件20个(每名工人每天只能生
产一种零件),一个 A 零件配两个 B 零件,且每天生产的
沪科版 七年级上
第3章
一次方程与方程组
3.3 一元一次方程的应用
第3课时 列一元一次方程解比例分配等问题
1. 比例分配问题设未知数:直接设——把问题中所求的未知
量设为未知数;间接设——把与所求未知量有关的特定量
设为未知数.
七年级数学上册一元一次方程的应用经典题型整理
七年级数学上册一元一次方程的应用经典题型整理题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文
第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。
解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。
每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。
还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。
2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。
六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。
2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。
2014初中数学基础知识讲义—一元一次方程(三)
第四类:调配(分配)与比例问题 调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。
调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。
在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。
(第一类):调配问题:这类问题的关键是找对分配的两类物体的数量关系【例1】某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.解:设这一天有x 名工人加工甲种零件,则这天加工甲种零件有5x 个,乙种零件有4(16-x )个.根据题意,得16×5x+24×4(16-x )=1440 解得x=6、 有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?2、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?3、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
(第二类):比例分配问题比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量地板砖厂的坯料由白土、沙土、石膏、水按25∶2∶1∶6的比例配制搅拌而成。
现已将前三种料称好,共5600千克,应加多少千克的水搅拌?前三种料各称了多少千克?分析:解决比例问题的一般方法是:按比例设未知数,并根据题设中的相等关系列出方程进行求解。
本题中,由四种坯料比例25∶2∶1∶6,设四种坯料分别为25x 、2x 、x 、6x 千克,由前三种坯料共5600千克,有 25x+2x+x=5600 解得:x=200 ∴ 6x=12001500台,已知A 、B 、C 三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?初中数学基础知识讲义—一元一次方程各类题型解法分析: (三)(第三类):配套问题:这类问题的关键是找对配套的两类物体的数量关系:某车间22名工人参加生产一种螺母和螺丝。
3.4.3比例分配问题
一元一次方程应用题(二)——比例分配问题一、学习重点:1、比例定义:表示两个比相等的式子叫做比例;如x:y=m:n其中x、n叫做比例外项,y、m叫做比例内项。
2、比和比值的区别:比相当于计算过程,比值就是计算结果(比值可以是小数、分数、整数)。
3、比例之间的关系:内项之积等于外项之积。
即y·m=x·n4、比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
5、通比:例如:若A:B=4:1,B:C=3:5,则A:B:C=12:3:5(取同量的最小公倍数扩大比例系数)A卷1、求比值:(1)32:96 (2)0.3:0.02 (3)3390:113 (8)3:111 (10)90:722、长方形长30cm,宽12cm,长与宽的比是(),比值是()。
3、一本书读了55页,45页没有读,已读与总数的比是(),比值是()。
4、甲数相当于乙数的9倍,甲数与乙数的比是(),乙数与甲数的比是()。
5、若A÷B=5(A、B都不等于0)则A:B=( ):( ) 若A=B(A、B≠0)则A:B=( ):( )6、把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克。
7、公鸡与母鸡的只数比是2∶9,也就是公鸡占总只数的(),母鸡占总只数的(),公鸡的只数是母鸡的(),母鸡的只数是公鸡的()。
8、一批货物按2∶3∶4分配给甲、乙、丙三个队去运,甲队运这批货物的(),丙队比乙队多运这批货物的()。
9、若A:B=2:3,B:C=4:5,则A:B:C=()10、把一根长8米的绳子按3∶2截成甲、乙两段,甲、乙两段各长多少米?11、把一根绳子按3∶2截成甲、乙两段,已知甲段长4.8米, 乙段长多少米?12、把一根绳子按3∶2截成甲、乙两段,已知乙段长4.8米, 这根绳子原来长多少米?13、把一根绳子按3∶2截成甲、乙两段,已知乙段比甲段短1.6米, 甲、乙两段各长多少米?B卷14、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120吨,求这三辆汽车各运多少吨货物?15、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
人教版七年级数学上册解一元一次方程应用题的十六种常见题型教案
举例:工资分配问题,理解按比例分配工资的方法,列出方程并求解。
(4)解决交叉相乘问题:对于一些涉及交叉相乘的题型,学生可能不熟悉这种解法。
举例:线性方程组的交叉相乘解法,如2x + 3y = 8,3x + 4y = 11,通过交叉相乘法求解。
人教版七年级数学上册解一元一次方程应用题的十六种常见题型教案
一、教学内容
本节课选自人教版七年级数学上册,针对解一元一次方程应用题的十六种常见题型进行教学。教学内容主要包括以下几种题型:
1.简单的线性方程应用题,如年龄问题、速度问题等。
2.比例分配问题,如物品分配、工资分配等。
3.水电费用问题,如单价、用量与总价的关系。
4.电话卡费用问题,如不同的通话套餐计算。
5.购物优惠问题,如打折、满减等。
6.数字问题,如数字间的和差倍分关系。
7.长度、面积、体积问题,如几何图形的计算。
8.时间和路程问题,如行程速度与时间的计算。
9.利润与百分比问题,如商品利润率的计算。
10.零件加工问题,如工作效率与工作总量的关系。
11.速度与路程问题,如不同速度下的行程计算。
5.培养学生的团队协作能力,通过小组讨论、合作解决应用题,让学生学会倾听、交流、分享,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
(1)掌握一元一次方程的解法:熟练运用等式性质、移项、合并同类项等方法解一元一次方程,特别是含未知数的表达式简化。
举例:解方程2x + 5 = 3x + 10,需将方程两边的x项移到一边,常数项移到另一边,然后合并同类项求解。
初中数学:一元一次方程13种应用题型附知识点
初中数学:一元一次方程13种应用题型附知识点(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!初中数学:一元一次方程13种应用题型附知识点一、知识框架二、方程的有关概念1.方程:含有未知数的等式就叫做方程。
初中数学一元一次方程常考的13种应用题,掌握考高分二
初中数学一元一次方程常考的13种应用题,掌握考高分二四、调配问题【典型例题】例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间.五、连比条件巧设x【典型例题】例1. 一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.解析:设三边长分别为2x,3x,4x,根据周长为36cm,可得出方程,解出即可.设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.【方法突破】比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
六、配套问题【典型例题】包装厂有42名工人,每个工人平均每小时能生产120块圆形铁皮或80块矩形铁皮。
两个圆形铁片和一个矩形铁片可以配成一个密封的桶。
怎样才能安排工人每天生产圆形和长方形的铁片来合理搭配铁片?解法1:可设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,由题意得:120(42-x)=2×80x,去括号,得5040-120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42-18=24(人);答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.解法2:若安排x人生产长方形铁片,y人生产圆形铁片,根据共有42名工人,可知x+y=42.再根据两张圆形铁片与一张长方形铁片可配套可知2×80x=120y,列出二元一次方程组求解。
湘教版七年级数学上册一元一次方程的应用例题与解析
3.2 一元一次方程的应用1.列一元一次方程解应用题列方程解应用题,就是把生活实践中的实际问题,抽象成数学问题,通过列方程来解答,使实际问题得以解决.列一元一次方程解应用题的步骤是:(1)审题设元:弄清题意和题目中的数量关系,用字母(如x,y)表示问题中的未知数;(2)找等量关系:分析题意,找出相等关系(可借助于示意图、表格等);(3)列方程:根据相等关系,列出需要的代数式,并列出方程;(4)解方程:解这个方程,求出未知数的值;(5)检验作答:检查所得的值是否正确和符合实际情形,并写出答案(包括单位名称).解技巧利用一元一次方程巧解应用题读懂题目,搜集整理相关信息,弄清题目中的已知数和未知数,是用一元一次方程正确解决相关应用问题的前提.根据不同的实际问题,确定恰当的等量关系是解决较复杂问题的关键.对比较贴近生活实际的应用问题,其数量关系不仅多,而且比较隐蔽,因此,对这类应用问题要善于挖掘多种数量关系之间的内在联系.设未知数一般是问什么就直接设什么.如果直接设未知数有困难,就间接设未知数;设未知数时,必须写清楚未知数的单位,并且要保证前后单位统一.【例1】甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?分析:抽调后甲队人数=甲队原有人数+调入人数,抽调后乙队人数=乙队原有人数-调出人数.在本题中抓住“2倍”便可发现相等关系:抽调后甲队人数=抽调后乙队人数×2.解:设需从乙队抽调x人到甲队.根据题意列方程,得32+x=2(28-x).解这个方程,得x=8.答:需从乙队抽调8人到甲队.2.形积问题(1)常用的体积公式长方体的体积=长×宽×高;正方体的体积=棱长×棱长×棱长;圆柱体的体积=底面积×高=πr2h;圆锥体的体积=13×底面积×高=13πr2h.(2)常用的面积、周长公式长方形的面积=长×宽;长方形的周长=2×(长+宽);正方形的面积=边长×边长;正方形的周长=边长×4;三角形的面积=12×底×高;平行四边形的面积=底×高;梯形的面积=12×(上底+下底)×高;圆的面积=πr2,圆的周长=2πr.(3)形积变化中的等量关系形积变化问题中,图形的形状和体积会发生变化,但应用题中一定有相等关系.分以下几种情况:①形状发生了变化,体积不变.其相等关系是:变化前图形的体积=变化后图形的体积.②形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.③形状、体积不同,面积相同.根据题意找出面积之间的关系,即为相等关系.(4)应用题中相等关系的找法①认真分析题意,找出已知数和未知数;②抓住题目中反映相等关系的关键词.如:相等、等于、多、少……;③掌握基本问题的常用关系式.如路程=速度×时间,总价=单价×数量……;④通过画图、列表等方法找相等关系.【例2-1】墙上钉着一根彩绳围成的梯形形状的饰物,如图中实线所示.小明将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图中虚线所示.小明所钉长方形的长、宽各为多少厘米?分析:饰物形状变化前后有两个不变的量,一个是周长,另一个是变化前梯形的上底和变化后长方形的宽.根据题意可设长方形的长为x,则长方形的周长为2x+2×10,梯形的周长为10+10+10+6+10+6=52.则2x+20=52,从而解得x=16.解:设小明所钉长方形的长为x,根据题意,得2x+2×10=10+10+6+10+6+10,整理得2x+20=52,解得x=16.由于饰物变化前后长度为10的边没有变化,所以长方形的一边长为10厘米.答:长方形的长为16厘米,宽为10厘米.【例2-2】用一个底面半径是40毫米,高为120毫米的圆柱形玻璃杯向一个底面半径为100毫米的大圆柱形玻璃杯中倒水,倒了满满10杯水后,则大玻璃杯的液面离杯口还有10毫米,则大玻璃杯的高度是多少?分析:根据“小圆柱体的体积×10=大圆柱形玻璃杯中水的体积”列方程求解.解:设大玻璃杯的高度是x毫米,根据题意,得π·1002(x-10)=π·402×120×10.解这个方程,得x=202.答:大玻璃杯的高为202毫米.【例2-3】内直径为20 cm的圆柱形水桶中的全部水倒入一个长、宽、高分别为30 cm,20 cm,80 cm 的长方形铁盒中,正好倒满,求圆柱形水桶的高.(π取3.14)分析:由于水的体积不变,可知两个容器的容积相同.所以本题的相等关系是:圆柱的体积=长方体的体积.解:设圆柱形水桶高x cm.根据题意,得 π⎝ ⎛⎭⎪⎫2022·x =30×20×80.解得x =480π≈152.87. 答:圆柱形水桶高约为152.87 cm.3.行程问题(1)相遇问题相遇问题是比较重要的行程问题,其特点是相向而行.相遇问题中的相等关系:①甲、乙的速度和×相遇时间=总路程;②甲行的路程+乙行的路程=总路程,即s 甲+s 乙=s 总.(2)追及问题追及问题的特点是同向而行.追及问题有两类:①同时不同地,如下图:等量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距离,即s 乙-s 甲=s 差.②同地不同时,如下图:等量关系:甲的行程=乙的行程,即s甲=s乙.解技巧巧解追及问题追及问题常从以下几个方面寻找等量关系列方程:①从时间考虑,若同时出发,追上时两人所用时间相等;②从路程考虑,直线运动,两人所走距离之差等于需要赶上的距离;③从速度考虑,两人的相对速度等于他们的速度的差.(3)环形跑道问题一般情况下,在环形跑道上,两人同时出发,第n次相遇有两种情况:相向而行,路程和等于n圈长;同向而行,路程差等于n圈长.(4)航行问题航行问题主要包括轮船航行和飞机航行,对于航行问题,需注意以下几点:a.顺水(风)速度=静水(风)速度+水流(风)速度;b.逆水(风)速度=静水(风)速度-水流(风)速度;c.顺水(风)速度-逆水(风)速度=2倍水(风)速度;d.基本关系式:往路程=返路程.【例3-1】A,B两地相距112千米,甲、乙两人驾车同时从A,B两地相向而行,甲比乙每小时多行4千米,经过两小时后两人相遇,求甲、乙两人每小时各行多少千米?分析:本题属于相遇问题,其中的等量关系有:甲速度=乙速度+4,甲行程+乙行程=A,B两地距离(112千米).解:设乙每小时行x千米,则甲每小时行(x+4)千米.根据题意,得2(x+4)+2x=112.解这个方程,得x=26.当x=26时,x+4=30.答:甲每小时行30千米,乙每小时行26千米.【例3-2】李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7.5米,同时起跑,问王亮跑多少米可以追上李成?分析:本题是追及问题,属于同时不同地的类型,可根据“王亮跑的路程-李成跑的路程=10”,列方程求解.解:设x 秒时王亮追上李成,根据题意,得7.5x -7x =10,解得x =20. 所以7.5×20=150(米).答:王亮跑150米可追上李成.【例3-3】 甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?分析:本题是追及问题中同地不同时类型.其相等关系:甲行程=乙行程. 解:设x 小时后乙车追上甲车,根据题意,得48⎝ ⎛⎭⎪⎫x +2560=72x . 解这个方程,得x =56. 答:56小时后,乙车追上甲车. 【例3-4】 甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒跑6米,甲每秒跑8米.(1)如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇? 分析:(1)属于相遇问题,相等关系:甲的行程+乙的行程=环形跑道一圈的长-8米;(2)属于追及问题,相等关系:乙走的路程=甲走的路程+两地间的距离.解:(1)设经过x 秒,甲、乙两人首次相遇.根据题意得8x +6x =400-8,解这个方程,得x =28.答:经过28秒两人首次相遇.(2)设经过x 秒,甲、乙两人首次相遇,根据题意得8x =6x +400-8,解这个方程,得x =196.答:经过196秒两个人首次相遇.4.储蓄问题顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息,存入银行的时间叫期数,每个期数内的利息与本金的比叫利率,根据利率的定义,每个期数内,利息本金=利率,利息=本金×利率×期数,本金与利息的和叫本息和,本息和=本金+利息.月利率一般用千分之几表示.【例4】 王老师在银行里用定期一年整存整取的方式储蓄人民币6 000元,到期得到本息和6 120元,请你求出这笔储蓄的月利率(不计复利,即每月利息不重计息).分析:根据本息和与利息的关系,有:利息=本金×利率×期数,本息和=本金+利息.解:设这笔储蓄的月利率是x ,那么存了一年是12个月,根据题意,得 6 000+6 000×12×x =6 120,解得x ≈0.001 667=1.667‰.答:这笔储蓄的月利率是1.667‰.5.商品销售问题(1)与打折有关的概念①进价:也叫成本价,是指购进商品的价格.②标价:也称原价,是指在销售商品时标出的价格.③售价:消费者最终取得商品的价格,或说是商家卖出商品的价格,也叫成交价.④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词表示所得利润.⑤利润率:利润占进价的百分比.⑥打折:出售商品时,将标价乘以十分之几或百分之几十卖出,即为打几折卖出.打几折,就是百分之几十或十分之几.如打8折就是以原价的80%卖出,即为原价×80%或原价×0.8.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价.【例5-1】某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x折出售.根据题意,得600×0.1x-400=400×5%,解得x=7.答:售货员最低可以打7折出售此商品.【例5-2】某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180元,李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过部分应付款=实际付款.解:因为200×0.9=180>212,所以购书超过了200元.设应该付x元,根据题意,得200×0.9+(x-200)×0.8=212.解方程,得x=240.答:若没有任何优惠,则李明应该付240元.【例5-3】一件上衣,按成本加5成(即50%)作为售价,后因清仓处理,按售价的8折出售,降价后每件卖72元,问这批上衣每件成本是多少元?降价后每件是赔还是赚,赔或赚多少元?解:设一件上衣的成本为x元,根据题意,得(1+50%)x×80%=72,解得x =60.所以72-x=72-60=12.答:一件上衣的成本为50元,降价后每件仍可赚12元.6.几种复杂问题的应用含有两个或两个以上的等量关系的应用题主要有以下几种:(1)按比例分配问题按比例分配问题是指已知两个或几个未知量的比,分别求几个未知数的问题.比例分配问题中的相等关系是:不同成分的数量之和=全部数量.(2)工程问题工程问题中的相等关系是:工作量=工作效率×工作时间;甲的工作效率+乙的工作效率=合作的工作效率;甲完成的工作量+乙完成的工作量=完成的总工作量.(3)资源调配问题资源调配问题一般采取列表法分析数量关系,利用表格,可以清晰地表达出各个数量之间的关系.其中的相等关系要根据题目提供的等量关系确定.(4)配套问题配套问题是一种常见的应用题类型,在生活实践中有着广泛的应用,其量与量间的关系类似于工程问题,其特殊的等量关系是各种零件的数量比等于一套组合件中各种零配件的数量比,其解法一般分直接解法和间接解法两种.【例6-1】某会议厅主席台上方有一个长12.8 m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少.分析:根据比例关系,设边空、字宽、字距分别为9x,6x,2x,由等量关系“横框长度=边空长度+字宽长度+字距长度”列出一元一次方程即可求解.解:设边空、字宽、字距分别为9x cm,6x cm,2x cm,则9x×2+6x×18+(18-1)×2x=1 280,解得x=8.所以边空为72 cm,字宽为48 cm,字距为16 cm.【例6-2】学校派七年级一、二班去植树,一班40人,二班52人,现从三班调来43人支援一班和二班,使二班的人数是一班的2倍,问应调入一班和二班各多少人?分析:可设到一班x人,借助于表格分析题中的数量关系如下:调派前人数调派人数调派后人数一班40 x40+x二班52 43-x52+(43-x)解:52+(43-x)=(40+x)×2,解得x=5.所以43-x=38.答:应调到一班5人,调到二班38人.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。
一元一次方程的应用题型
【一元一次方程】应用题型汇总1. 和、差、倍、分问题(增长率问题)增长量=原有量×增长率现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余…”来体现审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在常用等量关系:①形状面积变了,周长没变②原料体积=成品体积(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变①圆柱体的体积公式V=底面积×高=S·h=πr2h②长方体的体积V=长×宽×高=abc3. 劳力调配问题从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化常见题型:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法常见的解题思路分析:抓住数字间或新数、原数之间的关系寻找等量关系列方程。
(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a,百位数可表示为100c+10b+a(其中a、b、c均为整数,且0≤a≤9,0≤b≤9,1≤c≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题(生产、做工等类问题)工作量=工作效率×工作时间合做的效率=各单独做的效率的和一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1分析时可采用列表或画图来帮助理解题意。
一元一次方程的应用(比例分配问题)
15x=15×7.5=112.5 3x=3×7.5=22.5
2x=2×7.5=15
答:硝酸钠应取112.5公斤,硫磺取15公斤,木 炭应取 22.5公斤。
• 某高中共有三个年级,一年级、二年级与 三年级的人数比是8:6:9,如果三年级比 一、二年级人数之和少300人,那么全校 共有多少人?
设甲、乙、丙三人各做零件15x个,20x个、 16x个。
变式练习二
例2、甲、乙两仓库存货吨数比为4 :3,如果 由甲库中取出8吨放到乙库中,则甲、乙两库 存货吨数比为4 :5,两仓库原存货总吨数是多 少吨? 分析:(1)设元,本题中有两个比,设其中的
哪个一份为x呢 ? (2)相等关系,题目中可以找到吗? 解:设甲、乙两仓库原存货总吨数为4x吨和3x吨 依题意得:(4x – 8) :(3x + 8 )= 4 :5
三年级人数=一年级人数+二年级人数-300人
变式练习一
甲、乙丙三人同时做某种零件,已知在相同时间 内甲、乙两人完成零件个数的比为3:4,乙与丙 完成零件个数之比为5:4,现在甲、 乙、丙三 人一起做1581个零件,问甲、乙、丙三人各做多 少个零件?
解:∵ 3 :4= 15 :20 5 :4 = 20 :16 ∴ 甲:乙:丙= 15 :20 :16
关于余缺问题
例1 某小组计划做一批“中国结” ,如果每人 做5个,那么比计划多了9个;如果每人做4个, 那么比计划少了15 个。小组成员共有多少名? 他们计划做多少个“中国结”?
某校住校生分配宿舍,如果每间住5人,则 有2人无处住;如果每间住6人,则可以多住 8人.问该校有多少住宿生?有多少宿舍?
则4x = 36,3x = 27 解得:x = 9
答:…….
3.4.2一元一次方程应用题专题——按比例分配问题
——喜悦杜鹃花花语快乐学习轻松做题一元一次方程应用题专题(二)——按比例分配问题在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。
一、什么是“按比例分配”?•二、比例基本知识:•1、两个数的比就是求两个数的商,用分数表示。
•表示方法:A:B 或表示为: •例如:甲数:乙数= 6:5 •2、表示两个比相等的式子叫做比例,如,x :y =m :n.•其中:x 、n 叫做比例外项;y 、m 叫做比例内项。
•3、比例之间的关系:内项之积等于外项之积。
•4、多个数的比就是这些数的倍数比。
其中的每个数叫做•比例系数,各个比例系数的和叫做比例总量。
其中的一份•叫做“一份的量”。
•例如:甲:乙:丙= 3x : 5 x: 7 x • 3 x+ 5x+ 7x = 12x (x 叫做一份的量,12x 叫做总量)•三、使用技巧:•1、在多个比例中,通常用一份的量表示比例分量。
•2、各个比例分量的和等于总量。
•3、“比例尺”:表示图上距离比上实际距离。
B A•想一想?我们学过的比例知识?•1、求下列各式的比•(1) 5 : 25 •(2)15 : 45 •(3)4 : 64•(4)(5x) : (3x) (其中x≠0)•(5)2m : 3m : 7m (其中m≠0)•(6)4n : 6n : 18n (其中n≠0)1:51:31:165:32:3:72:3:9•求下列各式中的未知数。
•(1) x : 2 = 60 : 15 •(2) 26 :y = 8 : 4•(3) (m+3) :6 = 2m : 5•解:根据比例的性质:•(1) x : 2 = 60 : 15 •2×60=x ×15(内项之积等于外项之积)所以x=____ •(2) 26 :y = 8 : 4•26×4=8y (同上)所以y=____•(3) (m+2) :7 = m : 5•7×m=5(m+2)(同上)•化简得:7m=5m+10 所以m=____8135做一做比例的知识?在现实生活中怎样应用•例1:一个养殖场计划养200只鸡鸭,其中养鸡120只,养鸭80只,养鸡和养鸭各占总数的几分之几?养鸡和养鸭的比是多少?•解:分析找量:•总数=•分量:•养鸡占总数:•养鸭占总数:•养鸡和养鸭的比:200只养鸡120只,养鸭80只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学一元一次方程的应用——比例分配019年4月9日(考试总分:160 分考试时长: 120 分钟)一、单选题(本题共计 8 小题,共计 32 分)1、(4分)一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损了25﹪,则该商店卖出两件衣服后()A.赚了8元B.亏了15元C.赚了15元D.亏了8元2、(4分)某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?3、(4分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元4、(4分)有一种足球是由32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形.设白皮有x块,则黑皮有(32﹣x)块,要求出黑皮、白皮的块数,列出的方程是()A.3x=32﹣x B.3x=5(32﹣x)C.5x=3(32﹣x)D.6x=32﹣x5、(4分)某商店在某一时间以每件50元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店()A、亏损6.7元B、盈利6.7元C、不亏不盈D、以上都不正确6、(4分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是( )A.赚了12元B.亏了12元C.赚了20元D.亏了20元7、(4分)某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调人则可列方程( )A.B.C.D.8、(4分)“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是( )A. 3x+1=4x﹣2 B. 3x﹣1=4x+2 C.D.二、填空题(本题共计 2 小题,共计 8 分)9、(4分)甲、乙两个图形的面积之和是2150cm,面积之比为7:3,则较大图形的面积是____2cm. 10、(4分)假如在第34、35届奥运会上,中国代表团获得60枚金牌,这两届奥运会中国获得金牌之比是7:8,那么第35届奥运会中国代表团共获得了_____枚金牌.三、解答题(本题共计 10 小题,共计 120 分)11、(12分)某校开展植树活动,七(1)班有27人,七(2)班有19人,现另调26人去支援,使七(1)班人数与七(2)班人数相等,问应调往七(1)班、七(2)班各多少人?12、(12分)某中学会议厅主席台上方有一个长12.8m的长方形会议横标框,铺红色衬底.开会前将会议名称用白色厚纸贴起来.由于会议名称不同,一般每次字数都不等.为了制作及贴字时方便美观,会议厅工作人员作了如下规定:边空:字宽:字距=9: 6: 2.如图所示:根据这个规定,当会议名称的字数为11时,边空、字宽、字距各是多少?13、(12分)某车间共有28名工人生产螺栓和螺母,每人平均每天生产螺栓12个或螺母18个,问:如何安排工人才能使每天生产的螺栓和螺母按1:2配套?14、(12分)列方程解应用题:2018年元月初,我国中东部地区普降大雪,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士.现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调去多少名武警部队战士?15、(12分)某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?16、(12分)某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?17、(12分)某中学七年一班、二班共有90名学生,如果从一班转出4名同学到二班,那么一班的学生人数是二班的80%,问两班原来各有多少名学生?18、(12分)一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数19、(12分)列方程解应用题:某商场搞促销活动,降价销售,把原定价为3860元的彩电以九折优惠出售,但仍可获利25%,那么这种彩电的进价是多少?20、(12分)某中学七年一班、二班共有90名学生,如果从一班转出4名同学到二班,那么一班的学生人数是二班的80%,问两班原来各有多少名学生?一、 单选题 (本题共计 8 小题,共计 32 分) 1、(4分)【答案】D 【解析】首先要根据题意计算出两件衣服的进价,分别设第一件和第二件衣服的进价为每件x 、y 元,则可列方程60%)251(=+x ,48=x 元,60%)251(=-x ,80=x 元,所以60×2-(48+80)=-8元,故亏了8元,选D .2、(4分)【答案】50 000千克 【解析】解:设原来有x 千克面粉,那么运出了15%x 千克,由题意,得 x -15%x=42 500, 解方程x -10015x=42 500, 所以x=50 000.答:原来有50 000千克面粉. 3、(4分)【答案】D 【解析】设赚钱的衣服的进价为x 元,赔钱的衣服的进价为y 元,则20%240x x +=,解得200x =;20%240y y -=,解得300y =,则(240200)(240300)20()-+-=-元,故这个服装店卖出这两件服装亏了20元.故选D . 4、(4分)【答案】B【解析】设白皮有x 块,则黑皮有(32﹣x )块,依题意可列方程为: 3x=5(32﹣x ). 故选B.5、(4分)【答案】A 【解析】解:设盈利25%的那件衣服的进价是x 元,根据进价与得润的和等于售价列得方程:x+0.25x=50, 解得:x=40,类似地,设另一件亏损衣服的进价为y 元,它的商品利润是-25%y 元, 列方程y+(-25%y )=50, 解得:y=66.7.那么这两件衣服的进价是x+y=106.7元,而两件衣服的售价为100元. ∴100-106.7=-6.7元, 所以,该家商店亏损6.7元. 故选:A .6、(4分)【答案】D【解析】设赚钱的衣服的进价为x 元,赔钱的衣服的进价为y 元,则20%240x x +=,解得200x =;20%240y y -=,解得300y =,则(240200)(240300)20()-+-=-元,故这个服装店卖出这两件服装亏了20元.故选D .7、(4分)【答案】C【解析】抽调人后,第一组的人为22+x ,第二组为26-x ,由题意列方程22+x=2(26-x ), 故选择C.8、(4分)【答案】C【解析】设共有x 个苹果,若每个小朋友分3个则剩1个,小朋友的人数为:;若每个小朋友分4个则少2个,小朋友的人数为:,,故选C.二、 填空题 (本题共计 2 小题,共计 8 分) 9、(4分)【答案】105 【解析】设较大图形的面积为x 2cm ,则较小图形的面积为(150-x) 2cm , 由题意得:x :(150-x)=7:3, 解得x=105,即较大图形的面积是1052cm 10、(4分)【答案】32 【解析】解:设第34届奥运会中国代表团共获得了7x 枚金牌,那么第35届奥运会中国代表团共获得了8x 枚金牌,根据题意,得7x+8x=60,解得x=4,则8x=32.答:第35届奥运会中国代表团共获得了32枚金牌.故答案为32.三、解答题(本题共计 10 小题,共计 120 分)11、(12分)【答案】应调往七(1)班9人,调往七(2)班17人.【解析】设应调往七(1)班x人,则应调往七(2)班(26-x)人.根据题意,得27+x=19+26-x.解得x=9.26-x=17.答:应调往七(1)班9人,调往七(2)班17人.12、(12分)【答案】边空为72cm,字宽为48cm,字距为16cm.【解析】设边空、字宽、字距分别为9x(cm)、6x(cm)、2x(cm),则:9x×2+6x×18+2x(18-1)=1280解得:x=8.∴边空为72cm,字宽为48cm,字距为16cm.13、(12分)【答案】螺栓12人,螺母16人【解析】设安排x人生产螺栓,则有(28-x)人生产螺母,根据题意得:18(28-x)=12x·2,解得:x=12,28-12=16(人).答:应安排12人生产螺栓,16人生产螺母才行.14、(12分)【答案】应往甲处调去140名,往乙处调去60名武警部队战士【解析】设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,解得x=140,∴200-x=60.答:应往甲处调去140名,往乙处调去60名武警部队战士.15、(12分)【答案】200【解析】设七年级共有x名同学参加这次公益活动.由题意,得x–10%x–55%x=70合并同类项,得0.35x=70,系数化为1,得x=200.答:七年级共有200名同学参加这次公益活动.16、(12分)【答案】200【解析】设七年级共有x名同学参加这次公益活动.由题意,得x–10%x–55%x=70合并同类项,得0.35x=70,系数化为1,得x=200.答:七年级共有200名同学参加这次公益活动.17、(12分)【答案】一班原来有44名学生,二班原来有46名学生.【解析】设一班原来有x名学生,则二班原来有(90﹣x)名学生,根据题意得:x﹣4=(90﹣x+4)×80%,解得:x=44,∴90﹣x=46.答:一班原来有44名学生,二班原来有46名学生.18、(12分)【答案】48【解析】设十位上的数字X,则个位上的数是2X,10×2X+X=(10X+2X)+36解得X=4,2X=8,答:原来的两位数是48。
19、(12分)【答案】这种彩电的进价是2779.2元.【解析】解:设彩电进价是x元.3860×0.9-x=25%xx=2779.2答:这种彩电的进价是2779.2元.20、(12分)【答案】一班原来有44名学生,二班原来有46名学生.【解析】设一班原来有x名学生,则二班原来有(90﹣x)名学生,根据题意得:x﹣4=(90﹣x+4)×80%,解得:x=44,∴90﹣x=46.答:一班原来有44名学生,二班原来有46名学生.。