遗传变异的分子基础
高考生物专题复习课件遗传变异进化
![高考生物专题复习课件遗传变异进化](https://img.taocdn.com/s3/m/e4e1392a58eef8c75fbfc77da26925c52cc591e9.png)
生物变异的4大问题
一定吗?
变异变
_改_变_基因的质(基因结构改变,成为新基因),
不_改_变_基因的量。
基因重组
不改变 基因的质,一般_不_改_变_基因的量, 但改变基因间的组合方式及改变基因型。 (注:转基因会改变基因的量)
染色体变异 不_改_变_基因的质,__改_变__基因的量或改变基因 的排列顺序。
D.用同位素标记法可以探究乙图所 示的复制方式是否为半保留复制
图乙的复制起点在哪里? 有几个复制叉?
真、原核细胞基因表达过程
真核生物核基因的表达过程: 转录在细胞核中进行,翻译在核糖 体上进行,两者不同时进行。
原核生物基因的表达过程。 转录和翻译两者同时进行。
辨析:真核细胞中,以上两种过程可以同时发生。(✔ )
5.(2022·河南百校联盟)如图是DNA复制过程的相关示意图,其中甲图是复制时
形成的复制叉,丙图是复制时形成的复制环。下列叙述错误的是( C )
A.由丙图可知,DNA复制起点的两 侧都能形成复制叉
B.由丙图可以推知复制环越大,复 制启动的时间越早
C.丙图有一个解旋酶参与催化DNA 分子中氢键的断裂
豌豆的圆粒性状是由R基因控制的,当R基因中插入一段 800个碱基对的DNA片段时就成为控制皱粒性状的r基因。豌豆 种子圆粒性状的产生机制如图,下列说法错误的是( )
A. a、b过程都遵循碱基互补配对原则 B. b过程中,每种tRNA只能识别并转运一种氨基酸 C. R基因中插入一段800个碱基对的DNA片段属于基因重组 D. 该事实说明基因能通过控制酶的合成来控制代谢过程,进而
A、均不含有35S,部分含有15N B、均不含有32P,全部含有15N C、部分含有32P,全部含有15N D、部分含有35S,全部含有15N
高中生物教学备课教案遗传的分子基础
![高中生物教学备课教案遗传的分子基础](https://img.taocdn.com/s3/m/87d5bbc5b8d528ea81c758f5f61fb7360b4c2b8e.png)
高中生物教学备课教案遗传的分子基础遗传的分子基础遗传是生物学中的重要概念,它涉及到了生物个体的性状传递和变异。
在高中生物教学中,了解生物遗传的分子基础对于学生的综合能力和科学素养的培养十分重要。
本文将为大家介绍一篇高中生物教学备课教案,详细探讨遗传的分子基础。
一、教学目标1. 理解遗传的基本概念,包括性状、基因、等位基因、基因型、表现型等。
2. 掌握DNA的结构和功能。
3. 理解DNA复制的过程和意义。
4. 理解基因突变的形成原因和对进化的影响。
二、教学准备1. 教学资料:课件、白板、教科书、图片等。
2. 实验器材:显微镜、试剂、实验用具等。
三、教学过程1. 概念介绍a. 遗传的基本概念:性状、基因、等位基因、基因型、表现型等。
b. DNA的结构和功能:双螺旋结构、碱基配对、携带遗传信息等。
2. DNA的复制a. 半保留复制的过程:解旋、复制、连接。
b. 意义和目的:保证遗传稳定性、提供变异基础。
3. 基因突变a. 形成原因:化学物质作用、辐射、DNA复制错误等。
b. 类型和影响:点突变、插入/缺失突变、重组等;对进化的推动和创新作用。
4. 总结与拓展a. 总结遗传的分子基础的主要内容。
b. 关联其他生物学相关概念:基因表达、蛋白质合成等。
四、教学辅助1. 利用多媒体展示DNA结构、复制过程的动画和实验截图。
2. 图片、图表辅助解释各个概念和过程。
3. 实验演示:通过显微镜观察细胞分裂过程,生动呈现基因复制和突变的现象。
五、教学评价1. 教学实验:要求学生能够观察显微镜下的细胞分裂现象,并描述其中涉及到的遗传分子基础。
2. 课堂讨论:引导学生分析不同基因型对于性状表现的影响,拓展学生思维。
3. 综合评价:以小组或个人形式完成学科实践任务,包括解析生物学相关研究文章,总结学科前沿发展。
六、教学延伸1. 鼓励学生阅读相关文献,了解最新的研究成果。
2. 建议学生进行基因突变的模拟实验,探究不同突变类型对生物性状的影响。
生物变异和遗传的分子基础练习
![生物变异和遗传的分子基础练习](https://img.taocdn.com/s3/m/4793264be518964bcf847c72.png)
生物变异和遗传的分子基础练习一、选择题1、引起生物可遗传变异的原因有三个,即基因重组、基因突变和染色体变异。
以下几种生物性状的产生,来源于同一种变异类型的是()①蝇的白眼②豌豆的黄色皱粒、绿色圆粒③八倍体小黑麦的出现④人类的色盲⑤玉米的高茎皱形叶⑥人类的镰刀型细胞贫血症A.①②③B.④⑤⑥C.①④⑥D.②③⑤2、一个基因型为AaBb的个体,两对基因位于一对染色体上,但在形成配子时非姐妹染色单体之间发生了交换,基因从而发生了交换,那么,这两对等位基因的分离发生于()A.卵原细胞中 B.减数第一次分裂和减数第二次分裂C.都在第二次分裂中D.都在第一次分裂中3、一双链DNA分子,在复制解旋时,一条链上的G变成C,则DNA分子经n次复制后,发生差错的DNA占()A.1/2B.1/2 n-1C.1/2nD.1/2n+14、家蚕的性别决定为ZW型。
用X射线处理使第2染色体上的含显性斑纹基因PB的区段易位到W染色体上,再将雌蚕与白体雄蚕交配,其后代凡是雌蚕都有斑纹,凡是雄蚕都无斑纹。
这样有利于去雌留雄,提高蚕丝的质量。
这种育种方法依据的原理是--------()A.基因突变B.基因重组C.染色体结构的变异D.染色体数目的变异5、离体培养的小肠绒毛上皮细胞,经紫外线诱变处理后,对谷氨酸的吸收功能丧失,且这种特性在细胞多次分裂后仍能保持。
下列分析中,正确的是()A.诱变处理破坏了细胞中催化A TP合成的相关酶系B.细胞膜上的载体蛋白缺失或结构发生变化C.细胞膜的结构发生变化,导致通透性降低D.细胞的遗传物质发生了改变6、下列说法错误..的是()A.三倍体无子西瓜的性状可以遗传,但它不是一个新物种。
用一定浓度的生长素处理未授粉的四倍体西瓜幼苗,可获无子西瓜,这种性状不可遗传B.一块水稻田中偶尔发现一株矮秆水稻,它连续自交后代都是矮秆,这种变异可能源自于体细胞或生殖细胞的基因突变C.染色体结构变异和基因突变的实质都是染色体上的DNA中碱基对排列顺序的改变D.一个基因型为AaBbCC的植物(三对基因可自由组合),用其花粉离体培养获得n株幼苗,其中aabbCC的个体的比例为07、以下关于生物变异的叙述,正确的是A.高度分化的细胞不会再发生基因突变B.基因突变会使人患遗传病,所以对人类来说,变异都是不利的C.非同源染色体的交叉互换导致的变异叫基因重组D.无籽西瓜的培育依据的原理是染色体变异8、用纯合的二倍体水稻品种高秆抗锈病(DDTT)和矮秆不抗锈病(ddtt)进行育种时,一种方法是杂交得到F1,F1再自交得F2;另一种方法是用F1的花药进行离体培养,再用秋水仙素处理幼苗得到相应植株。
第二-四章 遗传的分子基础
![第二-四章 遗传的分子基础](https://img.taocdn.com/s3/m/ba5a834b2e3f5727a5e96276.png)
16
真核生物的结构基因
侧翼序列 (上游)
编码区
侧翼序列 (下游)
17
外显子与内含子接头
• 割裂基因结构中外显子-内含子的接头区是一高 度保守的一致顺序,称为外显子-内含子接头。 • 每一个内含子的两端具有广泛的同源性和互补 性,5′端起始的两个碱基是GT,3′端最后的 两个碱基是AG,通常把这种接头形式叫做GTAG法则(GT-AG rule)。这两个顺序是高度 保守的,在各种真核生物基因的内含子中均相 同。
25
26
四、基因表达的调控 • 真核生物基因表达调控是通过多阶段水 平实现的,即转录前、转录水平、转录 后、翻译和翻译后等五个水平。
27
第五节 人类基因组计划
“人类基因组计划(human genome project ,HGP)”是20世纪90年代初开始的全球范围 的全面研究人类基因组的重大科学项目。 HGP是由美国科学家Dulbecco在1985年率 先提出的,旨在阐明人类基因组DNA 3.2×109 核苷酸的序列,发现所有人类基因并阐明其在 染色体上的位置,破译人类全部遗传信息,使 得人类第一次在分子水平上全面地认识自我。
15
(二)割裂基因
• 真核生物的结构基因是割裂基因(split gene) ,由编码序列(外显子,exon)和非编码序列 (内含子,intron)组成,二者相间排列。 • 每个割裂基因中第一个外显子的上游和最末一 个外显子的下游,都有一段不被转录的非编码 区,称为侧翼序列(flanking sequence)。
A
a1 a2 …
34
复等位基因(multiple alleles)
• 遗传学上把群体中存在于同一基因座上, 决定同一类相对形状,经由突变而来,且 具有3种或3种以上不同形式的等位基因 互称为复等位基因。
分子生物学基础第三章遗传与变异 第三节基因、基因组与基因突变
![分子生物学基础第三章遗传与变异 第三节基因、基因组与基因突变](https://img.taocdn.com/s3/m/296d13b450e79b89680203d8ce2f0066f5336419.png)
第三节 基因、基因组与基因突变
2.基因的命名 (1)用三个小写英文斜体字母表示基因的名称 (2)在三个小写英文斜体字母后面加上一个大写英文 斜体字母表示其不同的基因座,全部用正体时表示其相应 的蛋白产物和表型。 (3)对于质粒和其他染色体外成分,如果是自然产生 的质粒,用三个英文正体字母表示,第一个字母大写;但 如果是重组质粒,则在两个大写字母之前加一个p,大写 字母表示构建该质粒的研究者或单位。 (4)对果蝇基因命名的例子最繁多,特别是在发育生 物学中。对突变表型的表示用1-4个字母代表。
第三节 基因、基因组与基因突变
图3-23 化学修饰剂改变碱基的配对性质
第三节 基因、基因组与基因突变
3.诱变剂和致癌剂的检测 许多化合物需在体内经过代谢活化才有诱变作用,在 测试时可将待测物与肝提取物一起保温,使其转化,这样 可使潜在的诱变剂也能被检测出来。大肠杆菌的SOS反应 可以使处于溶源状态的λ噬菌体激活,从而裂解宿主细胞 产生噬菌斑。通常引起细菌SOS反应的化合物对高等动物 都是致癌的。Devoret根据此原理,利用溶源菌被诱导产
第三节 基因、基因组与基因突变
三、基因突变
1.基因突变的类型
基因突变有以下多种类型:碱基对置换指DNA错配碱 基在复制后被固定下来,由原来的一个碱基对被另一个碱 基对所取代,又称为点突变。碱基对置换有两种类型:即 转换是在两种嘧啶或两种嘌呤之间的互换;颠换发生在嘧 啶与嘌呤或嘌呤与嘧啶之间的互换。碱基替换通常仅发生 在一个碱基上,偶尔也有几个碱基同时被替换。转换发生 的频率一般比颠换高1倍左右。插入突变指在基因的序列 中插入了一个碱基或一段外来DNA导致的突变。例如,大 肠杆菌的噬菌体Mu-1、插入序列(IS)或转座子都可能诱 发插入突变。插入突变有两种方式:①拷贝或复制移动, 指一个位点上的序列被复制后插入到另一位点。②非拷贝 移换,DNA序列从一个位点直接移动到另一位点。
高考生物二轮专题课件:专题五 遗传的分子基础、变异与进化
![高考生物二轮专题课件:专题五 遗传的分子基础、变异与进化](https://img.taocdn.com/s3/m/c1c57a0b4a35eefdc8d376eeaeaad1f346931112.png)
4.用体外实验的方法可合成多肽链。已知苯丙氨酸的密码子是UUU,若要在体
外合成同位素标记的多肽链,所需的材料除了人工合成的多聚尿嘧啶核苷酸
外还有 同位素标记的苯丙氨酸
、 除去了DNA和mRNA的细胞提取液 。
5.人体不同组织细胞的相同DNA分子,进行转录过程时启用的起始点不完全相同
(填“都相同”“都不同”或“不完全相同”),其原因是
不同组织细胞中
基因进行选择性表达 。
6.下图为某生物遗传信息传递过程:
图中A表示 RNA聚合酶 。某同学判断该图表示的遗传信息传递过程发生在原 核细胞中,他判断的依据是 转录和翻译在同一场所进行 。
7.已知某植物的宽叶对窄叶为显性,纯种宽叶植株与窄叶植株杂交的后代中, 偶然发现一株窄叶个体,原因: 可能是纯种宽叶个体在产生配子时发 生了基因突变,也可能是纯种宽叶个体产生的配子中含宽叶基因的染色体片
DNA聚合酶 解旋酶
减数分裂
四种脱氧核苷酸
(2)转录:DNA→RNA
五碳糖
Hale Waihona Puke 苷酸四种核糖核(3)翻译:mRNA→蛋白质
直接模板
多肽链或蛋白质
(4)快速确认原核细胞与真核细胞中的基因表达 ①原核细胞:转录、翻译同时进行
②真核细胞:先转录后翻译
细胞核 核孔
①遗传信息位于DNA上,密码子位于mRNA,反密码子位于tRNA上。 ②mRNA、tRNA和rRNA都是转录的产物,也都参与翻译过程。 ③起点问题:在一个细胞周期中,DNA复制一次,每个复制起点只起始一次; 而在一个细胞周期中,基因可多次转录,因此转录起点可多次起始。 ④翻译过程中mRNA并不移动,而是核糖体沿着mRNA移动,进而依次读取密 码子,最终因为模板mRNA相同,合成的多个多肽的氨基酸序列一般是相同的。
遗传学基础知识点
![遗传学基础知识点](https://img.taocdn.com/s3/m/9ad7944b03020740be1e650e52ea551811a6c911.png)
遗传学基础知识点遗传学是生物学中的一个重要分支,研究个体间遗传信息的传递、表现和变异。
在遗传学的学习过程中,有一些基础知识点是必须要掌握的。
本文将围绕这些基础知识点展开讨论。
1. 遗传物质的本质遗传物质是指携带遗传信息的生物分子,主要包括DNA和RNA。
DNA是双螺旋结构,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成,形成基因和染色体。
RNA则在蛋白质合成中起着重要作用。
2. 孟德尔遗传定律孟德尔是遗传学的奠基人,他根据豌豆杂交实验提出了一系列遗传定律,包括隔离定律、自由组合定律和性联和定律。
这些定律揭示了遗传物质的传递规律。
3. 遗传的分子基础遗传信息的传递和表达是通过DNA分子进行的。
DNA分子在细胞分裂时复制,通过核糖体和tRNA、mRNA参与蛋白质合成,从而实现基因的表达。
4. 遗传性状的表现遗传性状是由基因决定的,在有性繁殖中通过配子随机组合形成。
一对等位基因可以表现为显性和隐性,而性状的表现受到基因型和环境的影响。
5. 遗传变异基因在不同个体间可以发生变异,包括基因突变、基因互作和基因重组等。
这种变异是进化的基础,可以导致个体的遗传多样性。
6. 遗传病与遗传咨询遗传病是由基因突变引起的遗传性疾病,如地中海贫血、囊性纤维化等。
遗传咨询是通过遗传学知识对个体的遗传信息进行评估和风险预测,提供个性化的健康建议。
通过对上述基础知识点的了解,可以更好地理解遗传学的基本原理和应用。
遗传学作为一门重要的生物学学科,为人类健康和生物多样性的研究提供了理论基础和实践指导。
希望本文能够对您的遗传学学习有所帮助。
分子生物学基础第三章遗传与变异 第一节原核生物的遗传规律
![分子生物学基础第三章遗传与变异 第一节原核生物的遗传规律](https://img.taocdn.com/s3/m/47759ef5cf2f0066f5335a8102d276a2002960f5.png)
第一节 原核生物的遗传规律
(3)Fˊ因子与性导 F+与Hfr两种菌株可以相互转换,也就是说F因子既可 以插入到染色体中去,形成Hfr菌株,有时又可通过有规 则的交换和剪切,从染色体上完整地游离下来形成F+菌株, 但是偶尔也会出现不规则的环出,形成的F因子携带了相 邻细菌染色体的基因(图3-6)。这种带有插入细菌基因 的环状F因子称为Fˊ因子(Fˊ-facter)。
高频重组 后来Cavalli和Hayes先后在菌株A中发现 了一种高频重组菌株Hfr。它们能跟F―的菌株杂交,并能 得到频率很高的重组细菌,频率要比一般的F+×F―高出上 千倍。经研究证明,Hfr和F+不同之处是Hfr中的F因子整 合在细菌的染色体上(图3-4B),但一般的F+中的F因子 是存在于细胞质中的质粒。
第一节 原核生物的遗传规律
图3-7 P22噬菌体的普遍性转导示意图
第一节 原核生物的遗传规律
特异性转导 我们现在介绍另一类噬菌体,它们所进 行的转导是特异性转导(specialized transduction), 或局限性转导(restricted transduction),这类噬菌 体只转移细菌染色体的特定部分。λ噬菌体是特异转导者 (transducer)的一个很好例子。大肠杆菌的一个溶源菌 株K12(λ)可由紫外光诱导,用来进行转导。唯一成功的 转导为gal+基因座位。根据实验知道,λ总是附着在供体 的gal+基因座位的邻近位置,特异性转导供体的gal+基因 给受体(图3-8)。
第一节 原核生物的遗传规律
图3-9 细菌转化的机制 A:转化菌形成的过程; B:转化中遗传重组的机制
第一节 原核生物的遗传规律
转化时供体细菌DNA断裂成小片段,这些片段平均长 度约为20,000个核苷酸对,外源DNA片段进入受体后可以 和受体染色体形成部分二倍体,有可能发生重组,从而使 受体细胞发生稳定性的遗传转化。转化过程包括几个连续 的阶段:①供体双链DNA 分子和受体细胞表面受体部位进 行可逆性结合;②供体DNA片段被吸入受体细胞,并要防 止被受体DNA酶破坏;③供体DNA进入受体后,立即从双链 DNA转变成单链DNA,其中一条单链被降解;④未被降解的 单链DNA部分地或整个地插入受体细胞的DNA链中与同源区 段形成杂合的DNA分子;⑤杂合DNA经复制、分离以后,形 成一个受体亲代类型的DNA和一个供体与受体DNA结合的杂 种双链DNA,从而导致基因重组形成各种类型的转化子 (transformant)。
基因突变与遗传变异
![基因突变与遗传变异](https://img.taocdn.com/s3/m/fe51a39332d4b14e852458fb770bf78a64293a4b.png)
基因突变与遗传变异基因突变是指在DNA序列中发生的变化,而遗传变异则是指基因突变导致多样性的出现。
基因突变和遗传变异是生物进化和种群遗传变异的重要原因。
然而,它们在分子层面上却存在一些细微的差别。
1. 基因突变的定义及分类基因突变是指DNA序列中的改变,包括点突变、插入突变、缺失突变、倒位突变和重复序列突变等。
其中,点突变是最常见的形式,包括错义突变、无义突变和无移码突变。
这些突变会导致基因的功能改变,进而影响个体的表型。
2. 遗传变异的来源遗传变异是指由基因突变引起的多样性。
它可以来自自然选择、突变堆积、基因流和遗传漂变等因素。
自然选择会选择适应环境的基因型,从而使遗传变异在种群中得以保持。
而突变堆积是指在互不相关的个体中出现多种突变,进而导致遗传多样性的积累。
3. 基因突变和遗传变异的联系基因突变是遗传变异的基础。
无论是点突变还是结构变异,都能导致DNA序列的改变,从而引起个体之间的遗传差异。
这种遗传差异可以在种群中传递,并通过自然选择进一步影响物种的进化过程。
4. 基因突变和遗传变异的意义与应用基因突变和遗传变异对生物进化和适应环境起到了重要作用。
通过基因突变和遗传变异,物种能够适应不同的环境压力,提高生存竞争力。
此外,基因突变和遗传变异也是研究遗传疾病、进化生物学和生物多样性的基础。
总结:基因突变和遗传变异是生物进化和种群遗传变异的重要原因。
基因突变导致了DNA序列的改变,而遗传变异则是由基因突变引起的多样性。
它们在分子层面上存在细微的差别,但是在生物进化和适应环境的过程中起到了重要作用。
基因突变和遗传变异的研究对于我们深入了解生物进化、疾病遗传以及生物多样性的形成具有重要意义。
高三生物“遗传、变异与进化”专题复习:第1讲 遗传的分子基础
![高三生物“遗传、变异与进化”专题复习:第1讲 遗传的分子基础](https://img.taocdn.com/s3/m/6fb9ba13abea998fcc22bcd126fff705cc175cc7.png)
D [步骤①中、酶处理时间要足够长,以使底物完全水解,A错误;步 骤②中,甲或乙的加入量属于无关变量,应相同,否则会影响实验结果,B 错误;步骤④中,液体培养基比固体培养基更有利于细菌转化,C错误;S 型细菌有荚膜,菌落光滑,R型细菌无荚膜,菌落粗糙。步骤⑤中,通过涂 布分离后观察菌落或鉴定细胞形态,判断是否出现S型细菌,D正确。]
20.除了DNA甲基化外,构成染色体的 组蛋白发生甲基化 、 乙酰化 等修饰 也会影响基因的表达。(必修2 P74相关信息)
[真题易错·辨析清] 1.判断下列关于遗传物质的说法的正误 (1)赫尔希和蔡斯的实验证明DNA是遗传物质。(2021·广东卷)(√) (2)S型菌的DNA能够进入R型菌细胞指导蛋白质的合成。(2021·全国Ⅱ 卷)(√) (3)新冠病毒与肺炎(链)球菌二者遗传物质所含有的核苷酸是相同的。 (2020·全国卷Ⅱ)(×) (4)用3H标记胸腺嘧啶后合成脱氧核苷酸,注入真核细胞,可用于研究 DNA复制的场所。(2019·天津卷)(√) (5)赫尔希和蔡斯的T2噬菌体侵染大肠杆菌实验中,噬菌体DNA的合成 原料来自大肠杆菌。(2019·江苏卷)(√)
4.从控制自变量的角度,艾弗里实验的基本思路是在每个实验组中 特异性地除去某一种物质 ,从而鉴定出 DNA 是遗传物质。在实际操作过 程中最大的困难是如何彻底去除细胞中含有的某种物质。(必修2 P46思考·讨 论2)
5.艾弗里采用的主要技术手段有 细菌培养技术 、物质的 提纯和鉴 定技术 等。赫尔希采用的技术手段有 噬菌体培养技术 、 同位素标记技 术 ,以及 物质的分离和提取技术 等。科学成果的取得必须有技术手段作 为保证,技术的发展需要以科学原理为基础。(必修2 P46思考·讨论3)
17.囊性纤维化机理:编码CFTR蛋白(一种转运蛋白)的基因 缺失了3 个碱基 ,导致CFTR蛋白在第508位缺少 苯丙氨酸 ,进而影响了CFTR蛋 白的空间结构,使CFTR转运氯离子的功能异常,导致患者支气管中黏液增 多,管腔受阻,细菌在肺部大量生长繁殖,最终使肺功能严重受损。(必修2 P72正文)
2023新教材高考生物二轮专题复习 专题四 生命系统的遗传、变异、进化 第1讲 遗传的分子基础
![2023新教材高考生物二轮专题复习 专题四 生命系统的遗传、变异、进化 第1讲 遗传的分子基础](https://img.taocdn.com/s3/m/8945dc2578563c1ec5da50e2524de518974bd37c.png)
专题四生命系统的遗传、变异、进化第1讲遗传的分子基础聚焦新课标:3.1亲代传递给子代的遗传信息主要编码在DNA分子上。
基础自查明晰考位纵引横连————建网络提醒:特设长句作答题,训练文字表达能力答案填空:①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮⑯⑰⑱⑲⑳边角扫描————全面清提醒:判断正误并找到课本原话1.有荚膜的肺炎链球菌可抵抗吞噬细胞的吞噬,有利于细菌在宿主体内生活并繁殖。
(必修2 P43“相关信息”)()2.分别用含有放射性同位素35S和放射性同位素32P的培养基培养噬菌体。
(必修2 P45正文)( )3.单个脱氧核苷酸在DNA酶的作用下连接合成新的子链。
(必修2 P55正文)( ) 4.DNA分子复制时解旋酶与DNA聚合酶不能同时发挥作用。
(必修2 P55正文)( ) 5.DNA分子复制与染色体复制是分别独立进行的。
(必修2 P56“概念检测”)( ) 6.反密码子的读取方向为由氨基酸连接端开始读(由长臂端向短臂端读取)。
(必修2 P67图4-6)( )7.tRNA和rRNA参与蛋白质的合成过程,但是这两种RNA本身不会翻译为蛋白质。
(必修2 P66“相关信息”)()8.终止密码子一定不编码氨基酸。
(必修2 P67表4-1注解)( )9.表观遗传现象由于基因的碱基序列没有改变,因此生物体的性状也不会发生改变。
(必修2 P74正文)( )10.吸烟会导致精子中DNA的甲基化水平升高,从而影响基因的表达。
(必修2 P74“与社会的联系”)()考点梳理整合突破整合考点8 “追根求源”的遗传物质及其本质与功能考点整合固考基一、遗传物质探索的经典实验分析1.需掌握的两个实验2.必须明确的三个问题(1)加热杀死的S型细菌,其蛋白质变性失活;而DNA在加热过程中,双螺旋解开,氢键断裂,但缓慢冷却时,其结构可恢复。
R型细菌转化为S型细菌的实质是S型细菌的DNA 片段整合到了R型细菌的DNA中,这种变异类型属于________。
高中生物基因突变和基因重组知识点归纳
![高中生物基因突变和基因重组知识点归纳](https://img.taocdn.com/s3/m/3cd445e551e2524de518964bcf84b9d529ea2c58.png)
高中生物基因突变和基因重组知识点归纳高中生物基因突变和基因重组知识点归纳基因突变是指DNA序列中的改变,它是生物遗传变异的基础。
而基因重组则是指DNA分子之间的片段重新组合,从而形成新的基因组合。
这两个概念都是遗传学中非常重要的内容,下面我们将对其进行归纳总结。
基因突变的类型:1. 点突变:指的是DNA序列中某个碱基的改变,包括替换、插入和缺失三种情况。
替换突变是指一个碱基被另一个取代,插入突变是指一个新的碱基被插入到DNA序列中,缺失突变则是指一个或多个碱基从DNA序列中缺失。
2. 突变的原因:突变可以由内源性因素例如DNA复制错误、DNA修复错误等导致,也可以由外源性因素例如辐射、化学物质等引起。
基因突变的影响:1. 突变对蛋白质的编码能力有影响:点突变可能导致密码子改变,进而改变蛋白质的氨基酸序列,影响蛋白质的结构和功能。
2. 突变对性状的影响:突变可能导致基因表达的变化,从而影响性状的表现。
3. 突变对个体适应性的影响:突变在自然选择中起到了重要的作用,有利突变可能被保存下来,还有部分突变可能导致疾病的发生。
基因重组的类型:1. 交互重组:指两条染色体的非姐妹染色单体之间的相互交换,促使等位基因的组合发生改变。
2. 合成重组:指两条染色单体互相连续段的重组,形成新的染色体组合。
3. 基因转座:指基因从一个位点转移到另一个非同源位点的过程。
它可以导致基因组结构的改变。
基因重组的影响:1. 产生新的基因组合:基因重组可以导致新的基因组合出现,使得个体对环境的适应能力增强。
2. 基因重组还是突变:基因重组不一定导致新的基因出现,有时只是导致现有基因的重新组合。
因此,基因重组和突变是两个不同的概念。
基因突变和基因重组对生物进化的影响:1. 生物进化是指物种在长期演化过程中,适应环境变化而产生的遗传变异和适应性改变。
基因突变和基因重组是遗传变异的重要来源,它们为生物进化提供了遗传学基础。
2. 突变和重组的存在使得物种能够积累适应新环境的遗传变异,并导致物种的多样性。
生物的遗传和变异
![生物的遗传和变异](https://img.taocdn.com/s3/m/7e72d2b4f71fb7360b4c2e3f5727a5e9856a27a6.png)
生物的遗传和变异生物的遗传和变异生物的遗传和变异是自然界中一种非常常见的现象。
它是指自然界中个体之间遗传信息的差异,以及这些差异可能导致的形态、结构、生理和行为的变化。
生物的遗传和变异广泛存在于植物和动物,包括单细胞生物、真核微生物、陆生、水生和飞行生物等。
它是生物多样性的基础,也是生命演化的推动力。
一、遗传基础生物的遗传基础是遗传物质——DNA(脱氧核糖核酸),它是生物细胞中的基本遗传物质,能够指导生物的发育和生长。
DNA分子由若干个碱基对组成,其中有4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
DNA分子具有两条互为互补的链,碱基之间通过氢键相互连接,形成螺旋状的双链结构。
DNA分子的等位基因(allele)是指不同的DNA序列,它们在相同基因位点上的碱基序列发生差异,也就是不同碱基对的不同排列顺序。
例如,在人类的基因编码区域中,同一个基因有多个等位基因,它们的碱基序列各不相同。
二、分子遗传学分子遗传学是研究基因结构、功能、表达和调控的学科。
基因是指对某一形态或性状有影响的一个或一组DNA序列。
在分子遗传学中,基因通常用来指代DNA分子中基因编码区域的序列。
基因的功能是指它们编码蛋白质,蛋白质就是生物体内各种功能酶、激素和其他结构蛋白质的构建单位。
基因转录和翻译过程是指DNA分子首先通过转录过程将其信息转换为RNA分子,然后通过翻译过程将RNA分子翻译成蛋白质。
一个基因编码的蛋白质的类型和数目是由DNA分子中基因的序列指定的。
分子遗传学也研究基因的表达和调控。
基因表达是指基因被转录和翻译成蛋白质的过程。
基因调控是指基因的表达水平会受到多种因素的影响,包括DNA序列上的调控元件、转录因子、环境因素和神经系统等。
基因调控是形成生物流行病学的基础,例如,某些基因可能会增加某种疾病的风险,而其他基因则可能会减少患该疾病的风险。
三、变异机制生物的变异机制包括突变、重组和基因流。
突变是指DNA 序列的改变,主要有点突变和插入/删除突变。
专题5 遗传的分子基础、变异和进化 系统大概念(一)——遗传信息主要编码在DNA分子上
![专题5 遗传的分子基础、变异和进化 系统大概念(一)——遗传信息主要编码在DNA分子上](https://img.taocdn.com/s3/m/e1c2793c6fdb6f1aff00bed5b9f3f90f77c64d4f.png)
提示:蜜蜂的幼虫以花粉和花蜜为食,使DNMT3基因表达,DNMT3基 因表达的一种DNA甲基化转移酶,造成一些基因被甲基化而不能表达,发育 成了工蜂;蜜蜂的幼虫以蜂王浆为食,使DNMT3基因不表达,一些基因正常 表达而发育成蜂王。
2.科研工作者做噬菌体侵染细菌的实验时,分别用同位素32P、35S、18O和14C 对噬菌体以及大肠杆菌成分做了如下标记。请回答下列问题:
(二)科学探究类 1.在一个蜂群中,少数幼虫一直取食蜂王浆而发
育成蜂王,而大多数幼虫以花粉和花蜜为食将 发育成工蜂。DNMT3 蛋白是 DNMT3 基因表达 的一种 DNA 甲基化转移酶,能使 DNA 某些区 域添加甲基基团(如图所示),DNA 被甲基化后 会干扰 RNA 聚合酶的识别。敲除 DNMT3 基因 后,蜜蜂幼虫将发育成蜂王,这与取食蜂王浆 有相同的效果。据此研究解释蜜蜂幼虫因食物不同而发育不同的原因。
提示:(1)设法将DNA和蛋白质分开,单独地、直接地观察DNA和蛋白质 的作用 (2)18O 不一定含有 (3)100%、0 (4)沉淀物 沉淀物和上清 液 (5)让第一组和第三组的噬菌体分别侵染未标记的大肠杆菌,保温、离 心,比较沉淀物中放射性强度大小,放射性强度很低的是第一组噬菌体, 放射性强度较高的是第三组噬菌体
2.在核糖体上翻译出来的胰岛素是否具有降低血糖的生理作用?请分析原因: _________________________________________________________________ _______________________________________________________________。 提示:不具有。在核糖体上翻译出来的只是多肽链,还需要被进一步加工, 盘曲折叠成具有特定空间结构和功能的蛋白质,才能承担细胞的生命活动。
高中生物教案:遗传的分子基础
![高中生物教案:遗传的分子基础](https://img.taocdn.com/s3/m/7dd71c824128915f804d2b160b4e767f5bcf807f.png)
高中生物教案:遗传的分子基础一、遗传的分子基础简介遗传是生物界广泛存在的一种现象,它决定了个体的性状、特征以及种群的遗传变异。
而遗传的分子基础主要在于基因和DNA分子的作用。
基因是生物体内负责遗传物质的单位,而DNA分子则是基因的主要组成部分,同时也是遗传信息的携带者。
了解遗传的分子基础,对于学习生物学、了解生物进化以及预测后代的遗传特征等方面都具有重要的意义。
二、 DNA的结构与功能DNA(脱氧核糖核酸)是生物体内负责储存遗传信息的重要分子。
它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的链状结构,并以双螺旋的形式存在。
DNA双链以氢键相互连接,两个链呈对称互补的关系,碱基之间的配对关系为腺嘌呤-胸腺嘧啶和鸟嘌呤-胞嘧啶。
这种碱基的配对规则保证了DNA复制时的准确性。
DNA具有两个重要的功能,一是储存遗传信息,即决定生物体的遗传特征。
遗传信息以特定的顺序编码在DNA分子中,通过基因转录和翻译过程将遗传信息转化为蛋白质,从而决定了生物体的形态和功能。
二是通过复制实现遗传信息的传递。
DNA分子能够通过复制过程自我复制,并将遗传信息传递给下一代细胞。
三、基因的表达与控制基因表达是指遗传信息从DNA转化为蛋白质的过程。
这一过程主要包括基因转录和翻译两个阶段。
在基因转录阶段,DNA双链的一条链作为模板,通过RNA 聚合酶的作用,合成mRNA(信使RNA)。
mRNA然后通过RNA剪接修饰并离开细胞核,进入细胞质,为下一步的翻译过程做好准备。
在基因翻译过程中,mRNA与核糖体结合,并依照密码子的配对规则,将氨基酸顺序逐步连接起来,形成蛋白质。
这一过程决定了蛋白质的氨基酸序列,进而决定了蛋白质的结构和功能。
基因的表达受到多种因素的调控。
其中主要的调控因子包括转录因子和启动子区域的结合情况。
转录因子是一类能够与DNA结合并影响基因转录过程的蛋白质。
通过结合到启动子区域,转录因子能够控制基因的转录速率,从而调节基因表达。
高考二轮复习:遗传的分子基础、变异与进化
![高考二轮复习:遗传的分子基础、变异与进化](https://img.taocdn.com/s3/m/ec521226af1ffc4ffe47acb2.png)
3.明确遗传物质探索历程的“两次标记”和“三个结论” (1)噬菌体侵染细菌实验中的两次标记的目的不同: ①第一次标记:分别用含 35S 和 32P 的培养基培养 10 大肠杆菌 ,目的是 获得带有标记的大肠杆菌。 ②第二次标记:分别用含 35S 和 32P 的大肠杆菌培养 11 T2噬菌体 ,目的是 使 T2 噬菌体带上放射性标记。
2 基因突变 (1)概念:DNA 分子中发生碱基对的替换、增添和缺失,而引起的基因结构 的改变(必修 2P81)。 (2)解读 ①基因突变一般发生在细胞分裂间期,外界因素对 DNA 的损伤不仅发生在 间期,而是在各个时期都有。 ②基因突变没有造成基因数量和基因顺序变化,和染色体变异不同
③体细胞中发生的基因突变一般不能通过有性生殖传递给后代,有些植物可 以通过无性繁殖传递给后代。(必修 2P81 正文)
答案 C
易错警示 肺炎双球菌转化实验的几个易错点 (1)转化过程中并不是所有的 R 型细菌都被转化成 S 型细菌,而只是小部分 R 型细菌被转化成 S 型细菌。 (2)加热杀死 S 型细菌的过程中,其蛋白质变性失活,但是其内部的 DNA 在 加热结束后随温度的恢复又逐渐恢复活性。 (3)体内转化实验的结论是 S 型细菌体内有“转化因子”,没有证明“转化 因子”是 DNA,体外转化实验进一步证明“转化因子”是 DNA。
⑧亲子代之间及同一物种不同个体之间的差异主要是基因重组造成的。 ⑨一位父亲可能产生 223 种染色体组成不同的精子,母亲可能产生 223 种卵细 胞,这都是基因重组的结果(必修 2P83)。 ⑩两对等位基因的不同表现型的纯合子亲本杂交,F2 中重组类型占的比例为 3/8 或 5/8。 ⑪有性生殖的基因重组有助于物种在一个无法预测将会发生什么变化的环 境中生存,原因是基因重组能够产生多样化的基因组合的子代,其中可能有一些 子代会含有适应某种变化的、生存所必需的基因组合。(必修 2P83)。 ⑫基因重组不可以产生新性状,但可以产生新的基因组合(多种基因型),形 成多种重组类型。
遗传学课程基因知识点总结
![遗传学课程基因知识点总结](https://img.taocdn.com/s3/m/f413b1ceed3a87c24028915f804d2b160b4e863b.png)
遗传学课程基因知识点总结在遗传学课程中,学生将深入学习生物体内遗传信息的传递、表达和变异规律,包括基因组的结构、染色体的形态和功能、遗传信息的传递方式、基因表达的调控机制等内容。
本文将从这些方面对遗传学课程的基因知识点进行总结。
一、基因的本质和结构1. 基因的定义:基因是生物体遗传性状的分子基础,是携带遗传信息的单位。
基因编码了细胞内的蛋白质合成,控制了细胞的生理过程和形态结构。
2. 基因的结构:基因由DNA(脱氧核糖核酸)和RNA(核糖核酸)组成。
DNA是双螺旋结构,由磷酸、脱氧核糖和四种碱基(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶)组成。
RNA也是核苷酸聚合而成,具有单链结构。
基因还包括启动子、剪切位点等调控元件。
3. 基因的功能:基因编码了蛋白质的合成。
DNA通过转录过程生成mRNA(信使RNA),再通过翻译过程生成蛋白质。
蛋白质是细胞的主要结构和功能分子,参与了细胞的一切生理活动。
4. 基因的遗传方式:基因以一定的方式传递给子代,包括显性基因和隐性基因、等位基因等。
基因的遗传方式主要包括常染色体显性遗传、常染色体隐性遗传、性染色体连锁遗传、多基因遗传等。
5. 基因的表达调控:基因表达受到遗传学和表观遗传学的调控。
在转录和翻译过程中,基因的启动子、转录因子和剪切体等调控元件起着重要作用。
表观遗传学研究了DNA甲基化、组蛋白修饰等在基因表达中的作用。
二、遗传变异与多样性1. 遗传变异的来源:遗传变异是种群进化和个体适应的重要基础。
遗传变异的来源包括突变、基因重组和基因流。
突变是DNA序列的突然改变,包括点突变、插入、缺失、倒置等。
基因重组是指两个不同染色体的互换片段,基因流是指不同种群或物种之间的基因交换。
2. 缺陷基因和遗传病:遗传变异可能导致缺陷基因或突变基因,引发遗传病。
遗传病包括常染色体遗传病和性染色体遗传病。
常染色体遗传病的特征是男女均可患病,而性染色体遗传病的特征是男性患者更多。
3. 基因组的多样性:不同个体或不同物种间基因组存在一定的差异,称为基因组的多样性。
第七章 微生物遗传—变异物质基础
![第七章 微生物遗传—变异物质基础](https://img.taocdn.com/s3/m/472b0dd24028915f804dc227.png)
根癌土壤杆菌所含Ti质粒是引起双子叶植物冠瘿 瘤的致病因子。
35
36
Ti质粒中的T-DNA可携带任何外源基因整合到植物基 因组中,是植物基因工程中有效的克隆载体。
37
(5)代谢质粒(Metabolic plasmid)
质粒上携带有有利于微生物生存的基因,如能降 解某些基质的酶,进行共生固氮,或产生抗生素(某 些放线菌)等。
第七章 微生物遗传
遗传: 亲代与子代相似 变异: 亲代与子代、子代间不同个体不完全相同
遗传(inheritance)和变异(variation)是生命的最本质特性之一。
遗传型: 生物的全部遗传因子所携带的遗传信息 表型: 具有一定遗传型的个体,在特定环境条件下通过生
长发育所表现出来的外表特征和内在特征的总和。
plasmid) 毒性质粒(virulence plasmid) 代谢质粒(Metabolic plasmid) 隐秘质粒(cryptic plasmid)
28
(1)致育因子(Fertility factor,F因子)
又称F质粒,其大小约100kb,这是最早发现的一种与大肠 杆菌的有性生殖现象(接合作用)有关的质粒。
隐秘质粒不显示任何表型效应,它们的存在只 有通过物理的方法,例如用凝胶电泳检测细胞抽提 液等方法才能发现。
在应用上,很多隐秘质粒被加以改造作为基因 工程的载体(一般加上抗性基因)。
基因组大小变异的分子生物学基础
![基因组大小变异的分子生物学基础](https://img.taocdn.com/s3/m/4d19c7357dd184254b35eefdc8d376eeaeaa1718.png)
基因组大小变异的分子生物学基础基因组大小变异是生物界中普遍存在的现象,它指的是同一生物种内不同个体基因组大小的差异。
虽然人们对基因组大小变异的现象很早就有了认识,但直到近年,随着基因组测序技术的发展,我们才开始逐渐了解这一现象的分子生物学基础。
基因组大小变异的原因非常多样,例如转座子、基因重复、染色体重排和基因剪切等。
其中最常见的一种来源是转座子,它为基因组大小变异的主要推动者。
转座子是可以在基因组内移动的基因片段,有时也被称作“跳跃基因”。
它们在基因组内的移位通过“剪和粘”的方式完成。
某些跳跃子具有相当活跃的特性,可具有相当高的新移位率。
此外,基因组中的段重复也是导致基因组大小变异的另一重要原因。
这类重复通常由错误的重组事件,纵向扩张和逆向剪切等过程产生。
这样的重复通常会促进基因组内区域的修饰。
基因组大小变异在生物进化和种群遗传方面都具有重要的影响。
在进化史上,基因组大小变异在分化过程中发挥着重要作用。
如近年来的研究了解到,在鸟类演化中,基因组的大量变异促成了不同鸟类独具特色的进化路径。
同样,在人类进化的早期,基因组大小变异在不同人类群体之间的遗传差异中扮演了重要角色。
此外,基因组大小变异还能通过影响基因表达水平调节物种的优化适应和反应能力。
目前,分子生物学技术的飞速发展为研究基因组大小变异提供了强大的工具。
全基因组比较基因组杂交、荧光原位杂交和基因组测序等技术,可以帮助研究者更好地理解基因组大小变异在不同物种遗传学、细胞进化以及生物发展方面的作用。
总体来说,基因组大小变异是生命进化中的一个重要现象。
通过对它的深入研究,我们可以更好地理解生命系统的进化和适应,为寻找治疗疾病的方法提供新的思路和方向。
(注:本文内容主要参考了National Center for Biotechnology Information (NCBI)网站的相关文章及研究论文)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三单元遗传与变异的分子基础第一章遗传的物质基础一、1928年格里菲思的肺炎双球菌的转化实验:1、肺炎双球菌有两种类型类型:S型细菌:菌落光滑,菌体有夹膜,有毒性R型细菌:菌落粗糙,菌体无夹膜,无毒性2、实验过程(看书肺炎双球菌的转化实验)3、实验证明:无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有毒性的S型活细菌。
这种性状的转化是可以遗传的。
4、推论(格里菲思):在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促成这一转化的活性物质—“转化因子”。
二、1944年艾弗里的实验:1、实验过程(看书肺炎双球菌的体外转化实验)2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。
(即:DNA是遗传物质,蛋白质等不是遗传物质)三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验1、T2噬菌体机构和元素组成:2、实验过程(看书噬菌体侵染细菌)3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。
(即:DNA是遗传物质)四、1956年烟草花叶病毒感染烟草实验证明:在只有RNA的病毒中,RNA是遗传物质。
五、小结:因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。
六、DNA的结构1、DNA的组成元素:C、H、O、N、P2、DNA的基本单位:脱氧核糖核苷酸(4种)3、DNA的结构:①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。
②外侧:脱氧核糖和磷酸交替连接构成基本骨架。
内侧:由氢键相连的碱基对组成。
③碱基配对有一定规律: A = T;G ≡ C。
(碱基互补配对原则)4、DNA的特性:①多样性:碱基对的排列顺序是千变万化的。
(排列种数:4n(n为碱基对对数)②特异性:每个特定DNA分子的碱基排列顺序是特定的。
5、DNA的功能:携带遗传信息(DNA分子中碱基对的排列顺序代表遗传信息)。
6、与DNA有关的计算:在双链DNA分子中:① A=T、G=C②任意两个非互补的碱基之和相等;且等于全部碱基和的一半例:A+G = A+C = T+G = T+C = 1/2全部碱基七、DNA的复制1、概念:以亲代DNA分子两条链为模板,合成子代DNA的过程2、时间:有丝分裂间期和减Ⅰ前的间期3、场所:主要在细胞核4、过程:①解旋②合成子链③子、母链盘绕形成子代DNA分子5、特点:半保留复制6、原则:碱基互补配对原则7、条件:①模板:亲代DNA分子的两条链②原料:4种游离的脱氧核糖核苷酸③能量:ATP④酶:解旋酶、DNA聚合酶等8、DNA能精确复制的原因:①独特的双螺旋结构为复制提供了精确的模板;②碱基互补配对原则保证复制能够准确进行。
9、意义:DNA分子复制,使遗传信息从亲代传递给子代,从而确保了遗传信息的连续性。
10、与DNA复制有关的计算:复制出DNA数 =2n(n为复制次数)含亲代链的DNA数 =2第二章基因对性状的控制一、RNA的结构:1、组成元素:C、H、O、N、P2、基本单位:核糖核苷酸(4种)3、结构:一般为单链二、基因:主要位于染色体上是具有遗传效应的DNA片段。
三、基因控制蛋白质合成:1、转录:(1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。
(注:叶绿体、线粒体也有转录)(2)过程:①解旋②以其中一条链为模板合成RNA(3)条件:①模板:DNA的一条链(模板链)②原料:4种核糖核苷酸③能量:ATP④酶:解旋酶、DNA聚合酶等(4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)(5)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)2、翻译:(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。
(注:叶绿体、线粒体也有翻译)(2)过程:①mRNA(密码子)进入细胞质与核糖体结合②tRNA(反密码子)携带相应氨基酸与mRNA互补配对(3)条件:①模板:mRNA②原料:氨基酸(20种)③能量:ATP④酶:多种酶⑤搬运工具:tRNA⑥装配机器:核糖体(4)原则:碱基互补配对原则(5)产物:多肽链3、与基因表达有关的计算基因中碱基数:mRNA分子中碱基数:氨基酸数 = 6:3:1四、基因对性状的控制1、中心法则2、基因控制性状的方式:(1)通过控制酶的合成来控制代谢过程,进而控制生物的性状;(2)通过控制蛋白质结构直接控制生物的性状。
五、人类基因组计划及其意义计划:完成人体24条染色体上的全部基因的遗传作图、物理作图、和全部碱基的序列测定。
意义:可以清楚的认识人类基因的组成、结构、功能极其相互关系,对于人类疾病的诊治和预防具有重要的意义六、生物变异的类型不可遗传的变异(仅由环境变化引起)可遗传的变异(由遗传物质的变化引起)基因突变基因重组染色体变异七、可遗传的变异(一)基因突变1、概念:是指DNA分子中碱基对的增添、缺失或改变等变化。
2、原因:物理因素:X射线、激光等;化学因素:亚硝酸盐,碱基类似物等;生物因素:病毒、细菌等。
3、特点:①发生频率低:②方向不确定③随机发生基因突变可以发生在生物个体发育的任何时期;基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上。
④普遍存在4、结果:使一个基因变成它的等位基因。
5、时间:细胞分裂间期(DNA复制时期)6、应用——诱变育种①方法:用射线、激光、化学药品等处理生物。
②原理:基因突变③实例:高产青霉菌株的获得④优缺点:加速育种进程,大幅度地改良某些性状,但有利变异个体少。
7、意义:①是生物变异的根本来源;②为生物的进化提供了原始材料;③是形成生物多样性的重要原因之一。
(二)基因重组1、概念:是指生物体在进行有性生殖的过程中,控制不同性状的基因重新组合的过程。
2、种类:①减数分裂(减Ⅰ后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。
组合的结果可能产生与亲代基因型不同的个体。
②减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。
结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。
③重组DNA技术(注:转基因生物和转基因食品的安全性:用一分为二的观点看问题,用其利,避其害。
我国规定对于转基因产品必须标明。
)3、结果:产生新的基因型4、应用(育种):杂交育种(见前面笔记)5、意义:①为生物的变异提供了丰富的来源;②为生物的进化提供材料;③是形成生物体多样性的重要原因之一(三)染色体变异见第一单元第二章八.关注人类遗传病1、人类遗传病与先天性疾病区别:遗传病:由遗传物质改变引起的疾病。
(可以生来就有,也可以后天发生)先天性疾病:生来就有的疾病。
(不一定是遗传病)2、人类遗传病产生的原因:人类遗传病是由于遗传物质的改变而引起的人类疾病3、人类遗传病类型(一)单基因遗传病1、概念:由一对等位基因控制的遗传病。
2、原因:人类遗传病是由于遗传物质的改变而引起的人类疾病3、特点:呈家族遗传、发病率高(我国约有20%--25%)4、类型:伴X显:抗维生素D佝偻病常显:多指、并指、软骨发育不全伴X隐:色盲、血友病常隐:先天性聋哑、白化病、镰刀型细胞贫血症、黑尿症、苯丙酮尿症(二)多基因遗传病1、概念:由多对等位基因控制的人类遗传病。
2、常见类型:腭裂、无脑儿、原发性高血压、青少年型糖尿病等。
(三)染色体异常遗传病(简称染色体病)1、概念:染色体异常引起的遗传病。
(包括数目异常和结构异常)2、类型:常染色体遗传病结构异常:猫叫综合征数目异常:21三体综合征(先天智力障碍)性染色体遗传病:性腺发育不全综合征(XO型,患者缺少一条 X染色体)九、遗传病的监测和预防1、产前诊断:胎儿出生前,医生用专门的检测手段确定胎儿是否患某种遗传病或先天性疾病,产前诊断可以大大降低病儿的出生率2、遗传咨询:在一定的程度上能够有效的预防遗传病的产生和发展十、实验:调查人群中的遗传病1.注意事项:1、可以以小组为单位进行研究。
2、调查时,最好选取群体中发病率较高的单基因遗传病,如红绿色盲、白化病等。
3、调查时要详细询问,如实记录。
4、对某个家庭进行调查时,被调查成员之间的血缘关系必须写清楚,并注明性别。
5、必须统计被调查的某种遗传病在人群中的发病率。
2.结果分析:被调查人数为2 747人,其中色盲患者为38人(男性37人,女性1人),红绿色盲的发病率为1.38%。
男性红绿色盲的发病率为1.35%,女性红绿色盲的发病率为0.03%。
二者均低于我国社会人群男女红绿色盲的发病率。
3.实验结论:我国社会人群中,红绿色盲患者男性明显多于女性。
第四章遗传变异与进化第一节生物进化理论一、拉马克的进化学说1、理论要点:用进废退;获得性遗传2、进步性:认为生物是进化的。
二、达尔文的自然选择学说1、理论要点:自然选择(过度繁殖→生存斗争→遗传和变异→适者生存)2、进步性:能够科学地解释生物进化的原因以及生物的多样性和适应性。
3、局限性:①不能科学地解释遗传和变异的本质;②自然选择对可遗传的变异如何起作用不能作出科学的解释。
(对生物进化的解释仅局限于个体水平)三、现代达尔文主义(一)生物进化的基本单位是种群(生物进化的实质是基因频率的改变)1、种群:概念:在一定时间内占据一定空间的同种生物的所有个体称为种群。
特点:不仅是生物繁殖的基本单位;而且是生物进化的基本单位。
2、种群基因库:一个种群的全部个体所含有的全部基因构成了该种群的基因库3、基因(型)频率的计算:①按定义计算:例1:从某个群体中随机抽取100个个体,测知基因型为AA、Aa、aa的个体分别是30、60和10个,则:基因型AA的频率为______;基因型Aa的频率为 ______;基因型 aa的频率为 ______。
基因A的频率为______;基因a的频率为 ______。
答案:30% 60% 10% 60% 40%②某个等位基因的频率 = 它的纯合子的频率 + ½杂合子频率例:某个群体中,基因型为AA的个体占30%、基因型为Aa的个体占60% 、基因型为aa的个体占10% ,则:基因A的频率为______,基因a的频率为 ______答案: 60% 40%(二)突变和基因重组产生生物进化的原材料(三)自然选择决定进化方向在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
(四)突变和基因重组、选择和隔离是物种形成机制1、物种:指分布在一定的自然地域,具有一定的形态结构和生理功能特征,而且自然状态下能相互交配并能生殖出可育后代的一群生物个体。
2、隔离:地理隔离:同一种生物由于地理上的障碍而分成不同的种群,使得种群间不能发生基因交流的现象。