极限存在准则两个重要极限

合集下载

高数第一章极限存在准则 两个重要极限

高数第一章极限存在准则 两个重要极限


时,

时,
lim
n
xn

a
令N max N1 , N2,
则n当 N
时, 有
由条件 (1) a yn xn zn a
即xn a ,
l故im
n
xn

a
.
2
例1. 证明
证: 利用夹逼准则 由.
n

n2
1


n2
1
2

n2
1
n


n2
n2

lim
n
n
n2 2


lim
n
1
1


n2
1

lim n
n

n2
1


n2
1
2

n2
1
n

1
3
准则1’ 函数极限存在的夹逼准则

当 x (x0 , ) 时, g(x) f (x) h(x) , 且
a
lim
n
xn
b
(m)
b ( 证明略 ) 5
例2. 设
证明数列
极限存在 . (P49)
证: 利用二项式公式(P270 ), 有
xn (1 1n)n

1

n 1!
1 n

n(n1) 2!
1 n2

n(n1)(n2) 3!
1 n3


n(n1)(nn1) n!
1 nn
11
x x0
2

极限存在准则与两个重要极限

极限存在准则与两个重要极限

极限存在准则与两个重要极限首先,我们来定义极限存在准则。

设函数f(x)在x=a的其中一去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当0<,x-a,<δ时,有,f(x)-L,<ε。

左极限:设函数f(x)在x=a的其中一左去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a-δ<x<a时,有,f(x)-L,<ε。

右极限:设函数f(x)在x=a的其中一右去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a<x<a+δ时,有,f(x)-L,<ε。

接下来,我们来介绍两个重要的极限存在准则。

1.夹逼准则(或夹挤准则):设函数f(x)在x=a的其中一去心邻域内有定义,且在这个去心邻域中,存在两个函数g(x)和h(x),满足g(x)≤f(x)≤h(x)。

若当x→a时,g(x)和h(x)的极限都是L,则函数f(x)在x=a处的极限也是L。

夹逼准则的直观意义是,如果一个函数在一些点附近被两个函数“夹住”,而这两个函数的极限是相等的,则原函数在该点也存在极限,并且极限等于夹逼的值。

2.单调有界准则:如果函数f(x)在x=a的其中一去心邻域内有定义,并且在这个去心邻域中是递增或递减的(即f’(x)≥0或f’(x)≤0),那么如果存在一个实数M,使得对于任意的x,都有f(x)≤M(或f(x)≥M),那么函数f(x)在x=a处存在极限。

单调有界准则的直观意义是,如果一个函数在一些点附近是单调递增或递减的,并且在该区间内被一个实数所界定,那么函数在该点存在极限。

这两个极限存在准则在微积分中具有重要的意义和应用。

在求解极限问题时,可以利用夹逼准则来确定极限的存在性。

而在证明一些极限存在的定理时,可以利用单调有界准则来进行证明。

总结起来,极限存在准则是用于确定函数在一些点是否存在极限的基本规则。

夹逼准则和单调有界准则是两个重要的应用极限存在准则,它们在微积分中有着广泛的应用。

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限第一个极限存在准则是柯西-斯维亚切斯极限存在准则(Cauchy-Schwarz Limit Existence Criteria)。

其表述为:对于一个函数 f(x),如果对于任意的ε>0,存在一个δ>0,使得当 0<,x-a,<δ 时,总有,f(x)-f(a),<ε,则函数 f(x) 在点 a 处存在极限。

第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。

其表述为:如果对于一个函数 f(x),在点 a 的一些邻域内 f(x) 有界,即存在一个常数 M>0,使得对于所有的x∈(a-δ,a+δ) 有,f(x),≤M,则函数 f(x) 在点 a 处存在极限。

这两个极限存在准则都用于判断函数在其中一点处的极限是否存在。

柯西-斯维亚切斯极限存在准则要求函数在该点的极限存在时,对于任意给定的ε>0,都能找到对应的δ>0,使得函数值与极限值的差小于ε。

而海涅定理则要求函数在该点附近有界,即函数在该点附近的函数值都不超过一些常数M。

这两个定理的应用范围和方法略有不同。

除了极限存在准则外,还有两个重要的极限:无穷小与无穷大。

无穷小是指极限趋近于零的数列或函数。

对于一个数列 {a_n},如果对于任意的正数ε>0,存在正整数 N,使得当 n>N 时,有,a_n,<ε,则该数列是无穷小。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=0,则该函数在点 a 处是无穷小。

无穷大则是指极限趋于无穷的数列或函数。

对于一个数列 {a_n},如果对于任意的正数 M>0,存在正整数 N,使得当 n>N 时,有,a_n,>M,则该数列是无穷大。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=∞(或表示为lim(x→a) ,f(x),=∞),则该函数在点 a 处是无穷大。

1.4 极限存在准则与两个重要极限

1.4 极限存在准则与两个重要极限

( A) e −2; (C ) 0;
2
§1.4 极限存在准则与两个重要极限
思考练习
选择
1 ( 1) lim x sin = ( C ). x →∞ x ( A) ∞; ( B ) 不存在; (C ) 1; ( D ) 0.
(2)lim ( 1 − x ) )
x →0 − 2 x
=( D )
( B ) ∞; ( D) e .
上页 下页 返回
U 准则Ⅰ′ 如果当 x ∈ ( x0 , δ 0 )(或 x > M )时,有 准则Ⅰ′
(1) g ( x ) ≤ f ( x ) ≤ h( x ), ( 2) x→ x g( x ) = A, x→ x h( x ) = A, lim lim
( x→∞ )
0
( x →∞ )
0
存在, 那么 lim f ( x )存在, 且等于 A.
§1.4 极限存在准则与两个重要极限
一、极限存在准则 二、两个重要极限
sin x lim =1 x→0 x
1n lim(1 + ) = e n→∞ n
上页 下页 返回
§1.4 极限存在准则与两个重要极限
一、极限存在准则
1.夹逼准则 1.夹逼准则
准则Ⅰ 满足下列条件: 准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:
= e −2 .
上页 下页 返回
§1.4 极限存在准则与两个重要极限
例5
3− x x ) . 求 lim( x →∞ 2 − x
1 x 解 原式 = lim(1 + ) x →∞ 2− x
1 2− x 1 2 ) ⋅ (1 + ) = lim (1 + x →∞ 2− x 2− x

极限存在准则 两个重要极限

极限存在准则  两个重要极限

第二个重要极限:勇气极限
勇气极限是指我们所能承受的恐惧和心理压力的极 限。了解并逐步超越这个极限,可以使我们在挑战 中变得无所畏惧。
重要性说明
1 激发潜力
了解重要极限能激发我们 内在的潜力,鼓励我们尝 试新事物并突破自身的局 限。
2 规避风险
重要极限的认识有助于我 们规避风险,避免陷入危 险和不理智的决策中。
极限存在准则:两个重要 极限
在极限存在的世界里,我们要探讨两个重要极限:极限存在准则以及第一个 和第二个重要极限。让我们一同揭开生活中最极致的部分。
极限存在准则
1
什么是极限存在准则?
极限存在准则是指在一定条件下,存在着极限情况的规律和约束。它定义了事物 的极限状态和行为。
2
为什么极限存在准则重要?

3 追求卓越
超越重要极限是追求卓越 的关键一步,让我们不断 学习、成长和创新。
实际应用
运动训练
运动训练中,了解和超越个人身体极限是提高 体能和成绩的关键。
领导能力
领导者需要超越自身能力和局限,带领团队不 断创新和突破。
创业企业
创业企业需要超越市场的竞争和资源限制,寻 找新的商业机会和创新解决方案。
科学研究
科学研究需要不断突破知识和技术的边界,发 现未知领域和新的发现。
总结和结论
极限存在准则以及两个重要极限的认识,可以帮助我们更好地理解和应对生活中的极端情况和挑战。通过超越 这些极限,我们能够实现更高的成就和创造。
极限存在准则能帮助我们了解事物的极端表现和局限,提醒我们在决策和行动中 要注意避免超越这些极限。
3
应用领域
极限存在准则广泛应用于科学研究、工程设计、金融市场和人类行为等领域,在 寻找平衡和解决问题时发挥着关键作用。

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

1.6极限存在准则两个重要极限

1.6极限存在准则两个重要极限

准则1:若数列}{n x 、}{n y 、}{n z 满足以下条件: (i ) N n ∈∃0,当0n n >时,有n n n z y x ≤≤; (ii )a y n n =∞→lim ,a z n n =∞→lim 。

那么数列}{n x 极限存在,且a x n n =∞→lim 。

证明:因为a z y n n n n ==∞→∞→lim lim ,所以对0,01>∃>∀N ε,当1N n >时,有ε<-a y n ,即εε+<<-a y a n ,对2N ∃,当2N n >时,有ε<-a z n ,即εε+<<-a z a n ,又因为n n n z x y ≤≤,所以当},{21N N Max N n =>时,有εε+<≤≤<-a z x y a n n n ,即有:εε+<<-a x a n ,即ε<-a x n ,所以 a x n n =∞→lim 。

准则1′如果函数)(),(),(x h x g x f 满足下列条件:(i )当))(,(0M x r x U x >∈∧时,有)()()(x h x f x g ≤≤。

(ii )当)(0∞→→x x x 时,有A x h A x g →→)(,)(。

那么当)(0∞→→x x x 时,)(x f 的极限存在,且等于A 。

第一个重要极限:1sin lim0=→xxx作为准则I ′的应用,下面将证明第一个重要极限:1sin lim 0=→xxx 。

证明:作单位圆,如下图:设x 为圆心角AOB ∠,并设20π<<x 见图不难发现:AOD AOB AOB S S S ∆∆<<扇形,即:x x x tan 2121sin 21<<,即 x x x tan sin <<, 1sin cos cos 1sin 1<<⇒<<⇒xxx xx x (因为20π<<x ,所以上不等式不改变方向,若02<<-x π,不等式也成立)当x 改变符号时,x xx sin ,cos 及1的值均不变,故对满足20π<<x 的一切 x ,有1sin cos <<xxx 。

极限存在准则与两个重要极限

极限存在准则与两个重要极限
x 5 2012 x 1006 1006 x 5 = lim(1 ) e 2012 e c x x5
c 2012
15
例20. 对第一章中的例19,若即时产生即使结算(按连 续复利计算),求银行t期末的本利和.按连续复利(将利 息记入本金,时刻结算本利和的方法)计算,实质上就是 每期的结算次数 m→∞ 时的本利和, 即
an 1 1 1 1 1 2! 3! n! 1 1 1 11 1 2 2 3 ( n 1)n 1 1 1 1 1 1 1 (1 ) ( ) ( ) 2 2 3 n1 n 1 3 3. n
故{an} 有上界, 从而 lim(1 n
tan x sin x 1 lim 3 x 0 1 sin x x sin x 1 cos x 1 1 lim x 0 x x2 cos x(1 sin x ) 2
1 1 tan x lim( ) e2 x 0 1 sin x
1
1
13
1 x2 (5). lim(cos ) . x x
r mt lim A0 (1 ) A0e rt m m
16
为使计算简化, 我们给出(不证明)上面公式的一 个对“1∞” 型非常适用的结论: 若 lim ƒ(x) = 0 , lim g(x) = ∞ 且 lim ƒ(x)g(x) = m, 则
lim[1 f ( x)]g ( x ) e m
11
例18.求下列极限
1 5 x2 (1). lim(1 ) ; x x
§2.4 极限存在准则与两个重要极限
本节先介绍极限存在准则利用它们来导出两个重 要极限. 一.极限存在准则 准则І (夹逼定理) 若 x U ( x0 , ) (或 x M ) , 均有 g(x) ≤ ƒ(x) ≤ h(x) 且 lim g(x) = lim h(x) = A, 则有 lim ƒ(x) = A.

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式极限存在准则是数学中的一个重要概念,用于判断一个函数在其中一点处的极限是否存在。

在实际应用中,掌握极限存在准则对于求解极限问题非常重要。

在极限存在准则中,有两个非常重要的极限公式,分别是极限的保号性和夹逼定理。

首先,我们来介绍一下极限的保号性。

设函数f(x)在点x0的一些去心邻域内有定义,如果存在一个常数L,使得当x在x0的一些去心邻域内取值,并且f(x)>L,那么可以得出极限lim(x→x0)f(x)≥L;反之,如果存在一个常数L,使得当x在x0的一些去心邻域内取值,并且f(x)<L,那么可以得出极限lim(x→x0)f(x)≤L。

这就是极限的保号性。

保号性的一个重要应用是判断函数的极值。

如果在x0的一些去心邻域中,函数f(x)>0或f(x)<0,并且极限lim(x→x0)f(x)存在,那么就可以得出f(x)在x0处的极限是f(x0)。

这是因为根据保号性,当f(x)在x0的一些去心邻域内取正值时,可以推出极限lim(x→x0)f(x)≥0;同理,当f(x)在x0的一些去心邻域内取负值时,可以推出极限lim(x→x0)f(x)≤0。

由于极限存在,所以这时候只有一个可能,即极限lim(x→x0)f(x)等于0,即f(x)在x0处的极限是f(x0)。

下面我们来介绍夹逼定理。

设函数f(x)、g(x)和h(x)在其中一点x0的一些去心邻域内有定义,并且对于x在该邻域内取值,有f(x)≤g(x)≤h(x)。

如果极限lim(x→x0)f(x)和lim(x→x0)h(x)都存在,并且它们的极限值相等,即lim(x→x0)f(x)=lim(x→x0)h(x)=L,那么可以得出lim(x→x0)g(x)=L。

这就是夹逼定理。

夹逼定理常用于求极限的问题中,特别是当函数的表达式较复杂时,可以用一个更容易处理的函数夹逼该函数,从而求得极限。

夹逼定理的原理是通过限制函数g(x)在f(x)和h(x)之间,确定了极限的上下界。

极限存在准则与两个重要极限

极限存在准则与两个重要极限

100 000 2.718 27 100 000 2.718 30
1 000 000 2.718 28 1 000 000 2.718 28
e e
1.2 准则Ⅱ与第二个重要极限
因此,
lim
x
1
1 x
x
e

e 是无理数,它的值是 2.718 28 .在 1.1 中提到的指数函数 y ex 及自然对数 y ln x 中的
(2) lim g(x) lim h(x) A ,
xx0
xx0
则有 lim f (x) A . xx0
1.1 准则Ⅰ与第一个重要极限
作为准则Ⅰ及准则Ⅰ'的应用,下面证明一个重要极限: lim sin x 1 . x0 x
证明 在图所示的单位圆中,设圆心角 BOA x , AD 切圆 O 于 A , 且与 OB 延长线相交于 D ,于是有
3 1
x 1
1
lim
x 1
3
x
2x 1
2x
lim
x
2x 2x
3 1
lim
x
1 1
3
x
2x
1 x 2x
1
3
e2
1
e2
e.
1.7 无穷小阶的比较
在 1.4 节中我们已经知道,两个无穷小的和、差及乘积仍是无穷小.但是关于两
个无穷小的商却会出现不同的情况.例如,当 x 0 时,2x , x2 ,sin x 都是无穷小
an1
1
n
1
n1
1
1
1
21!1
n
1
1
1 3!
1
1 n
1

1.7极限存在准则 两个重要极限

1.7极限存在准则  两个重要极限
1.7极限存在准则 两个重要极限
一、夹逼准则
准则1、如果数列{xn},{yn}及{zn}满足下列条件: (1) yn xn zn (n 1,2,3 );
(2) lim n
yn
a, lim n
zn
a;
注:P36
那么数列{xn}的极限存在,且
lim
n
xn
a
例1:求
lim (
n
n
2
1 n 1
n2
2 n2
1.lim sin x 1 证明: x0 x
1
0.75
x
0.5
0.25
0 x /2
-15
-10
-5 -0.25
-0.5
5
10
15
sin x x tan x
1 x tan x sin x sin x
1 sin x sin x cos x x tan x
cosx sin x 1 x
x0
lim sin x 1 x0 x
1.特点:(1)正弦内、分母都趋向于零; (2)sin后形式和分母相同。
判断下列极限运算能否使用第一重要极限?
lim sin x ? x x
lim sin 2x ? x0 x
sin 1 lim x ? x 1
x
lim x ? x0 sin x
lim sin x 1 lim x 1
3.lim (1 1 )x5 x 2x
2.lim (1 1 )2x x 3x
4.lim x 1x x x 1
注:碰到幂指函数,常用第二个重要极限求解,方 法是凑指数。
练习:P42 2,3
注:对含有三角函数的 0 型极限,常用第一个重要极

高等数学1.6极限存在准则、两个重要极限

高等数学1.6极限存在准则、两个重要极限

二、两个重要极限
例4
1 cos x 求 lim . 2 x0 x
2 x x 2 sin 2sin 2 1 lim 2 解 原式 lim 2 x 0 2 x x 0 x 2 2 2
0 0
sin x lim 1 x 0 x
lim cos x 1,
x 0
x x0 x x0
lim f ( u ) A, 则 lim f [ g ( x )] A lim f ( u )
u a
证明
lim(1 x ) e
x 0
1 x
x x0 1 x
u a
1 1 令 x , lim(1 )t = lim(1 x ) t t t x0
x x0 ( x ) x x0 ( x )
f ( x) lim h( x ) A, 那末 xlim x
( x)
0
存在, 且等于 A 上述两准则称为两边夹准则.
例1 求 lim( n 解:
1 n 1
2

1 n 2
2

1 n n
2
).
n n n
2
n
x 1 sin x 1, cos x 1 sin x cos x x
A
下面证 lim cos x 1,
x0
2 x x x 2 2 1 cos x 2 sin 2( ) , 2 2 2
0 cos x 1 x2 lim 0, lim(1 cos x ) 0, x0 x0 2 sin x lim cos x 1, lim1 1, lim x 0 x0 x0 x
(2)
1 x lim (1 ) e x x

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式一、夹逼定理夹逼定理是指在一些区间内,对于一个函数f(x)在其中一点x=c左右两侧或者趋近于x=c的时候,都存在一个函数g(x)和函数h(x),并且有以下关系:f(x)≤g(x)≤h(x),当x→c时,有g(x)→L,h(x)→L,则有f(x)→L。

夹逼定理的基本思想是找到两个函数,一个函数比所要研究的函数小,一个函数比所要研究的函数大,并且这两个函数的极限相等,则可以推导出所要研究的函数的极限存在,并且与这两个函数的极限相等。

夹逼定理的应用非常广泛,特别是在计算不定型极限、无穷小量极限时,往往可以利用夹逼定理来确定极限的存在与值。

例如,在计算sinx/x的极限的时候,我们可以认为0<x<π/2,因此有0<sinx<x<π/2,又因为sinx是一个有界函数,所以我们可以得到0≤sinx/x≤1,根据夹逼定理,当x趋近于0时,sinx/x极限存在并且为1二、洛必达法则洛必达法则是一种计算不定型极限的有效方法。

对于形如f(x)/g(x)型的不定型极限,其中f(x)和g(x)作为函数分别在其中一点x=c处连续,且f(c)=g(c)=0或者都是无穷小量的时候,可以用洛必达法则来求解极限。

具体求解方法如下:1.计算函数f(x)和g(x)的导数,即f'(x)和g'(x)。

2.当f'(x)/g'(x)在其中一点x=c处极限存在且不为0时,即存在f'(c)/g'(c)的时候,可以得到极限lim(x→c)(f(x)/g(x))=lim(x→c)(f'(x)/g'(x))=f'(c)/g'(c)。

洛必达法则的基本思想是通过两个函数的导数的极限来推导函数的极限。

利用洛必达法则,我们可以求解许多常见的不定型极限,比如0/0型、∞/∞型、0×∞型等。

例如,我们求解lim(x→0)(sinx/x)的极限,我们可以计算该极限的导数,f(x)=sinx, g(x)=x,导数分别为f'(x)=cosx, g'(x)=1,那么根据洛必达法则,我们可以得到该极限lim(x→0)(sinx/x)=lim(x→0)(cosx/1)=1总结:夹逼定理和洛必达法则是数学分析中两个非常重要的极限公式。

极限存在准则及两个重要极限

极限存在准则及两个重要极限

极限存在准则及两个重要极限极限存在准则是数学分析中用来证明函数极限存在的重要工具。

它可以帮助我们判断函数是否有极限,并且有助于我们进行更深入的研究。

极限存在准则有许多种形式,而我们在这里将着重讨论两个重要的形式。

它们分别是Cauchy收敛准则和单调有界准则。

1. Cauchy收敛准则:Cauchy收敛准则是在实数集上定义的,它陈述了一个数列收敛的充要条件。

具体来说,对于给定的一个数列{an},如果对于任意的正数ε,存在一个正整数N,使得当n、m大于等于N时,|an - am| < ε成立,则数列{an}收敛。

Cauchy收敛准则的证明基于一个重要的数学定理,即实数集的完备性。

根据这个定理,如果一个数列满足Cauchy收敛准则,那么它一定收敛到一个实数。

2.单调有界准则:单调有界准则是在实数集上定义的,它陈述了一个单调数列有界的充要条件。

具体来说,对于给定的一个单调数列{an},如果它是递增有上界的(即存在一个实数M,使得对于所有的n,an≤M),或者是递减有下界的(即存在一个实数M,使得对于所有的n,an≥M),则数列{an}收敛。

单调有界准则的证明也是基于实数集的完备性。

根据这个准则,如果一个单调数列满足单调有界准则,那么它一定收敛到一个实数。

这两个极限存在准则在数学分析中非常重要,提供了一种判断函数极限存在的方法。

通过应用这些准则,我们可以更方便地判断函数是否有极限,并对函数的性质进行更深入的研究。

值得一提的是,这两个准则只适用于实数集,而在实际的数学研究中,我们还会涉及到复数集和一些其他更一般的情况。

在这些情况下,我们需要使用更为复杂的准则和方法来判断函数极限的存在性。

总结起来,极限存在准则是数学分析中用来判断函数极限存在的重要工具。

Cauchy收敛准则和单调有界准则是其中两个重要的形式。

通过应用这些准则,我们可以更方便地判断函数是否有极限,并对函数的性质进行更深入的研究。

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限1.两个极限存在准则(1) 夹逼准则:设a, b, c为实数,如果函数f(x)在a的一些左邻域内对于一切x都有h(x)≤f(x)≤g(x),且lim[x→a]h(x)=lim[x→a]g(x)=L,则必有lim[x→a]f(x)=L。

夹逼准则的本质是通过构造两个函数作为边界来确定原函数的极限。

(2) 单调有界准则:设函数f(x)在(a, b)上单调递增(递减),且在(a, b)上有界,则必有lim[x→a]f(x)=sup{f(x)}(或lim[x→a]f(x)=inf{f(x)})。

单调有界准则的基本思想是通过函数的单调性和有界性来确定极限。

(1) 无穷小极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=0,如果对于任意正数ε,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有,f(x),<ε,那么称函数f(x)在x=a处的极限为0。

无穷小极限的重要性在于它在微积分中有广泛应用。

例如,微分定义中的导数可以看作是函数在其中一点的极限,这也符合函数在该点的变化趋势比较明显。

无穷小极限的概念使得我们能够更好地描述和理解函数在其中一点的变化情况。

(2) 无穷大极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=∞,如果对于任意正数M,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有f(x) > M,那么称函数f(x)在x=a处的极限为无穷大。

无穷大极限的重要性在于它可以帮助我们研究函数在其中一点的增长速度和趋势。

例如,在极限定义中,我们可以通过无穷大极限来刻画函数在其中一点的无限增长或无限逼近的情况。

此外,无穷大极限也在微积分中的积分定义中有重要的应用,帮助我们理解函数的积分和面积的概念。

综上所述,极限的存在准则和重要的极限是微积分中的重要概念。

了解它们的定义和应用可以帮助我们更好地理解和分析函数在其中一点的变化情况,为进一步研究微积分和数学分析打下坚实的基础。

极限存在准则-两个重要极限公式

极限存在准则-两个重要极限公式

2
举例2
使用公式2计算 lim(x→1) (x² - 1) / (x - 1)
重要极限公式的意义和应用
这两个重要极限公式不仅帮助我们更容易地计算函数的极限值,还能在实际 问题中应用。了解这些公式将使我们更精确地理解和解决数学和科学中的难 题。
例子
计算极限 lim(x→2) [3x + 2x²]
重要极限公式2: 复合函数的极限等于 函数内外极限的复合
1 公式说明
当我们计算复合函数的极限时,可以将外部函数的极限值与内部函数的极限值进行复合 计算。
2 例子
计算极限 lim(x→0) sin(x) / x
重要极限公式的应用
1
举例1使用公式1计算 lim(x→) [2x + 5x²]
极限存在准则-两个重要 极限公式
本节介绍两个重要的极限公式,能够帮助我们计算函数的极限值。第一个公 式是两个函数的极限的和等于函数和的极限,第二个公式是复合函数的极限 等于函数内外极限的复合。
重要极限公式1: 函数极限的和等于和 的极限
公式说明
当我们计算两个函数在某一点的极限值时,可以将两个函数的极限分别计算,然后将其结果 相加。

高等数学1.7 极限存在准则 两个重要极限

高等数学1.7 极限存在准则  两个重要极限
即|x n-a|<e .这就证明了 lim x n=a . n
一、准则 I
准则 I: 如果数列{xn }、{yn}及{zn}满足下列条件:
( ynxnzn(n=1,2,3,…),
lim (2) lim yn=a,n zn=a,
n
lim 那么数列{xn }的极限存在,且 x n=a . n

例8
sin x . x x tan x 求 lim . x0 x 1 - cos x 例 2 求 lim . 2 x 0 x
求 lim
5 求 lim
6
7
7 x + 5x - 3 3x 2 - 2 x - 1 求 lim . x 2 x 3 - x 2 + 5 2x 3 - x 2 + 5 求 lim . 2 x 3 x - 2 x - 1
例2 求lim
1 - cos x . 2 x 0 x
2

x sin x 2 x sin 2 sin 1 1 1 - cos x 2 2 = lim 2 = lim lim = lim x0 x0 x2 2 x 0 1 2 2 x 0 x x2 2 2 1 2 1 = 1 = . 2 2
n
根据准则II,数列{x n}必有极限. 这个极限我们用e 来表示.即
lim 1 + n 1 =e . n
n
e 是个无理数,它的值是e=2.718281828459045 ···.
还可证明
1 lim1 + =e . x x
x
第二个重要极限: lim1 + x
准则 I: 如果函数g(x)、f(x)及h(x)满足下列条件:

极限存在准则两个重要极限

极限存在准则两个重要极限

极限存在准则两个重要极限在极限存在准则中,有两个特别重要的极限存在定理,分别是柯西收敛准则和夹逼定理。

柯西收敛准则是极限存在定理中的一个基本定理。

它是由法国数学家柯西于19世纪初发现的,用来判定一个数列是否收敛。

柯西收敛准则的核心思想是,如果一个数列在无穷项的情况下,其任意两项之差都可以变得很小,那么这个数列是收敛的。

具体来说,柯西收敛准则可以分为两个条件:1.必要条件:如果对于任意给定的正实数ε,总存在一个正整数N,使得当n和m都大于N时,an - am,< ε,那么数列{an}是收敛的。

2.充分条件:如果数列{an}具有柯西序列的性质,即对于任意给定的正实数ε,总存在一个正整数N,使得当n和m都大于N时,an - am,< ε,则该数列一定是收敛的。

夹逼定理又称为挤压定理,是另一个极限存在定理。

它主要用于计算和证明无穷序列和函数的极限存在。

夹逼定理的核心思想是,如果一个函数在一些点的两侧有两个函数夹住,并且这两个函数的极限都存在并且相等,那么原始函数在该点处的极限也存在,并且等于这两个函数的共同极限。

具体来说,夹逼定理可以表达为以下三个条件:1.设函数f(x),g(x),h(x)在点a的一些去心邻域内有定义,并且对于这个去心邻域内的任意x,有g(x)≤f(x)≤h(x)。

2.如果lim(x→a)g(x) = L,并且lim(x→a)h(x) = L,那么lim(x→a)f(x)存在,并且等于L。

3.夹逼定理对于数列也成立,即如果数列{an}满足对于所有的n,有gn ≤ an ≤ hn,并且lim(n→∞)gn = L,并且lim(n→∞)hn = L,则lim(n→∞)an存在,并且等于L。

柯西收敛准则和夹逼定理是极限存在准则中非常重要的定理,它们在数学分析中有着广泛的应用。

通过这两个定理,我们可以更加准确地计算和证明函数的极限存在,并建立起更为完善和严谨的数学分析体系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 极限存在准则
定理20
(单调有界准则)单调有界数 列必有极限.
设数列{xn}单调增加,且 xn≤M.从图2-9可以看出,因为数 列单调增加又不能大于M,故该 数列某项以后的所有项必然集中 在某数a(a≤M)的附近,即对ε>0, 必然存在正整数N与数a,使当 n>N时,恒有xn-a<ε,从而数 列{xn}的极限存在.
N=max{N1,N2},则当n>N
yn-a<ε,zn-a<ε,
a-ε<yn<a+ε,a-ε<zn<a+ε, 从而,当n>N a-ε<yn≤xn≤zn<a+ε, 即xn-a<ε,所以limn→∞ xn=a.
一、 极限存在准则

利用定理18求极限,关键是构造出极限相同且易求 的两个数列yn与zn.
【例29】
二、 两个重要极限
数学中常常会对一些重要且有典型 意义的问题进行研究并加以总结,以期 通过对该问题的解决带动一类相关问题 的解决,下面介绍的重要极限就体现了 这样的一种思路,利用它们并通过函数 的恒等变形与极限的运算法则就可以使 得两类常用极限的计算问题得到解决.
二、 两个重要极限
1.
证在图2-10所示的单位圆中,设 ∠AOB=x,先假设0<x< ,点A处的 切线与OB的延长线相交于点D,又 BC⊥OA
谢谢聆听
【例35】
三、 柯西极限存在准则
定理21
(柯西极限存在准则)数列{xn}收敛的充分必要条件是:对于任意 给定的正数ε,存在正整数N,使得当m>N,n>N
xm-xn<ε. 证必要性.设limn→∞ xn=a,则对于ε>0,由数列极限的定义,v 正整数N,当n>N
三、 柯西极限存在准则
柯西极限存在准则又称为柯西审敛原理, 其几何意义是:对于任意给定的正数ε,在 数轴上一切具有足够大的下标的点xn中,任 意两点间的距离小于ε.
图 2-9
一、 极限存在准则
在第一节中曾证明:收敛的数列必定有 界.但也指出有界的数列不一定收敛.而定理20 表明,若一数列不仅有界,而且单调,则该 数列一定收敛.值得注意的是,定理20中给出 的单调有界的条件是数列收敛的充分条件, 而不是必要条件.
一、 极限存在准则
【例30】
一、 极限存在准则
sin x=CB,x=AB, tanx=AD.
图 2-10
二、 两个重要极限
易见,三角形AOB的面积<扇形AOB的面积<三 角形AOD的面积,所以
二、 两个重要极限
二、 两个重要极限
【例31】
二、 两个重要极限
【例3取正整数n而趋于+∞的情形.
一、 极限存在准则
一、 极限存在准则
上述关于数列极限的存在准则可以推广到函数极限的情形.
一、 极限存在准则
定理19
(函数极限夹逼准则) (1)当0<x-x0<δ(或x>M)时,有g(x)≤f(x)≤h(x);
一、 极限存在准则
2. 单调有界准则
定义13
若数列{xn} x1≤x2≤…≤xn≤xn+1≤… 则称数列{xn}是单调增加的;若数列{xn} x1≥x2≥…≥xn≥xn+1≥… 则称数列{xn}是单调减少的.单调增加和单调减少的数列统 称为单调数列.
极限存在准则两 个重要极限
一、 极限存在准则
1. 夹逼准则 定理18
(数列极限夹逼准则)如果数列{xn},{yn}及{zn}满足下列 (1)yn≤xn≤zn(n=1,2,3,…);
一、 极限存在准则
证因yn→a,zn→a,故对于ε>0
N1与N2,
当n>N1时恒有yn-a<ε,当n>N2时,恒有zn-a<ε.取
下面考虑x取任意正实数而趋于+∞的情形.
二、 两个重要极限
对于任何正实数x,总可找到正整数n,使得n≤x<n+1,当 x→+∞时,有n→∞,因为
二、 两个重要极限
所以,由定理18得
二、 两个重要极限

利用复合函数的极限运算法则,若令y=1x,则第 二个重要极限变为
二、 两个重要极限
【例34】
二、 两个重要极限
同样的,
二、 两个重要极限
比较xn与xn+1的展开式的各项可知,除前两项相等外,从 第三项起,xn+1的各项都大于xn的对应项,而且xn+1还多了最 后一个正项,因而xn+1>xn,即{xn}为单调增加数列.因为
二、 两个重要极限
故xn有上界.根据定理20,limn→∞ xn存在,常用字 母e表示该极限值,即
相关文档
最新文档