圆锥曲线标准方程与几何性质
圆锥曲线的方程与性质总结
圆锥曲线的方程与性质总结1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=。
椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222b ac =-;②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。
(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。
所以,椭圆关于x 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。
在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。
同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。
2021_2022学年高中数学第3章圆锥曲线与方程章末复习课学案北师大版选修2_1
第3章 圆锥曲线与方程1.三种圆锥曲线的定义、标准方程、几何性质椭圆双曲线 抛物线定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹平面内与一个定点F和一条定直线l (l 不经过点F )距离相等的点的轨迹标准方程(以焦点在x轴为例) x 2a 2+y 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1 (a >0,b >0)y 2=2px(p >0) 关系式 a 2-b 2=c 2a 2+b 2=c 2图形封闭图形无限延展, 有渐近线无限延展, 无渐近线 对称性 对称中心为原点 无对称中心 两条对称轴一条对称轴顶点 四个两个一个离心率 0<e <1 e >1 e =1 准线方程 x =-p 2决定形 状的因素 e 决定扁平程度e 决定开口大小2p 决定 开口大小统一定义圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比为定值e2.椭圆的焦点三角形设P 为椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点(不在x 轴上),F 1,F 2为焦点且∠F 1PF 2=α,那么△PF 1F 2为焦点三角形(如图).(1)焦点三角形的面积S =b 2tan α2;(2)焦点三角形的周长L =2a +2c . 3.待定系数法求圆锥曲线标准方程 (1)椭圆、双曲线的标准方程求椭圆、双曲线的标准方程包括“定位〞和“定量〞两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论.①可将椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B ),其中当1A >1B 时,焦点在x 轴上,当1A <1B时,焦点在y 轴上.②双曲线方程可设为Ax 2+By 2=1(AB <0),当1A <0时,焦点在y 轴上,当1B<0时,焦点在x轴上.(2)抛物线的标准方程对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y 2=ax (a ≠0)或x 2=ay (a ≠0). 4.双曲线及渐近线的设法技巧(1)由双曲线标准方程求其渐近线方程时,把标准方程中的1换成0,即可得到两条渐近线的方程.(2)如果双曲线的渐近线为x a ±y b =0时,它的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).5.抛物线的焦点弦问题抛物线过焦点F 的弦长|AB |的一个重要结论. (1)y 2=2px (p >0)中,|AB |=x 1+x 2+p ; (2)y 2=-2px (p >0)中,|AB |=-x 1-x 2+p ; (3)x 2=2py (p >0)中,|AB |=y 1+y 2+p ; (4)x 2=-2py (p >0)中,|AB |=-y 1-y 2+p . 6.直线与圆锥曲线有关的问题(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,那么有:①Δ>0⇔直线与圆锥曲线相交于两点; ②Δ=0⇔直线与圆锥曲线相切于一点; ③Δ<0⇔直线与圆锥曲线无交点.提醒:直线与双曲线、直线与抛物线有一个公共点应有两种情况:一是相切;二是直线与双曲线渐近线平行、直线与抛物线的对称轴平行.(2)直线l 截圆锥曲线所得的弦长|AB |=〔1+k 2〕〔x 1-x 2〕2或⎝ ⎛⎭⎪⎫1+1k 2〔y 1-y 2〕2,其中k 是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.圆锥曲线的定义及应用【例1】 (1)F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为点Q ,那么点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线(2)设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[思路探究] (1)借助角平分线的性质及相关曲线的定义求解;(2)要求|PF 1||PF 2|的值,可考虑利用椭圆的定义和△PF 1F 2为直角三角形的条件,求出|PF 1|和|PF 2|的值,但Rt △PF 1F 2的直角顶点不确定,故需要分类讨论.(1)A [延长垂线F 2Q 交F 1P 的延长线于点A ,如图. 那么△APF 2是等腰三角形,∴|PF 2|=|AP |, 从而|AF 1|=|AP |+|PF 1|=|PF 2|+|PF 1|=2a . ∵O 是F 1F 2的中点,Q 是AF 2的中点, ∴|OQ |=12|AF 1|=a .∴Q 点的轨迹是以原点O 为圆心,半径为a 的圆.] (2)解:由题意知,a =3,b =2,那么c 2=a 2-b 2=5,即c =5,由椭圆定义知|PF 1|+|PF 2|=6,|F 1F 2|=2 5.①假设∠PF 2F 1为直角,那么|PF 1|2=|F 1F 2|2+|PF 2|2,|PF 1|2-|PF 2|2=20,即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43.所以|PF 1||PF 2|=72.②假设∠F 1PF 2为直角,那么|F 1F 2|2=|PF 1|2+|PF 2|2.即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去.)所以|PF 1||PF 2|=2.运用定义解题主要表达在以下几个方面:(1)在求动点的轨迹方程时,如果动点所满足的几何条件符合某种圆锥曲线的定义,那么可直接根据圆锥曲线的方程写出所求的动点的轨迹方程;(2)涉及椭圆或双曲线上的点与两个焦点构成的三角形问题,常常运用圆锥曲线的定义并结合三角形中的正、余弦定理来解决;(3)在求有关抛物线的最值问题时,常利用定义,把抛物线上某一点到焦点的距离转化为到准线的距离,并结合图形的几何意义去解决.1.(1)点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过点M ,N 与圆C 相切的两直线相交于点P ,那么P 点的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.(1)A [设PM ,PN 与⊙C 分别切于点E ,F ,如图,那么|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB | =4-2=2<|MN |,∴P 点的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支(除去右顶点).∴所求轨迹方程为x 2-y 28=1(x >1).](2)解:抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如下图,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小,且最小值为|MD |=2-(-2)=4,所以|PM |+|PFP 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3.圆锥曲线简单性质的应用【例2】 (1)椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n2=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±152yB .y =±152xC .x =±34y D .y =±34x (2)椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .[思路探究] (1)由椭圆和双曲线有公共的焦点可得m ,n 的等量关系,从而求出双曲线的渐近线方程;(2)写出AB 的直线方程,由F 1到直线AB 的距离为b7得出a ,c 的关系,求椭圆的离心率e .(1)D [由题意,3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2,令x 22m 2-y 23n 2=0,y 2=3n 22m 2x 2=316x 2,∴y =±34x ,即双曲线的渐近线方程是y =±34x .] (2)由A (-a ,0),B (0,b ),得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b=b ax ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2, 整理,得8c 2-14ac +5a 2=0,即8×⎝ ⎛⎭⎪⎫c a 2-14×c a +5=0,∴8e 2-14e +5=0.∴e =12或e=54(舍去). 综上可知,椭圆的离心率e =12.1.(变结论)在本例(1)条件不变的情况下,求该椭圆的离心率. [解] 题意可知,该椭圆的焦点在x 轴上,故 椭圆的离心率e =1-5n 23m2=1-5n 224n 2=11412.2.(变条件)在本例(2)条件换为“F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,〞求椭圆离心率的取值范围.[解] ∵MF 1→·MF 2→=0,∴点M 的轨迹是以F 1F 2为直径的圆,其方程为x 2+y 2=c 2. 由题意知椭圆上的点在该圆的外部, 设椭圆上任意一点P (x ,y ),到|OP |min =b , ∴c <b ,即c 2<a 2-c 2.解得e =c a <22. ∵0<e <1,∴0<e <22.1.本类问题主要有两种考察类型:(1)圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考察重点; (2)圆锥曲线的性质求其方程.2.对于求椭圆和双曲线的离心率,有两种方法: (1)代入法就是代入公式e =c a求离心率;(2)列方程法就是根据条件列出关于a ,b ,c 的关系式,然后把这个关系式整体转化为关于e 的方程,解方程即可求出e 的值.直线与圆锥曲线的位置关系2程是________.(2)向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ). ①求点Q (x ,y )的轨迹C 的方程;②设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.8x -y -15=0 [(1)设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减,得(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,得k AB =8. 设直线方程为y =8x +b ,代入点(2,1)得b =-15; 故所求直线方程为y =8x -15.](2)①由题意得,a +3b =(x +3,3y ),a -3b =(x -3,3y ),∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0,即(x +3)(x -3)+3y ·3y =0, 化简得x 23+y 2=1,∴点Q 的轨迹C 的方程为x 23+y 2=1.②由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1.得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(ⅰ)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,那么x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,∴AP ⊥MN .那么-m +3k 2+13mk =-1k,即2m =3k 2+1, ②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ⅱ)当k =0时,|AM |=|AN |, ∴AP ⊥MN ,m 2<3k 2+1. 即为m 2<1,解得-1<m <1.综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2, 当k =0时,m 的取值范围是(-1,1).解决圆锥曲线中的参数范围问题与求最值问题类似,一般有两种方法:(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等关系式,通过解不等式求参数范围.2.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 2=λk 3?假设存在,求λ的值;假设不存在,请说明理由.[解] (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1.① 依题设知a =2c ,那么b 2=3c 2.②将②代入①,解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)由题意可设AB 的斜率为k , 那么直线AB 的方程为y =k (x -1). ③代入椭圆方程3x 2+4y 2=12,并整理,得 (4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),那么有 x 1+x 2=8k 24k 2+3,x 1x 2=4〔k 2-3〕4k 2+3. ④在方程③中令x =4,得M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.注意到A ,F ,B 三点共线,那么有k =k AF =k BF , 即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-〔x 1+x 2〕+1.⑤将④代入⑤,得k 1+k 2=2k -32·8k24k 2+3-24〔k 2-3〕4k 2+3-8k24k 2+3+1=2k -1. 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.函数与方程的思想【例4】 椭圆G :x 24+y 2=1.过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值. [解] (1)由得a =2,b =1,所以c =a 2-b 2= 3.所以椭圆G 的焦点坐标为(-3,0),(3,0),离心率为e =c a =32. (2)由题意知|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32.此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎪⎨⎪⎧y =k 〔x -m 〕,x 24+y 2=1,得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),那么 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1,即m 2k 2=k 2+1.所以|AB |=〔x 2-x 1〕2+〔y 2-y 1〕2=〔1+k 2〕[〔x 1+x 2〕2-4x 1x 2]=〔1+k 2〕⎣⎢⎡⎦⎥⎤64k 4m 2〔1+4k 2〕2-4〔4k 2m 2-4〕1+4k 2=43|m |m 2+3. 由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞).因为|AB |=43|m |m 2+3=43|m |+3|m |≤2, 当且仅当m =±3时,|AB |=2, 所以|AB |的最大值为2.1.函数思想是解决最值问题最有利的武器.通常用建立目标函数的方法解有关圆锥曲线的最值问题.2.方程思想是从分析问题的数量关系入手,通过联想与类比,将问题中的条件转化为方程或方程组,然后通过解方程或方程组使问题获解,在求圆锥曲线方程、直线与圆锥曲线的位置关系的问题中经常利用方程或方程组来解决.3.如下图,过抛物线y 2=2px 的顶点O 作两条互相垂直的弦交抛物线于A 、B 两点.(1)证明直线AB 过定点; (2)求△AOB 面积的最小值.[解] (1)证明:当直线AB 的斜率不存在时,AB ⊥x 轴,又OA ⊥OB ,∴△AOB 为等腰直角三角形,设A (x 0,y 0),那么y 20=2px 0,∴x 0=2p ,直线AB 过点(2p ,0).当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -a ),A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y 2=2px ,y =k 〔x -a 〕,消去x 得ky 2-2py -2pak =0,那么y 1y 2=-2pa .又OA ⊥OB .∴y 1y 2=-x 1x 2.由方程组消去y ,得k 2x 2-(2k 2a +2p )x +k 2a 2=0, 那么x 1·x 2=a 2.因此,a 2=2pa .∴a =2p ..下载后可自行编辑修改,页脚下载后可删除。
圆锥曲线常用结论
圆锥曲线常用结论1.圆锥曲线的定义:(1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。
若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
抛物线定义中,定点和定直线是焦点和准线,要注意定点不在定直线上,否则轨迹为过定点且和定直线垂直的直线.(2)抛物线定义给出了抛物线上的点到焦点距离与此点到准线距离间的关系,要善于运用定义对它们进行相互转化。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(同步讲解)圆锥曲线知识点总结
圆锥曲线知识点小结圆锥曲线在高考中的地位:圆锥曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。
通过以圆锥曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。
(1).重视圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。
(2).重视圆锥曲线性质与数列的有机结合。
(3).重视解析几何与立体几何的有机结合。
高考再现:2011年(文22)在平面直角坐标系x O y中,已知椭圆C:+ y2 = 1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A、B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x = -3于点D(-3,m).(1)求m2 + k2的最小值;(2)若∣OG∣2 =∣OD∣·∣OE∣, ①求证:直线l过定点;②试问点B、G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(理22)已知动直线l与椭圆C:+ = 1相交于P(x1,y1),Q(x2,y 2)两个不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.(1)证明:+和+均为定值;(2)设线段PQ 的中点为M ,求∣OM ∣·∣PQ ∣的最大值;(3)椭圆C 上是否存在三点D, E, G ,使得S △ODE = S △ODG = S △OEG =?若存在,判断△DEG 的形状;若不存在,请说明理由.(2009年山东卷)设m ∈R,在平面直角坐标系中,已知向量a =(mx,y+1),向量b =(x,y-1),a⊥b ,动点M(x,y)的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;(2)已知m=1/4,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A,B,且OA⊥OB(O 为坐标原点),并求出该圆的方程; (3)已知m=1/4,设直线l 与圆C:x 2+y 2=R 2(1<R<2)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值. 一.圆锥曲线的定义:椭圆:平面内与两个定点的距离之和等于定长(大于)的点的轨迹叫做椭圆。
圆锥曲线标准方程
圆锥曲线标准方程圆锥曲线是平面上的一类重要曲线,包括圆、椭圆、双曲线和抛物线。
它们在数学、物理、工程等领域都有着广泛的应用。
本文将重点介绍圆锥曲线的标准方程,以及它们在几何和代数上的性质。
首先,我们来看圆的标准方程。
圆的标准方程可以表示为:(x h)² + (y k)² = r²。
其中(h, k)为圆心的坐标,r为圆的半径。
这个方程描述了平面上所有到圆心距离为r的点的集合。
圆是一种特殊的椭圆,其长短轴相等。
接下来,我们来讨论椭圆的标准方程。
椭圆的标准方程可以表示为:(x h)²/a² + (y k)²/b² = 1。
其中(h, k)为椭圆的中心坐标,a和b分别为椭圆在x轴和y轴上的半轴长度。
椭圆是一种闭合曲线,其所有点到两个焦点的距离之和是一个常数。
椭圆在几何光学、天体力学等领域有着重要的应用。
双曲线是另一种重要的圆锥曲线。
它的标准方程可以表示为:(x h)²/a² (y k)²/b² = 1。
或者。
(x h)²/a² (y k)²/b² = -1。
双曲线有两条渐近线,其性质和椭圆有很大的不同。
在电磁学、光学等领域,双曲线也有着重要的应用。
最后,我们来讨论抛物线的标准方程。
抛物线的标准方程可以表示为:y = ax² + bx + c。
其中a、b、c为常数,且a不等于0。
抛物线是一种开口朝上或开口朝下的曲线,其在物理学、工程学等领域有着广泛的应用。
通过以上介绍,我们可以看到圆锥曲线的标准方程在数学和实际应用中有着重要的地位。
它们描述了平面上各种不同的曲线形状,具有丰富的几何和代数性质。
深入理解和熟练运用圆锥曲线的标准方程,对于提高数学水平和解决实际问题都具有重要意义。
总之,圆锥曲线的标准方程是数学中的重要概念,对于理解和应用各种曲线形状具有重要意义。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
高一数学圆锥曲线的标准方程与几何性质
单击此处添加标题
圆锥曲线包括椭圆、双曲线和抛物线
单击此处添加标题
圆锥曲线的标准方程包括x^2/a^2 + y^2/b^2 = 1(椭圆)、 x^2/a^2 - y^2/b^2 = 1(双曲线)和y = ax^2 + bx + c(抛 物线)
单击此处添加标题
椭圆的性质:对 称性、旋转性、 中心对称性、焦 点对称性
椭圆的应用:光 学、天体物理、 工程等领域
双曲线的标准方程
双曲线的定义:平面内与两个定点F1、F2的距离之差的绝对值等于常数(小于|F1F2|)的点 的轨迹
双曲线的标准方程:x^2/a^2 - y^2/b^2 = 1(a>0,b>0)
双曲线的焦点:F1(c,0), F2(-c,0)
利用几何性质和代 数关系,求解标准 方程
验证求解结果是否 满足圆锥曲线的定 义和性质
圆锥曲线的几何性质
圆锥曲线的焦点与准线
焦点:圆锥曲线上的一个特殊 点,决定了曲线的形状和性质
准线:与焦点相对应的直线, 决定了曲线的性质和位置
椭圆的焦点与准线:椭圆的焦 点在椭圆的中心,准线是垂直 于椭圆中心的直线
圆锥曲线在工程中 的应用:如建筑设 计、机械制造等
圆锥曲线在数学中 的应用:如解析几 何、微积分等
圆锥曲线在计算机 科学中的应用:如 图形学、计算机视 觉等
解析几何问题中的应用
圆锥曲线在物理中的应用:如天体运动、电磁场等 圆锥曲线在工程中的应用:如建筑设计、机械制造等 圆锥曲线在计算机图形学中的应用:如三维建模、图像处理等 圆锥曲线在数学竞赛中的应用:如奥林匹克数学竞赛、国际数学竞赛等
圆锥曲线在实际问题中 的应用
圆锥曲线的方程与性质
即 c2-2c-3=0,解得 c=-1(舍去)或 c=3.
索引
所以 C1 的标准方程为3x62+2y72 =1, C2的标准方程为y2=12x.
索引
考点整合
///////
1.圆锥曲线的定义 (1)椭圆:|MF1|+|MF2|=2a(2a>|F1F2|); (2)双曲线:||MF1|-|MF2||=2a(2a<|F1F2|); (3)抛物线:|MF|=d(d为M点到准线的距离). 温馨提醒 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.
所以
C
的离心率
e=ac=22ac=|PF|1F|-1F|2P| F2|=
27mm=
7 2.
索引
3.(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为 C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线 方程为__x_=__-__23_______. 解析 法一 由题意易得|OF|=p2,|PF|=p,∠OPF=∠PQF,所以 tan∠OPF
索引
(2)(2021·江南十校联考)已知椭圆 C:xa22+y2=1(a>1)的左、右焦点分别为 F1,F2, 过 F1 的直线与椭圆交于 M,N 两点,若△MNF2 的周长为 8,则△MF1F2 面积的
最大值为( B )
3 A. 2
B. 3
C.2 3
D.3
解析 由椭圆定义|MF1|+|MF2|=|NF1|+|NF2|=2a, 所以△MNF2的周长为|MN|+|MF2|+|NF2|=|MF1|+|NF1|+|MF2|+|NF2|=4a=8. 则 a=2,故 c= a2-1= 3.
专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮
③|F1A|+|F1B|=
2 p
;④以弦
AB
为直径的圆与准线相切.
[典型例题]
1.已知椭圆 T : x2 y2 1(a b 0) 的长半轴为 2,且过点 M 0,1 .
a2 b2 若过点 M 引两条互相垂直的直线 l1 , l2 ,P 为椭圆上任意一点,
记点 P 到 l1 , l2 的距离分别为 d1 , d2 ,则 d12 d22 的最大值为( B )
C. x2 y
D. x2 1 y 2
[解析]
本题考查抛物线的定义、标准方程. 抛物线 C : x2 2 py( p 0) 的准线方程为 y p .因为 | AF | 4 ,
2 所以由抛物线的定义得 p 3 4 ,解得 p 2 ,
2 所以抛物线 C 的方程为 x2 4 y .故选 A.
因为 | BC | 2 | BF | ,所以 | BC | 2 | BN | ,所以 BC 2 ,所以 BN 2 ,
CF 3
p3
所以 BN BF 4 , BC 8 ,
3
3
[解析]
所以 CF 4 ,因为 p CF , AM CA
所以 2 CF 4 4 , AM CF AF 4 AF 4 AM 4
则 d12 d22 x2 (1 y)2 ,因为 P 在椭圆上,所以 x2 4 4 y2 ,
所以
d12
d
2 2
5
3y2
2y
5
3
y
1 2 3
1 3
,
y [1,1],
[解析]
所以当
y
1 3
时,
பைடு நூலகம்d12
d22
有最大值
16 3
,所以
圆锥曲线(椭圆、双曲线、抛物线)知识点总结
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
圆锥曲线几何性质总结归纳
圆锥曲线的几何性质一、椭圆的几何性质(以22a x +22by =1(a ﹥b ﹥0)为例)1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义12121212242AF AF a AF AF BF BF a BF BF a +=⎫⎪⇒+++=⎬+=⎪⎭即24ABF C a =2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2tan2θ∙b(2)(S ⊿PF1F2)max = bc(3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F 中∵ 22212124cos 2PF PF c PF PF θ+-=⋅∴ ()2121212c o s 2P F P F P F P F P Fθ⋅=+-⋅∴ 21221cos b PF PF θ⋅=+∴ 1222112sin cos tan 21cos 2PF F b S b θθθθ-=⨯⋅=⋅+ (2)(S ⊿PF1F2)max =max 122c h bc ⨯⨯= (3 ()()()2222222212002222222120004444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---===-⋅-+ 当0x =0时 cos θ有最小值2222a c a- 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M , 则M 的轨迹是x 2+y 2=a 2xx证明:延长1F M 交2F P 于F ,连接OM 由已知有 1P F F P = M 为1F F 中点 ∴ 212O M F F ==()1212PF PF +=a 所以M 的轨迹方程为 222x y a +=4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切证明:取1PF 的中点M ,连接OM 。
令圆M 的直径1PF ,半径为∵ OM =()2111112222PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵1212121222F R F R F R F R I R ce P I P F P F P F P F a +=====+ ∴IRPI= e6、以任一焦点弦为直径的圆与相应准线相离。
高考数学二轮复习考点知识与题型专题讲解41---圆锥曲线的方程与性质
高考数学二轮复习考点知识与题型专题讲解第41讲圆锥曲线的方程与性质[考情分析]高考对这部分知识的考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率以及渐近线问题;三是抛物线的性质及应用问题.考点一圆锥曲线的定义与标准方程核心提炼1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”“定型”:确定曲线焦点所在的坐标轴的位置;“计算”:利用待定系数法求出方程中的a2,b2,p 的值.例1(1)(2022·衡水中学模拟)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP且线段AP的长为2+2,则该椭圆方程为()A.x 24+y 22=1B.x 28+y 23=1 C.x 25+y 24=1 D.x 28+y 24=1 答案 D解析 设椭圆的半焦距为c ,因为点P 在以线段F 1A 为直径的圆上,所以AP ⊥PF 1.又因为F 2B ∥AP ,所以F 2B ⊥BF 1.又因为|F 2B |=|BF 1|,所以△F 1F 2B 是等腰直角三角形,于是△F 1AP 也是等腰直角三角形,因为|AP |=2+2,所以|F 1A |=2(2+2),得a +c =2(2+2),又b =c ,所以a =2c ,解得a =22,c =2,得b 2=a 2-c 2=4,所以椭圆方程为x 28+y 24=1. (2)(2022·荆州模拟)已知双曲线C :x 216-y 29=1的左、右焦点分别是F 1,F 2,点P 是C 右支上的一点(不是顶点),过F 2作∠F 1PF 2的角平分线的垂线,垂足是M ,O 是原点,则|MO |=________. 答案 4解析 延长F 2M 交PF 1于点Q ,由于PM 是∠F 1PF 2的角平分线,F 2M ⊥PM ,所以△QPF 2是等腰三角形,所以|PQ |=|PF 2|,且M 是QF 2的中点.根据双曲线的定义可知|PF 1|-|PF 2|=2a ,即|QF 1|=2a ,由于O 是F 1F 2的中点,所以MO 是△QF 1F 2的中位线,所以|MO |=12|QF 1|=a =4. 易错提醒 求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;圆锥曲线方程确定时还要注意焦点位置.跟踪演练1 (1)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的方程为( ) A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m=1(m ≠0), ∵2a =4,∴a 2=4,当m >0时,2m =4,m =2;当m <0时,-m =4,m =-4.故所求双曲线的方程为x 24-y 22=1或y 24-x 28=1. (2)已知A ,B 是抛物线y 2=8x 上两点,当线段AB 的中点到y 轴的距离为3时,|AB |的最大值为( )A .5B .5 2C .10D .10 2答案 C解析 设抛物线y 2=8x 的焦点为F ,准线为l ,线段AB 的中点为M .如图,分别过点A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,连接AF ,BF .因为线段AB 的中点到y 轴的距离为3,抛物线y 2=8x 的准线l :x =-2,所以|MN |=5.因为|AB |≤|AF |+|BF |=|AC |+|BD |=2|MN |=10,当且仅当A ,B ,F 三点共线时取等号,所以|AB |max =10.考点二 椭圆、双曲线的几何性质 核心提炼1.求离心率通常有两种方法(1)求出a ,c ,代入公式e =c a. (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线bx ±ay =0的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 椭圆、双曲线的几何性质例2(2022·河南五市联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心的圆恰好与双曲线C 的两条渐近线相切,且该圆恰好经过线段OF 2的中点,则双曲线C 的渐近线方程为( )A .y =±3xB .y =±33x C .y =±233x D .y =±2x答案 B解析 由题意知,渐近线方程为y =±b ax , 焦点F 2(c ,0),c 2=a 2+b 2,因为以F 2为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r 等于圆心到切线的距离,即r =⎪⎪⎪⎪±b a ·c 1+⎝⎛⎭⎫±b a 2=b , 又该圆过线段OF 2的中点,故c 2=r =b , 所以b a =b 2a 2=b 2c 2-b2=33. 所以渐近线方程为y =±33x . 考向2 离心率问题例3(多选)(2022·全国乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( ) A.52B.32 C.132 D.172 答案 AC解析 不妨设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0). 当两个交点M ,N 在双曲线两支上时,如图1所示,图1设过F 1的直线与圆D 相切于点P ,连接OP ,由题意知|OP |=a ,又|OF 1|=c ,所以|F 1P |=b .过点F 2作F 2Q ⊥F 1N ,交F 1N 于点Q .由中位线的性质,可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 故|NF 2|=52a ,|QN |=32a , 所以|NF 1|=|F 1Q |+|QN |=2b +32a . 由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以2b +32a -52a =2a ,所以2b =3a . 两边平方得4b 2=9a 2,即4(c 2-a 2)=9a 2,整理得4c 2=13a 2,所以c 2a 2=134, 故c a =132,即e =132. 当两个交点M ,N 都在双曲线上的左支上时,如图2所示,图2同理可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 可得|NF 2|=52a ,|NQ |=32a , 所以|NF 1|=|NQ |-|QF 1|=32a -2b , 所以|NF 2|=|NF 1|+2a =72a -2b , 又|NF 2|=52a ,所以72a -2b =52a , 即a =2b ,故e =1+⎝⎛⎭⎫b a 2=52.故选AC.规律方法 (1)在“焦点三角形”中,常利用正弦定理、余弦定理,结合椭圆(或双曲线)的定义,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(2)求双曲线渐近线方程的关键在于求b a 或a b的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.跟踪演练2 (1)(2022·全国甲卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( ) A.32 B.22 C.12 D.13答案 A解析 设P (m ,n )(n ≠0),则Q (-m ,n ),易知A (-a ,0),所以k AP ·k AQ =n m +a ·n -m +a =n 2a 2-m 2=14.(*) 因为点P 在椭圆C 上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14, 所以e =c a =1-b 2a 2=32.故选A. (2)(多选)(2022·衡水中学模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线的右支交于A ,B 两点,若|AF 1|=|BF 2|=2|AF 2|,则( )A .∠AF 1B =∠F 1ABB .双曲线的离心率e =333C .双曲线的渐近线方程为y =±63x D .原点O 在以F 2为圆心,|AF 2|为半径的圆上答案 AB解析 设|AF 1|=|BF 2|=2|AF 2|=2m ,则|AB |=|AF 2|+|BF 2|=3m ,由双曲线的定义知,|AF 1|-|AF 2|=2m -m =2a ,即m =2a ,|BF 1|-|BF 2|=2a ,即|BF 1|-2m =2a ,∴|BF 1|=3m =|AB |,∠AF 1B =∠F 1AB ,故选项A 正确;由余弦定理知,在△ABF 1中,cos ∠AF 1B =|AF 1|2+|BF 1|2-|AB |22|AF 1|·|BF 1|=4m 2+9m 2-9m 22·2m ·3m =13, 在△AF 1F 2中,cos ∠F 1AB =|AF 1|2+|AF 2|2-|F 1F 2|22·|AF 1|·|AF 2|=4m 2+m 2-4c 22·2m ·m =cos ∠AF 1B =13, 化简整理得12c 2=11m 2=44a 2,∴离心率e =c a =4412=333,故选项B 正确; 双曲线的渐近线方程为y =±b ax =±c 2-a 2a 2x =±e 2-1x =±263x , 故选项C 错误;若原点O 在以F 2为圆心,|AF 2|为半径的圆上,则c =m =2a ,与c a =333相矛盾,故选项D 错误. 考点三 抛物线的几何性质核心提炼抛物线的焦点弦的几个常见结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2. (2)|AB |=x 1+x 2+p .(3)当AB ⊥x 轴时,弦AB 的长最短为2p .例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( )A.18 B .2 C.14D .4 答案 B解析 设点M 到抛物线的准线的距离为|MM ′|,抛物线的准线与x 轴的交点记为点B.由抛物线的定义知,|MM ′|=|FM |.因为|FM ||MN |=55, 所以|MM ′||MN |=55, 即cos ∠NMM ′=|MM ′||MN |=55, 所以cos ∠OF A =cos ∠NMM ′=55, 而cos ∠OF A =|OF ||AF |=p 2⎝⎛⎭⎫p 22+22=55,解得p =2. (2)(多选)(2022·新高考全国Ⅱ)已知O 为坐标原点,过抛物线C :y 2=2px (p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M (p ,0).若|AF |=|AM |,则( )A .直线AB 的斜率为2 6B .|OB |=|OF |C .|AB |>4|OF |D .∠OAM +∠OBM <180°答案 ACD解析 对于A ,由题意,得F ⎝⎛⎭⎫p 2,0. 因为|AF |=|AM |,且M (p ,0), 所以x A =x F +x M 2=34p ,将其代入抛物线方程y 2=2px ,得y A =62p , 所以A ⎝⎛⎭⎫34p ,62p ,所以直线AB 的斜率k AB =k AF =62p -034p -p 2=26,故A 正确;对于B ,由选项A 的分析,知直线AB 的方程为y =26⎝⎛⎭⎫x -p2,代入y 2=2px ,得12x 2-13px +3p 2=0,解得x =34p 或x =13p ,所以x B =13p ,所以y B =-63p ,所以|OB |=x 2B +y 2B =73p ≠|OF |,故B不正确;对于C ,由抛物线的定义及选项A ,B 的分析, 得|AB |=x A +x B +p =1312p +p =2512p >2p ,即|AB |>4|OF |,故C 正确; 对于D ,易知|OA |=334p ,|AM |=54p , |OB |=73p ,|BM |=103p , 则cos ∠OAM =|OA |2+|AM |2-|OM |22|OA |·|AM |=3316p 2+2516p 2-p 22×334p ·54p=21533>0,cos ∠OBM =|OB |2+|BM |2-|OM |22|OB |·|BM |=79p 2+109p 2-p 22×73p ·103p=470>0,所以∠OAM <90°,∠OBM <90°,所以∠OAM +∠OBM <180°,故D 正确.综上所述,选ACD.规律方法 利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p 的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.跟踪演练3 (1)(2021·新高考全国Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________. 答案 x =-32解析 方法一 (解直角三角形法)由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF , 所以|OF ||PF |=|PF ||FQ |,即p 2p =p 6,解得p =3,所以C 的准线方程为x =-32.方法二 (应用射影定理法)由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32.(2)(2022·济宁模拟)过抛物线y 2=4x 的焦点F 的直线与该抛物线及其准线都相交,交点从左到右依次为A ,B ,C .若AB →=2BF →,则线段BC 的中点到准线的距离为( ) A .3 B .4 C .5 D .6 答案 B解析 由抛物线的方程可得焦点F (1,0),渐近线的方程为x =-1,由AB →=2BF →,可得|AB ||BF |=2,由于抛物线的对称性,不妨假设直线和抛物线位置关系如图所示,作BE 垂直准线于点E , 准线交x 轴于点N ,则|BF |=|BE | ,故|AB ||BF |=|AB ||BE |=2,故∠ABE =π4 , 而BE ∥x 轴,故∠AFN =π4,所以直线AB 的倾斜角为π4,所以直线AB 的方程为y =x -1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,整理可得x 2-6x +1=0,则x 1+x 2=6,所以BC 的中点的横坐标为3, 则线段BC 的中点到准线的距离为3-(-1)=4.专题强化练一、单项选择题1.(2022·中山模拟)抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则抛物线C 的方程为( ) A .y 2=4x B .y 2=8x C .y 2=12x D .y 2=16x 答案 B解析 因抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则p >0,抛物线准线方程为x =-p2,由抛物线定义得1-⎝⎛⎭⎫-p2=3,解得p =4, 所以抛物线C 的方程为y 2=8x .2.已知双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),则其渐近线方程为( )A .y =±24x B .y =±22xC .y =±2xD .y =±12x答案 A解析 因为双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),所以由m +1=32,得m =8, 所以双曲线方程为x 28-y 2=1,所以双曲线的渐近线方程为y =±24x .3.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |等于( ) A .2 B .2 2 C .3 D .3 2 答案 B解析 方法一由题意可知F (1,0),抛物线的准线方程为x =-1.设A ⎝⎛⎭⎫y 24,y 0, 则由抛物线的定义可知|AF |=y 204+1.因为|BF |=3-1=2,所以由|AF |=|BF |,可得y 204+1=2,解得y 0=±2,所以A (1,2)或A (1,-2).不妨取A (1,2),则|AB |=(1-3)2+(2-0)2=8=22,故选B. 方法二 由题意可知F (1,0),故|BF |=2, 所以|AF |=2.因为抛物线的通径长为2p =4, 所以AF 的长为通径长的一半, 所以AF ⊥x 轴,所以|AB |=22+22=8=2 2.故选B.4.(2022·潍坊模拟)如图,某建筑物白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座建筑以轻盈、极简和雕塑般的气质,该建筑物外形弧线的一段可以近似看成焦点在y 轴上的双曲线y 2a 2-x 2b 2=1(a >0,b >0)上支的一部分.已知该双曲线的上焦点F 到下顶点的距离为36,F 到渐近线的距离为12,则该双曲线的离心率为( )A.53B.54C.43D.45 答案 B解析 点F (0,c )到渐近线y =±ab x ,即ax ±by =0的距离d =|±bc |a 2+b 2=b =12, 又由题意知⎩⎪⎨⎪⎧a +c =36,a 2+122=c 2, 解得⎩⎪⎨⎪⎧a =16,c =20,所以e =c a =2016=54.5.(2022·福州质检)已知点F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 2的直线交椭圆于A ,B 两点,且满足AF 1⊥AB ,|AF 1||AB |=43,则该椭圆的离心率是( )A.23B.53C.33D.63 答案 B解析 如图所示,设|AF 1|=4x ,则|AB |=3x ,因为AF 1⊥AB ,则|BF 1|=|AB |2+|AF 1|2=5x , 由椭圆的定义可得|AF 1|+|AB |+|BF 1|=(|AF 1|+|AF 2|)+(|BF 2|+|BF 1|)=4a =12x ,则x =a 3,所以|AF 1|=4x =4a 3, 则|AF 2|=2a -4a 3=2a3,由勾股定理可得|AF 1|2+|AF 2|2=|F 1F 2|2, 则⎝⎛⎭⎫4a 32+⎝⎛⎭⎫2a 32=4c 2,则c =53a , 因此该椭圆的离心率为e =c a =53.6.如图,圆O 与离心率为32的椭圆T :x 2a 2+y 2b 2=1(a >b >0)相切于点M (0,1),过点M 引两条互相垂直的直线l 1,l 2,两直线与两曲线分别交于点A ,C 与点B ,D (均不重合).若P 为椭圆上任意一点,记点P 到两直线的距离分别为d 1,d 2,则d 21+d 22的最大值是( )A .4B .5 C.163 D.253答案 C解析 易知椭圆C 的方程为x 24+y 2=1,圆O 的方程为x 2+y 2=1, 设P (x 0,y 0), 因为l 1⊥l 2,则d 21+d 22=|PM |2=x 20+(y 0-1)2,因为x 204+y 20=1,所以d 21+d 22=4-4y 20+(y 0-1)2=-3⎝⎛⎭⎫y 0+132+163, 因为-1≤y 0≤1,所以当y 0=-13,即点P ⎝⎛⎭⎫±423,-13时,d 21+d 22取得最大值163. 二、多项选择题7.(2022·临沂模拟)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F (0,2),椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A .椭圆的长轴长为4 2B .|AB |的取值范围是[4,2+22]C .△ABF 面积的最小值是4D .△AFG 的周长为4+4 2 答案 ABD解析 由题意知,椭圆中的几何量b =c =2, 得a =22,则2a =42,A 正确; |AB |=|OB |+|OA |=2+|OA |, 由椭圆性质可知2≤|OA |≤22, 所以4≤|AB |≤2+22,B 正确; 记∠AOF =θ, 则S △ABF =S △AOF +S △OBF=12|OA |·|OF |sin θ+12|OB |·|OF |sin(π-θ) =|OA |sin θ+2sin θ =(|OA |+2)sin θ, 取θ=π6,则S △ABF =1+12|OA |≤1+12×22<4,C 错误;由椭圆定义知|AF |+|AG |=2a =42, 所以△AFG 的周长L =|FG |+42=4+42, D 正确.8.(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A .||P A 1|-|P A 2||=2aB .若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5 C .若双曲线C 为等轴双曲线,则直线P A 1的斜率与直线P A 2的斜率之积为1D .若双曲线C 为等轴双曲线,且∠A 1P A 2=3∠P A 1A 2,则∠P A 1A 2=π10答案 BCD解析 对于A ,在△P A 1A 2中,根据三角形两边之差小于第三边, 可知||P A 1|-|P A 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0,设F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎨⎧n m -c ×ba =-1,b ×m +c 2-a ×n2=0,得⎩⎨⎧m =a 2-b 2c,n =2abc ,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎫a 2-b 2c ,2ab c , 由题意知该点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2 代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=5,得e =5,故B 正确;对于C ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2, 则x 20-a 2=y 20,故12·PA PA k k =y 0x 0+a ·y 0x 0-a=y 20x 20-a2=1,故C 正确; 对于D ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 且∠A 1P A 2=3∠P A 1A 2, 设∠P A 1A 2=θ,∠A 1P A 2=3θ, 则∠P A 2x =4θ,根据C 的结论12·PA PA k k =1, 即有tan θ·tan 4θ=1, ∴sin θcos θ·sin 4θcos 4θ=1, ∴cos 5θ=0, ∵θ+3θ∈(0,π), ∴θ∈⎝⎛⎭⎫0,π4, ∴5θ=π2,∴∠P A 1A 2=θ=π10.三、填空题9.写出一个满足以下三个条件的椭圆的方程:______________.①中心为坐标原点;②焦点在坐标轴上;③离心率为13.答案x 29+y 28=1(答案不唯一)解析 只要椭圆方程形如x 29m +y 28m =1(m >0)或y 29m +x 28m=1(m >0)即可.10.(2022·淄博模拟)已知P 1,P 2,…,P 8是抛物线x 2=4y 上不同的点,且F (0,1).若FP 1--→+FP 2--→+…+FP 8--→=0,则|FP 1--→|+|FP 2--→|+…+|FP 8--→|=________.答案 16解析 设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),…,P 8(x 8,y 8),P 1,P 2,P 3,…,P 8是抛物线x 2=4y 上不同的点,点F (0,1),准线为y =-1,则FP i --→=(x i ,y i -1)(i =1,2,…,8),所以FP 1--→+FP 2--→+…+FP 8--→=(x 1+x 2+…+x 8,(y 1-1)+(y 2-1)+…+(y 8-1))=0,所以(y 1-1)+(y 2-1)+…+(y 8-1)=0,即y 1+y 2+y 3+…+y 8=8,∴|FP --→1|+|FP 2--→|+…+|FP 8--→|=(y 1+1)+(y 2+1)+…+(y 8+1)=y 1+y 2+…+y 8+8=16.11.(2022·济南模拟)已知椭圆C 1:x 236+y 2b 2=1(b >0)的焦点分别为F 1,F 2,且F 2是抛物线C 2:y 2=2px (p >0)的焦点,若P 是C 1与C 2的交点,且|PF 1|=7,则cos ∠PF 1F 2的值为________.答案57解析 依题意,由椭圆定义得|PF 1|+|PF 2|=12,而|PF 1|=7,则|PF 2|=5,因为点F 2是抛物线C 2:y 2=2px (p >0)的焦点,则该抛物线的准线l 过点F 1,如图,过点P 作PQ ⊥l 于点Q ,由抛物线定义知|PQ |=|PF 2|=5,而F 1F 2∥PQ ,则∠PF 1F 2=∠F 1PQ ,所以cos ∠PF 1F 2=cos ∠F 1PQ =|PQ ||PF 1|=57. 12.(2022·福州质检)已知O 为坐标原点,F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,A 为C 的右顶点,过F 作C 的渐近线的垂线,垂足为M ,且与y 轴交于点P .若直线AM 经过OP 的中点,则C 的离心率是________.答案 2解析 由题意可知,F (-c ,0),A (a ,0),渐近线不妨设为y =-b ax , 则k FM =a b, 直线FM 的方程为y =a b(x +c ), 令x =0,可得y =ac b, 则P ⎝⎛⎭⎫0,ac b , 则OP 的中点坐标为⎝⎛⎭⎫0,ac 2b , 联立⎩⎨⎧ y =-b a x ,y =a b (x +c ),解得M ⎝⎛⎭⎫-a 2c ,ab c , 因为直线AM 经过OP 的中点,所以ac 2b -00-a =ab c -0-a 2c-a ,则2b 2=ac +c 2,2(c 2-a 2)=ac +c 2, 即c 2-ac -2a 2=0,则e 2-e -2=0,解得e =-1 (舍)或e =2.四、解答题13.(2022·衡水中学模拟)双曲线x 2-y 2b 2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程; (2)设b =3,若l 的斜率存在,且(F 1A --→+F 1B --→)·AB →=0,求l 的斜率.解 (1)设A (x A ,y A ).由题意知,F 2(c ,0),c =1+b 2,y 2A =b 2(c 2-1)=b 4,因为△F 1AB 是等边三角形, 所以2c =3|y A |,即4(1+b 2)=3b 4,解得b 2=2⎝⎛⎭⎫b 2=-23舍去. 故双曲线的渐近线方程为y =±2x .(2)由已知,F 1(-2,0),F 2(2,0). 设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2).显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0. 因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ). 由(F 1A --→+F 1B --→)·AB →=0,即F 1M →·AB →=0, 知F 1M ⊥AB ,故1· 1.F M k k =-而x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,1F M k =3k 2k 2-3, 所以3k 2k 2-3·k =-1,得k 2=35, 故l 的斜率为±155.。
圆锥曲线知识要点及重要结论
《圆锥曲线》知识要点及重要结论一、椭圆1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆.若212F F a =,点P 的轨迹是线段21F F .若2120F F a <<,点P 不存在.2 标准方程 )0(12222>>=+b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0(12222>>=+b a bx a y ,两焦点为),0(),,0(21c F c F -.其中222c b a +=. 3 几何性质椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心. 椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上.若椭圆的标准方程为)0(12222>>=+b a b y a x ,则b y b a x a ≤≤-≤≤-,;若椭圆的标准方程为)0(12222>>=+b a bx a y ,则a y a b x b ≤≤-≤≤-,.二、双曲线1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线. 若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P 不存在.2 标准方程 )0,0(12222>>=-b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0,0(12222>>=-b a by a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=. 3 几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心. 双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上.若双曲线的标准方程为)0,0(12222>>=-b a b y a x ,则R y a x a x ∈≥-≤,或;若双曲线的标准方程为)0,0(12222>>=-b a bx a y ,则R x a y a y ∈≥-≤,或.4 渐近线双曲线)0,0(12222>>=-b a b y a x 有两条渐近线x a b y =和x a by -=.即02222=-b y a x双曲线)0,0(12222>>=-b a b x a y 有两条渐近线x b a y =和x bay -=.即02222=-b x a y双曲线的渐进线是它的重要几何特征,每一双曲线都对应确定双曲线的渐进线,但对于同一组渐进线却对应无数条双曲线.与双曲线)0,0(12222>>=-b a b y a x 共渐进线的双曲线可表示为)0(2222≠=-λλby a x .直线与双曲线有两个交点的条件,一定要“消元后的方程的二次项系数0≠”和“0>∆”同时成立.5 等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线.等轴双曲线的标准方程为)0(12222>=-a a y a x 或)0(12222>=-a ax a y .等轴双曲线的渐近线方程为x y ±=.6 共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线.如:)0,0(12222>>=-b a b y a x 的共轭双曲线为)0,0(12222>>=-b a ax b y ,它们的焦点到原点的距离相等,因而在以原点为圆心,22b a +为半径的圆上.且它们的渐近线都是x a b y =和x ab y -=. 三、抛物线1 定义 平面内与一个定点F 和一条定直线F l (不在l 上) 的距离相等的点的轨迹叫做抛物线. 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.2 标准方程(1) )0(22>=p px y ,焦点为)0,2(p,准线方程为2p x -=,抛物线张口向右.(2) )0(22>-=p px y ,焦点为)0,2(p -,准线方程为2p x =,抛物线张口向左.(3) )0(22>=p py x ,焦点为)2,0(p ,准线方程为2p y -=,抛物线张口向上.(4) )0(22>-=p py x ,焦点为)2,0(p -,准线方程为2p y =,抛物线张口向下.其中p 表示焦点到准线的距离.3 几何性质抛物线是轴对称图形,有一条对称轴.若方程为)0(22>=p px y 或)0(22>-=p px y ,则对称轴是x 轴,若方程为)0(22>=p py x 或)0(22>-=p py x ,则对称轴是y 轴. 若抛物线方程为)0(22>=p px y ,则R y x ∈≥,0. 若抛物线方程为)0(22>-=p px y ,则R y x ∈≤,0. 若抛物线方程为)0(22>=p py x ,则R x y ∈≥,0. 若抛物线方程为)0(22>-=p py x ,则R x y ∈≤,0.圆锥曲线的一些重要结论【几个重要结论】1 已知椭圆)0(12222>>=+b a by a x 的两焦点为)0,(),0,(21c F c F -,),(00y x P 为椭圆上一点,则)1()()(2222020201ax b c x y c x PF -++=++=a a cx a a cx a cx a x c +=+=++=020202202)(2 因为a x a ≤≤-0,c a a acxc a c a cx c +≤+≤-<≤≤-000,, 所以a a cx PF +=01. 同理,acxa PF a PF 0122-=-=. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为)0,(),0,(21c F c F -,),(00y x P 为双曲线上一点,则a a cx PF +=01,a acxPF -=02. 2 椭圆)0(12222>>=+b a b y a x 的两焦点为21,F F ,P 为椭圆上一点,若θ=∠21PF F ,则21PF F ∆的面积为2tan cos 1sin 22αααb b =+. 解:根据椭圆的定义可得a PF PF 221=+ ①由余弦定理可得αcos 242122212212PF PF PF PF F F c -+== ②由①②得)cos 1(2442122α+=-PF PF c a .从而αcos 12221+=b PF PF 所以,21F PF ∆的面积为2tan cos 1sin sin 212221ααααb b PF PF =+=双曲线)0,0(12222>>=-b a b y a x 的两焦点为21,F F ,P 为其上一点,若α=∠21PF F ,则21PF F ∆的面积为2cot cos 1sin sin 212221ααααb b PF PF =-=. 3 已知椭圆)0(1:2222>>=+b a by a x C ,N M ,是C 上关于原点对称的两点,点P 是椭圆上任意一点,当直线PN PM ,的斜率都存在,并记为PN PM k k ,时,那么PM k 与PN k 之积是与点P 位置无关的定值.解:设),(),,(1100y x M y x P ,则),(11y x N --.01010101,x x y y k x x y y k PN PM----=--=,从而2120212001010101x x y y x x y y x x y y k k PN PM --=----⋅--=⋅. 又因为),(),,(1100y x M y x P 都在椭圆上,故1,1221221220220=+=+by a x b y a x .两式相减得,022********=-+-b y y a x x ,因而2221202120ab x x y y -=--即22a b k k PN PM -=⋅.已知双曲线)0,0(12222>>=-b a by a x .N M ,是C 上关于原点对称的两点,点P 是双曲线上任意一点,当直线PN PM ,的斜率都存在,并记为PN PM k k ,时,那么PM k 与PN k 之积是与点P 位置无关的定值.【常用方法】1 在求轨迹方程时,若条件满足圆、椭圆、双曲线、抛物线的定义,则可以用定义求轨迹方程,这是常用求轨迹的数学方法,称为定义法.2本章经常会碰到直线l 与圆锥曲线C 相交于两点的问题,若已知l 过定点),(00y x P ,则可设l 的方程为0x x =或)(00x x k y y -=-.然后分两种情况进行研究,一般处理方法是把直线方程代入曲线C 的方程中,整理得到关于x 或y 的一元二次方程(要注意二次项系数是否为零).韦达定理和判别式经常要用到!若l 的条件不明显时,则可设l 的方程为m x =或m kx y +=.3 本章还经常用到“点差法”:设直线l 与圆锥曲线C 交于点),(),,(2211y x B y x A ,则B A ,两点坐标都满足曲线C 的方程,然后把这两个结构相同的式子相减,整理可以得到直线AB 的斜率1212x x y y --的表达式,也经常会出现2121,y y x x ++,这样又可以与线段AB 的中点),(00y x P 联系起来!4 若三点),(),,(),,(002211y x P y x B y x A 满足以线段AB 为直径的圆经过点P 或BP AP ⊥时,常用处理方法有:①根据勾股定理可得222PB PA AB +=; ②根据AP 的斜率与BP 的斜率之积为1-,可得120201010-=--⋅--x x y y x x y y ;③根据),(),,(,002020101y y x x PB y y x x PA PB PA --=--==⋅可得0))(())((02010201=--+--y y y y x x x x .5求轨迹方程的方法常见的有:直接法、定义法、待定系数法、代入法(也叫相关点法).。
圆锥曲线与方程知识点详细
圆锥曲线与方程知识点详细圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
它们在数学、物理等领域都有着广泛的应用。
接下来,让我们详细了解一下圆锥曲线与方程的相关知识点。
一、椭圆1、定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} =1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。
焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} =1$($a > b > 0$)。
3、椭圆的性质(1)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(2)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(3)顶点:焦点在$x$轴上的椭圆的顶点为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆的顶点为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),离心率反映了椭圆的扁平程度,$e$越接近$0$,椭圆越圆;$e$越接近$1$,椭圆越扁。
二、双曲线1、定义平面内与两个定点$F_1$、$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,其中$a > 0$,$b > 0$,$c =\sqrt{a^2 + b^2}$。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII2椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b xa y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e ace )10(<<=e ace33. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
高中数学_圆锥曲线的方程与性质教学课件设计
2.(2018·全国Ⅱ,文,11)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2, 且∠PF2F1=60°,则C的离心率为
值范围是
√A.[ 5, 6]
C.54,32
B.
25,
6
2
D.52,3
x+y=1, 解析 联立ax22+by22=1, 得(a2+b2)x2-2a2x+a2-a2b2=0, 设P(x1,y1),Q(x2,y2), Δ=4a4-4(a2+b2)(a2-a2b2)>0,化为a2+b2>1. x1+x2=a22+a2b2,x1x2=aa2-2+ab2b2 2. ∵OP⊥OQ, ∴O→P·O→Q=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1=0,
∴椭圆长轴的取值范围是[ 5, 6].
跟踪演练 3 (1)(2019·合肥质检)已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,右顶点为 A,上顶点为 B,以线段 F1A 为直径的圆交线段 F1B 的延长线于点 P,
若 F2B∥AP,则该椭圆的离心率是
3 A. 3
2 B. 3
当直线AB的斜率不存在时,2t1+2t2=0,此时t1=-t2, 则 AB 的方程为 x=2,焦点 F 到直线 AB 的距离为 2-12=32, ∵kAB=22tt112--22tt222=t1+1 t2,得直线 AB 的方程为 y-2t1=t1+1 t2(x-2t21). 即x-(t1+t2)y-2=0. 令y=0,解得x=2. ∴直线AB恒过定点D(2,0). ∴抛物线的焦点 F 到直线 AB 的距离小于32, 综上,焦点 F 到直线 AB 距离的最大值为32.
高中数学_圆锥曲线知识点小结
高中数学_圆锥曲线知识点小结《圆锥曲线》知识点小结一、椭圆:(1)椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:2a |F1F2|表示椭圆;2a |F1F2|表示线段F1F2;2a |F1F2|没有轨迹;(2F1F2|)的点的轨迹。
22xy3.常用结论:(1)椭圆1(a b 0)的两个焦点为F1,F2,过F1的直线交椭圆于A,B两a2b2点,则ABF2的周长= (2)设椭圆x2y22 1(a b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的直线2ab交椭圆于P,Q两点,则P,Q的坐标分别是|PQ|二、双曲线:(1)双曲线的定义:平面内与两个定点F1,F2|迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:|F1F2|PF1| |PF2| 2a与|PF2| |PF1| 2a(2a |F1F2|)表示双曲线的一支。
2a |F1F2|表示两条射线;2a |F1F2|没有轨迹;(2)双曲线的标准方程、图象及几何性质:标准方程中心在原点,焦点在x轴上中心在原点,焦点在y轴上x2y21(a 0,b 0) a2b2y2x22 1(a 0,b 0) 2ab图形B1(0, a),B2(0,a)顶点对称轴焦点焦距离心率渐近线通径(3)双曲线的渐近线:A1( a,0),A2(a,0)x轴,y轴;虚轴为2b,实轴为2aF1( c,0),F2(c,0)|F1F2| 2c(c 0) ceF1(0, c),F2(0,c)a2 b2c(e 1)(离心率越大,开口越大)aybx a2b2 ayax b2222①求双曲线x y 1的渐近线,可令其右边的1为0,即得x y 0,因式分解得到x y 0。
aba2b2a2b2x2y2x2y2②与双曲线2 2 1共渐近线的双曲线系方程是2 ;2ab(4)等轴双曲线为x2y2 t2,其离心率为yx(4)常用结论:(1)双曲线2 1(a 0,b 0)的两个焦点为F1,F2,过F1的直线交双曲线的2ab同一支于A,B两点,则ABF2的周长x2y22 1(a 0,b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的2ab(2)设双曲线直线交双曲线于P,Q两点,则P,Q的坐标分别是|三、抛物线:PQ|(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的标准方程与几何性质
1、 椭圆的标准方程与几何性质: 1、椭圆第一定义:
平面内与两个定点12F F ,的距离的和等于常数(大于12F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫椭圆焦距. 2、椭圆第二定义:
平面内到一个定点的距离和它到一条定直线l 的距离之比是常数(01)e e <<的点的轨迹叫做椭圆.定点是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫椭圆的离心率.
另外:(1)椭圆的通径就是过焦点垂直于长轴的直线与椭圆相交所得的线段长度
椭圆的通径长:2
2b a
.
(2)焦点三角形的面积为:2
12tan
,2
S b F MF θ
θ==∠.
2. 双曲线
②
一、 第一定义:平面内与两个定点
12,F F 的距离之差的绝对值是常数(小于12F F )的点的轨迹叫双
曲线。
第二定义:到定点F 的距离与到定直线l 的距离之比为常数)
0(>>a c a c
的点的轨迹是双曲线.
共轭双曲线的四个焦点共圆.
一:抛物线的定义
定义:平面内与一个定点和一条定直线(不经过点
)的距离相等的点的轨迹叫做抛物线,
定点
叫做抛物线的焦点,定直线叫做抛物线的准线.
二:抛物线的标准方程
抛物线标准方程的四种形式:,,
,。
三、抛物线的几何性质:
1.通径:过抛物线的焦点且垂直于对称轴的弦称为通径,通径长为2p
因为通过抛物线y2=2px(p>0)的焦点而垂直于x轴的直线与抛物线两交点的坐标分别为,,所以抛物线的通径长为2p
2.已知过抛物线的焦点F的直线交抛物线于A、B两点。
设A(x1,y1),B(x2,y2),则:
①焦点弦长
②
③,其中|AF|叫做焦半径,
④焦点弦长最小值为2p。
根据时,即AB垂直于x轴时,弦AB的长最短,最短值为2p
测试题
一、填空题
④
1、双曲线
22
22
1124x y m m
-=+-的焦距是 。
2、双曲线22
1169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2
的周长是 。
3、已知椭圆22
189
x y a +=+的离心率为12,则a = 。
4、双曲线2233m
x my -=的一个焦点为()0,2,则m 的值是 。
5、平面内有两个顶点21,F F 和一动点M,设命题甲:21MF MF -是定值;命题乙:点M 的轨迹是双曲
线。
则命题甲是命题乙的________________条件。
6、若方程11
42
2=-+-t y t x 所表示的曲线为C ,给出下列四个命题:
①若C 为椭圆,则1<t<4; ②若C 为双曲线,则t>4或t<1; ③曲线C 不可能是圆; ④若C 表是椭圆,且长轴在x 轴上,
则2
3
1<
<t .其中真命题的序号为 (把所有正确命题的序号都填上)。
二、解答题
7、已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若⊿2ABF 是
正三角形,求这个椭圆的离心率。
8、中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且13221=F F ,椭圆的长
半轴与双曲线的半实轴之差为4,离心率之比为3:7,求这两条曲线的方程。
9、已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,
左焦点为(F ,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭
.
(1)求该椭圆的标准方程; (2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程;
10、设12F F 、为椭圆2
21625400x
y +=的焦点,P 为椭圆上的一点,且012120F PF ∠=,求12
PF F ∆的面积。
⑥
11、已知双曲线)0,0(122
22>>=-b a b
y a x 的右焦点为F ,过点F 作直线PF 垂直于该双曲线的一
条渐近线l 于)36,33(P .求该双曲线的方程。
12、已知椭圆()22
2210x y a b a b +=>>
的离心率e =()0,A b -和(),0B a
的直线与原点的距离为
⑴求椭圆的方程;
⑵已知定点()1,0E -,若直线()20y kx k =+≠与椭圆交于C D 、两点,问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由。
13、在直线l :09=+-y x 上取一点P ,过点P 以椭圆
13
122
2=+y x 的焦点为焦点作椭圆。
(1)P 点在何处时,所求椭圆长轴最短? (2)求长轴最短时的椭圆方程。
练习:
1、椭圆
22
189
x y a +=+的离心率为12,则a 的值为 . 2、直线l 过椭圆C :22
143
x y +=的左焦点F 1,且斜率为1,设l 与椭圆C 在x轴上方的交点为P ,椭圆右准线与x轴的交点为N,求△PF 1N 的面积.
⑧
3、已知抛物线22(0)y px p =>的焦点F ,A 是抛物线上横坐标为4,且位于x轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y轴,垂足为B ,OB 的中点为M. (1) 求抛物线方程;
(2) 过M 点作MN ⊥FA ,垂足为N ,求点N 的坐标;
一、选择题
1. 方程
22
194
x y k +=-表示焦点在x轴上的椭圆,则k的取值范围是( ) (A )5k < (B ) 9k <(C ) 5k > (D ) 9k >
2.椭圆
22
14
x y m +=的焦距为2,则m的值等于( ) (A )5 (B ) 8(C ) 5或3 (D ) 20
3.下列方程所表示的曲线中,关于x轴和y轴都对称的是( ) (A )221x y -= (B 2y x =
(C )22(1)1x y -+= (D ) 10x y -+=
4.椭圆2
21x y m
+=的准线与y轴平行,那么m的取值范围是( ) (A )0m < (B ) 0m >(C )01m << (D ) 1m >
5.双曲线虚轴的一个端点为M,两个焦点为F 1,F 2,∠F 1MF 2=1200,则双曲线的离心率是( ) (A
(B ) 2C
)3
(D ) 3
6.若双曲线22
1x y -=右支上一点(,)P a b 到直线x y =
)
(A )2 (B ) 2或-2(C )
12 (D ) 12或-1
2
7.过(0,1)点且与抛物线2
4y x =仅有一个公共点的直线有( ) (A )1条 (B ) 2条(C )3条(D ) 4条
8.已知双曲线
22
14x y m
+=,离心率(1,2)e ∈,则m的取值范围是( ) (A )(12,0)- (B (,0)-∞
(C )(3,0)- (D ) (60,12)--
9.过双曲线2
2
13
y x -=的左焦点且平行于渐近线的直线方程是( ) (A
)2)y x =-
(B 2)y x =+
(C
)2)3y x =±
- (D )
2)3
y x =±+ 10.抛物线2y ax =的准线方程是2y =,则a 的值是( ) (A )
18 (B ) 1
8
- (C )8 (D ) -8 11.双曲线2222mx my -=的一条准线是1y =,则m为( )
(A )13-
(B ) 43- (C )13
(D ) 12.设F 1,F 2是椭圆22
12516
x y +=的两个焦点,过F 1且平行于y轴的直线交椭圆于A ,B 两点,则△F 2AB 的面积是( ) (A )
1925 (B ) 965 (C )485 (D ) 24
5
二、填空题
13.焦距为6,离心率3
5
e =,焦点在y轴上的椭圆标准方程是 .
14.抛物线2
2y x =-的焦点坐标是 .
15.已知双曲线的渐近线方程是2y x =±,且焦点在y轴上,则双曲线的离心率是 .
16.椭圆22
221x y a b
+=(0a b >>)内接矩形的最大面积是 .
17.若(0,
)2
π
α∈,方程22sin cos 1x y αα+=表示焦点在y轴上的椭圆,则α的取值范围
是 .
三、解答题:
18.已知双曲线的中心在原点,实轴在x轴,一条渐近线方程是340x y +=,焦点到渐近线的距离为6,求双曲线的方程.
⑩
19.已知抛物线C 的顶点和焦点分别是双曲线
2216981x y -=的中心和右顶点.
(1) 求抛物线C 的方程;29y x =
(2) 求以直线20x y -+=被抛物线C 截得的弦为直径的圆方程.
20.已知双曲线方程为2
2
14
y x -=,过点P(1,1)的直线l 与双曲线只有一个公共点,求直线l 的方程. 210230x y x y --=+-=或或x=1或5x-2y-3=0。