第1章 信号与系统的基本概念
信号与系统基础及应用第1章 信号与系统基础知识
1 xe (t) 2 [x(t) x(t)]
1 xo (t) 2 [x(t) x(t)]
2.信号分解为基本信号的有限项之和 xa (t) t[u(t) u(t 1)] [u(t 1) u(t 2)]
xa (t) tu(t) (t 1)u(t 1) u(t 2)
t
2
Gτ t
1
O
2
t
2
⦿其他函数只要乘以门函数,就只剩下门内的部分。
3.符号函数(Signum)
1,t 0 sgn(t) 1,t 0
sgnt
O
t
sgn(t) u(t) u(t) 2u(t) 1
u(t) 1 [sgn(t) 1] 2
1.3.1 信号的相加和相乘
1
0 1
0
1
信号的和
0
1
信号的积
0
1.3.2 信号的微分与积分
积分 原信号 微分
1.3.3 信号的平移、翻转与展缩
时移
右移
左移
展缩
x(t) t[u(t) u(t 1)] [u(t 1) u(t 2)] x(2t) 2t[u(t) u(t 0.5)] [u(t 0.5) u(t 1)] x( t ) t [u(t) u(t 2)] [u(t 2) u(t 4)]
《信号与系统基础及应用》
• 第1章 信号与系统基础知识 • 第2章 连续时间信号分析 • 第3章 连续时间系统分析 • 第4章 离散时间信号分析 • 第5章 离散时间系统分析 • 第6章 离散傅里叶变换及应用 • 第7章 数字滤波器设计
第1章 信号与系统基础知识
信号与线性系统分析第一章课件吴大正主编
其中包含的信息。
在本课程中对“信息”和“消息”两词未加严格区分。
3、信号反映信息的物理量,是信息的物理体现,是信息的载体。
为了有效地传播和利用消息,常常需要将消息转换成便于传输和处理的信号。
信号是消息的载体,一般表现为随时间变化的某种物理量。
根据物理量的不同特性,可把信号区分为声信号、光信号、电信号等不同类别。
在各种信号中,电信号是一种最便于传输、控制与处理的信号。
同时,在实际应用中,许多非电信号常可通过适当的传感器变换成电信号。
因此,研究电信号具有重要意义。
在本课程中,若无特殊说明,信号一词均指电信号。
信号举例信号可以描述范围极为广泛的一类物理现象,如,声音和图像(屏幕)。
日本人寻找大庆60年代初日本某咨询公司从我国公开发行的《人民画报》照片上发现北京的公共汽车上没有气包了,而这气包正是中国缺油的标志,这个微小的变化使他们推断出中国一定找到了大油田。
事隔不久,《人民日报》刊登了《大庆精神大庆人》的文章,肯定中国有了大油田,日本人储存了这个信息。
1966年7月《人民画报》刊登了王进喜的照片,照片上的王进喜戴着厚厚的皮帽。
日本人从照片上帽子的保暖性判断,大庆在零下30多度的地区,从帽子的式样分析,很可能在中国的东北地区,再从冬天的温度测算大体的纬度得出结论,大庆大致在哈尔滨到齐齐哈尔之间。
这当然还只是推测。
为了验证这些推测,他们又利用来中国的机会,测量了运送原油的火车上的灰尘厚度。
火车在大地上行走,不断积累着灰尘。
从灰尘的厚度可以测算火车行走的时间和从出发地到目的地北京之间的距离。
灰尘厚度表示的时间和距离与日本人从帽子上的信息所作的分析是一致的。
1966年,中国官方报纸在介绍王铁人时提到了马家窑这个地方,在报道中举了王进喜等石油工人是靠人推肩把钻机运送到现场的例子。
日本人从这篇报道中认为,大庆油田离车站不远,如果很远,是无法用人力搬运的。
既然在马家窑,日本人就从精确的地图上找到了马家窑。
日本人还从当地的地质结构推测松辽盆地一带称为大庆油田,对大庆油田的规模有了比较准确的认识。
信号及系统考研复习
第1章 信号与系统的基本概念基本要求1. 了解信号与系统的基本概念与定义,信号与系统的关系;2. 了解信号的分类及时域描述方法,掌握常用信号()t δ、()U t 、sin()t ωθ+、t e α (α为实数)、st e (s j σω=+)、()Sa t 、sgn()t 的特点、性质,能画出它们的波形图;3. 了解信号的时域分解方法与信号的基本运算方法,掌握信号的波形变换[包括压缩、扩展、移位、反褶(倒置)、比例改变等];4. 了解系统的分类及描述系统的方法,了解连续时间系统的数学模型及方框图模型;5. 了解系统的线性、时不变性、因果性和可逆性,初步学会相应的判断方法。
公式摘要1.2.1基本信号的定义1. 单位阶跃信号:1,()0U t ⎧=⎨⎩ 00t t >< 2. 符号函数:1,0sgn()1,0t t t >⎧=⎨-<⎩3. 冲激函数()t δ的定义:()1()0,0t dt t t δδ+∞-∞⎧=⎪⎨⎪=≠⎩⎰4. 抽样信号:sin ()t Sa t t= 5. 冲激偶信号:()()d t t dtδδ'= 1.2.2冲激函数()t δ的性质1. 与普通函数相乘:()()(0)()f t t f t δδ=,注意:()()t t δδ⋅无意义。
2. 抽样性:()()(0)f t t dt f δ+∞-∞=⎰,00()()()f t t t dt f t δ+∞-∞-=⎰3. ()t δ是偶函数:()()t t δδ-=4. 与阶跃函数的关系:()()()()t d u t d u t t dtδττδ-∞==⎰ 5. 与冲激偶函数的关系:()()d t t dtδδ'= 6. 尺度变换:1()()at t aδδ=(0)a ≠ 7. 卷积运算:111212()()()()()()()()()()()()f t t f t t t t f t t t f t t t t t t t t t δδδδδδδδ*=*=*-=--*-=--1.2.3 冲激偶()t δ'的基本性质1. ()t δ'是奇函数:()()t t δδ''-=-2. 与普通函数相乘:()()(0)()(0)()f t t f t f t δδδ'''=-3. 尺度变换: 11()()at t a aδδ''= 4. 卷积运算:()()()d f t t f t dtδ'*=,00()()()f t t t f t t δ''*-=- 5. 积分:()()()()()0()()(0),()()(1)(0)t k k k t d t t dt t f t dt f t f t dt f δτδδδδ-∞+∞-∞+∞+∞-∞-∞'='=''=-=-⎰⎰⎰⎰ 1.2.4信号的时域分解1. 直流分量与交流分量: ()()D A f t f f t =+2. 偶分量与奇分量: ()()()e o f t f t f t =+ 其中偶分量1()[()()]2e f t f t f t =+-,奇分量1()[()()]2o f t f t f t =-- 3. 脉冲分量:()()()f t f t d τδττ+∞-∞=-⎰0()()()()df f t u t u t d d ττττ-∞=-⎰1.2.5线性时不变因果特性若线性时不变因果系统的激励信号为()e t ,响应为()r t ,则该系统具有下列特性1. 叠加性与齐次性: 1212()()()()ae t be t ar t br t +→+2. 时不变特性: 00()()e t t r t t -→-3. 微分特性:()()d d e t r t dt dt → 4. 积分特性: 00()()t te d r d ττττ→⎰⎰ 5. 因果性:若0t t <时 ()0e t =,则0t t <时 ()0r t =考试范围1. 信号的分类(1)区分模拟、连续时间离散幅度、抽样和数字信号。
信号与系统基础知识-精选.pdf
时间(电压从 10%上升至 90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过
冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果
被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。
信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信
f (t) 0
F (k 1) k1
t
0
图 1-2 周期矩形波信号的时域和频域
信号和系统分析还有复频域分析的方法,对于连续信号和系统,基于拉普拉斯变换,称为
s 域分析;对
于离散信号和系统,基于 z变换,称为 z 域分析。基于复频域分析,能够得到信号和系统响应的特征参数,
即频率和衰减,分析系统的频率响应特性和系统稳定性等;复频域分析也能简化系统分析,将在时域分析
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统
输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的
重要差别。本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析, 即分析信号随时间变化的波形。 例如, 对于一个电压测
f a (t ) 是一个电压信号或电
流信号,它作用在一个 1Ω 电阻上时所消耗的能量为信号能量。
一个离散信号 f d ( n) 的能量定义为
Ed
n
2
fd (n)
当 f d ( n) 为复信号时,
2
fd (n)
f d (n) fd (n) 。
第1章 信号与系统(二版)于慧敏9
将要介绍几种在信号与系统分析中用得较 多的基本信号,它们不仅经常会出现,更重要 的是用这些基本信号可以构成许多其他的信号。
§1.2.1 连续时间复指数信号与正弦 信号 连续时间复指数信号具有下列形式 :
x(t ) Ce st
式中C和s一般为复数:
s j
根据这些参数值的不同,复指数信号可分为以下几种: 1. 实指数信号 2. 周期复指数信号和正弦信号 3. 一般复指数信号
图1.5 周期信号
§1.1.1 信号的描述与信号的分类
连续周期信号可表示为:
x(t ) x(t mT), m 0,1,2,...
T
我们把能使上式成立的最小正值 称为 x(t ) 2T ,3T ,4T ... 都是 的周期。
x(t )
的基波周期。
§1.1.1 信号的描述与信号的分类
一、连续时间单位阶跃信号与冲激信号
1. 单位阶跃信号
2. 冲激信号
二、冲激偶信号
§1.2.2 奇异信号
1. 单位阶跃信号
u(t ) 单位阶跃信号的记作 , 其定义为: 0 t 0 u (t ) t0 1
t0 在跳变点 处无定义 。
图1.17 单位阶跃信号
§1.2.2 奇异信号
n n2
2
1 P x[n] n n 1 n 2 1 n
1
2
在无穷大区间内,离散时间信号总能量E和平均功率P分别定义为
E lim
N n N
N
x ( n)
2
n
x n
2
N 2 1 p lim x n N 2 N 1 n N
期末考试《信号与系统课程要点(吴大正)》
信号与线性系统复习提纲第一章信号与系统1.信号、系统的基本概念2.信号的分类,表示方法(表达式或波形)连续与离散;周期与非周期;实与复信号;能量信号与功率信号3.信号的基本运算:加、乘、反转和平移、尺度变换.图解时应注意仅对变量t作变换,且结果可由值域的非零区间验证。
4.阶跃函数和冲激函数极限形式的定义;关系;冲激的Dirac定义阶跃函数和冲激函数的微积分关系冲激函数的取样性质(注意积分区间);;5.系统的描述方法数学模型的建立:微分或差分方程系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离)由时域框图列方程的步骤。
6.系统的性质线性:齐次性和可加性;分解特性、零状态线性、零输入线性.时不变性:常参量LTI系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI系统)LTI系统零状态响应的微积分特性因果性、稳定性(可结合第7章极点分布判定)第二章连续系统的时域分析1.微分方程的经典解法:齐次解+特解(代入初始条件求系数)自由响应、强迫响应、瞬态响应、稳态响应的概念0—~0+初值(由初始状态求初始条件):目的,方法(冲激函数系数平衡法)全响应=零输入响应+零状态响应;注意应用LTI系统零状态响应的微积分特性特别说明:特解由激励在t>0时或t〉=0+的形式确定2.冲激响应定义,求解(经典法),注意应用LTI系统零状态响应的微积分特性阶跃响应与的关系3.卷积积分定义及物理意义激励、零状态响应、冲激响应之间关系卷积的图示解法(了解)函数与冲激函数的卷积(与乘积不同);卷积的微分与积分复合系统冲激响应的求解(了解)第三章离散系统的时域分析1.离散系统的响应差分方程的迭代法求解差分方程的经典法求解:齐次解+特解(代入初始条件求系数)全响应=零输入响应+ 零状态响应初始状态(是),而初始条件(指的是)2.单位序列响应的定义,的定义,求解(经典法);若方程右侧是激励及其移位序列时,注意应用线性时不变性质求解阶跃响应与的关系3.卷积和定义及物理意义激励、零状态响应、冲激响应之间关系卷积和的作图解与的卷积和;结合前面卷积积分和卷积和,知道零状态响应除经典解法外的另一方法。
信号与系统课后题解第一章
(6) f (2 − t ) (8) f (− 2 − t )ε (− t )
图 1.14
【知识点窍】本题考察信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到信号的时域运算与变换。 解: (1) f (2t ) 信号的波形如图 1.15 所示。 (2) f (t )ε (t ) 信号的波形如图 1.16 所示。
t
ε [sin π t ]
1 … -2 -1 1 2 3 …
t
(b) 图 1.8 (9) 2 −n ε [n ] 函数式的信号的波形如图 1.9(c )所示. 。
ε [n]
1 0 1 … 2 1
2−n
-1
n
-1 (a) 0 1 2
…
n
(b)
2 −n ε [n ]
1 … -1 0 1 2 (c )
7
n
4
cos ω (t − t 0 )
1 … …
t0பைடு நூலகம்
-1 (a)
t
cos [ω (t − t 0 )]ε (t )
1 …
t0
-1
t
(b) 图 1.3
cos ω (t − t 0 )
1 …
t0
-1
t
图 1.4 (5) ε (t 0 − t ) (6) ε (t 0 − 2t )
t 0 > 0 函数式的信号的波形如图 1.5(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.6 所示. 。
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T
信号与系统PPT全套课件
T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
信号与线性系统名校真题解析及典型题精讲精练
1.【北京理工大学】 已知 f(t)的波形如下图所示,试作出 f(-2t-1)的波形。
D.0 D.2f(1)
D.-3
2.【中国矿业大学】 已知 f(-0.5t)的波形如图所示,画出 y(t) =f(t+1)ε(-t)的波形。
— 2—
3.【中国矿业大学】
若 f(t)是已录制声音的磁带,则下列叙述错误的是( )
A.线性时不变系统
B.非线性时不变系统
C.线性时变系统
D.非线性时变系统
(2)某连续系统满足 y(t) =T[ f(t)] =tf(t),其中 f(t)为输入信号,则该系统为( )
A.线性时不变系统
B.非线性时不变系统
C.线性时变系统
D.非线性时变系统
3【北京航空航天大学】
判断下列叙述的正误,正确的打“√”,错误的打“×”。
A.对于有界激励信号产生有界响应的系统是稳定系统
B.系统稳定性是系统自身的性质之一。
C.系统是否稳定与激励信号有关
D.当 t趋于无穷大时,h(t)趋于有限值或 0,则系统可能稳定。
— 4—
第二章 连续时间系统的时域分析
【考情分析】
本章的考题主要涉及连续时间系统的时域分析。 重点考点: 1.LTI系统的零输入响应,零状态响应和全响应 2.单位冲激响应的求解 3.卷积积分的定义、性质及应用
t)e-j6t 3
的频谱
Y(jω)。
4.【江苏大学】
若实信号
f(t)的傅里叶变换为
F(jω) =R(jω)+jX(jω),则信号
y(t) =
1[ 2
f(t)+f(-t)]
的
傅里叶变换为 ( )
— 9—
A.2R(jω)
B.R(jω)
(完整版)信号与系统的重点、难点及疑点
信号与系统的重点、难点及疑点第一章 信号与系统的基本概念1、信号、信息与消息的差别?答:消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等;信号:随时间变化的与消息一一对应的物理量;信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2、在绘制信号波形时应注意哪些方面内容?答:应注意信号的基本特征,标出信号的初值,终值及一些关键值,如极大值和极小值等,同时注意阶跃信号,冲激信号的特点等。
3、什么是奇异信号?答:函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。
4、什么是单位阶跃信号?单位阶跃信号在0t =处的值是多少?答:单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩ 它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。
在郑君里这本书中单位阶跃信号在0t =处没有定义。
5、单位冲激信号的物理意义是什么?答:冲激信号:它是一种奇异函数,它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 6、为什么要对信号进行分解?常用的分解方法有哪些?答:为了便于研究信号的传输和处理问题,往往将信号分解为一些简单的信号之和。
分解角度不同,可以分解为不同的分量。
常用的分解方法有:直流分量与交流分量;偶分量与奇分量;无穷多个时刻具有不同幅度的阶跃函数的和;无穷多个时刻具有不同强度的冲激函数的和;实部分量与虚部分量;正交函数分量。
7、如何判断系统是因果系统还是非因果系统?答:若系统的输出只与该时刻及以后的激励有关,而与该时刻的激励信号无关,则该系统为因果系统。
8、什么样的系统是线性时不变系统?答:同时满足线性(包括叠加性和均匀性)以及时不变特性的系统,称为线性时不变系统。
第1章-信号与系统(陈生潭)
1 2 3 4 5
k
图 1 3 2 离 散 信 号 的 相 加 和 相 乘
. -
1 2 3 4 5
k
第 1 章 信号与系统的基本概念
1.3.2 翻转、平移和展缩
将信号 f(t)( 或 f(k)) 的自变量 t( 或 k) 换成 -t( 或 -k) ,得到另一 个信号f(-t)(或f(-k)), 称这种变换为信号的翻转。它的几何意 义是将自变量轴“倒置”, 取其原信号自变量轴的负方向作 为变换后信号自变量轴的正方向。或者按照习惯, 自变量轴 不“倒置”时,可将f(t)或f(k)的波形绕纵坐标轴翻转180°, 即为f(-t)或f(-k)的波形, 如图1.3-3所示。
能量E=∞),则称此信号为功率有限信号,简称功率信号
离散信号f(k)的能量定义为
E f (k )
k
2
第 1 章 信号与系统的基本概念
1.2 信号的基本特性
信号的基本特性包括时间特性、 频率特性、 能量特性和
信息特性。
在一定条件下,一个复杂信号可以分解成众多不同频率的
正弦分量的线性组合,其中每个分量都具有各自的振幅和相位。
2
4 k
t) 第 1 章f ( 信号与系统的基本概念
f (k )
-2
0
2
t
-3
0
3
k
f (t -2)
f (k -2)
0
2
4
t
-2 0
2
4
6 k
f (t +2)
f (k +2)
-4
-2
0 (a )
t
-6 -4 -2 0 (b )
2
ቤተ መጻሕፍቲ ባይዱ
《信号与系统(第四版)》习题详解 (1)
第1章 信号与系统的基本概念 解 此题练习离散信号的图形表示方法。要求熟悉常用指数 和正弦序列的图形表示、阶跃序列的定义和基本性质以及序列平 移和翻转操作对序列图形的影响。
7
第1章 信号与系统的基本概念
题解图 1.2 8
第1章 信号与系统的基本概念 1.3 试写出题图1.1各信号的解析表达式。
第1章 信号与系统的基本概念 24
第1章 信号与系统的基本概念
题解图 1.5-7 25
第1章 信号与系统的基本概念 26
第1章 信号与系统的基本概念
题解图 1.5-8 27
第1章 信号与系统的基本概念 (9) 两个连续信号相加,任一时刻的和信号值等于两信号在 该时刻的信号值之和。题(9)信号波形如题解图1.5-9所示。
3
第1章 信号与系统的基本概念 解 此题练习连续信号的波形图表示方法。除应熟悉常用连 续指数、正弦和斜升信号波形外,还应特别注意阶跃函数的基本 性质以及信号平移、翻转操作对信号波形的影响。
4
第1章 信号与系统的基本概念
题解图 1.1 5
第1章 信号与系统的基本概念 1.2 绘出下列信号的图形:
题图 1.1 9
第1章 信号与系统的基本概念 10
第1章 信号与系统的基本概念 11
第1章 信号与系统的基本概念 1.4 判定下列信号是否为周期信号。若是周期信号,则确
定信号周期T。
12
第1章 信号与系统的基本概念
解 (1) 若有两个周期分别为T1和T2的连续信号相加,当
T1/T2为有理数时,其和信号亦是周期信号,相应周期为T1和T2的最
题解图 1.5-9 28
第1章 信号与系统的基本概念 (10) 两个连续信号相乘,任一时刻的积信号值等于两信 号在该时刻的信号值之积。题(10)信号波形如题解图1.5-10 所示。
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
信号与系统第三版课后习题答案
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
信号与系统基础知识
《信号与系统》基础知识学习指导第一章 信号与系统的基本概念1.单位冲激信号的脉冲幅度为 ,脉冲强度为 ,持续时间为 。
2.单位抽样序列 (是/不是)奇异函数。
3.离散信号两个序号之间的序列值为 (零/无定义)。
4.虚指数序列的低频位置位于π的 倍附近,高频位置位于π的 倍附近。
5.虚指数序列的谐波个数为 (有限/无限)多个。
6.线性系统的三个性质为 、 和 。
7.系统的输出是由输入引起的,它的输出不能领先于输入,这种性质称为 。
8.若系统输入有界输出也有界,则系统满足 性。
9.系统输入输出关系为)()(t y t x →,若其满足)()(00t t y t t x -→-,则其具有 性。
10.积分t t t t t d )1()835(2426⎰---+++δ的结果为 。
11.普通函数)(t x 与)(0t t -δ的乘积为 。
第二章 连续时间系统的时域分析1.连续时间系统的时域数学模型为 。
2.系统的微分方程的齐次解为系统的 响应,特解为系统的 响应。
3.系统的单位冲激响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。
4.单位冲激响应是单位阶跃响应的 (微分/积分)。
5.因果的LTI 系统的单位冲激响应)(t h 应满足的条件是 。
6.稳定的LTI 系统的单位冲激响应)(t h 应满足的条件是 。
7.系统的单位冲击响应)(t h 与输入)(t x 的卷积)()(t h t x *代表系统的 响应。
8.两个子系统)(1t h 和)(2t h 串联组成的系统的单位冲激响应为 。
9.两个子系统)(1t h 和)(2t h 并联组成的系统的单位冲激响应为 。
10.普通函数)(t x 与)(0t t -δ的卷积为 。
11.恒等系统的单位冲激响应为 。
12.积分系统的单位冲激响应为 。
13.微分系统的单位冲激响应为 。
第三章 离散时间系统的时域分析1.离散时间系统的时域数学模型为 。
2.系统的单位抽样响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。
信号与系统ppt
包权
人书友圈7.三端同步
通信系统的一般模型如图1.1所示。其 中转换器是指把声音转换为电信号或者把 电信号转换为声音的装置,如话筒和喇叭。 信道是指电信号传输的通道,在有线电话 中它是一对导线,在无线电话中它是电磁 波传播的空间和通信卫星等。在电话通信 系统中,声音信号变换为电信号后经发射 机以电磁波的形式通过信道传输给接收端, 接收端的转换器再把传过来的电信号转换 为声音信号。
本书只讨论确定性信号。
2.连续时间信号与离散时间信号
若t是定义在时间轴上的连续自变量, 那么,我们称x(t)为连续时间信号,又称模 拟信号。图1.2所示是连续时间信号。
图1.2连续时间信号
如果一个信号只在某些时间点上才有 意义,则这种信号称为离散时间信号。离 散时间信号一般用序列x[n]来表示,其 中n取整数。图1.3所示为离散时间信号。
函数曲线与时间轴所围的面积,常称其为
冲激函数的强度。单位冲激函数的强度为1, 而冲激函数kδ(t)的强度为k。延迟t0时刻的 单位冲激函数为δ(t-t0)。冲激函数用箭头表 示,强度值标记在箭头旁边,如图1.11所示。
图1.11 冲激函数
② 脉冲函数取极限定义法 宽度为τ,高度为1τ的矩形脉冲逼近冲 激信号的过程如图1.12所示 。
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
信号与系统基础知识完整版
信号与系统基础知识 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 信号与系统的基本概念引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。
我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。
我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。
更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。
我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。
例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。
系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。
很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。
隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。
信号用函数表示,可以是数学表达式,或是波形,或是数据列表。
在本课程中,信号和函数的表述经常不加区分。
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。
系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。
这些区别导致分析方法的重要差别。
本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。
例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。
信号系统第一章信号与系统PPT课件
系统具有输入、输出、 转换、反馈等基本特 性。
系统的分类
01
根据系统的特性,可以 将系统分为线性系统和 非线性系统。
02
03
04
根据系统的动态特性, 可以将系统分为时不变 系统和时变系统。
根据系统的参数是否随时 间变化,可以将系统分为 连续系统和离散系统。
根据系统的功能和用途,可 以将系统分为控制系统、信 号处理系统、电路系统等。
控制系统中的信号处理
01
02
03
信号采集与转换
将物理量转换为电信号, 以便进行后续处理和控制。
信号处理算法
如PID控制、模糊控制等, 对采集到的信号进行计算 和分析,以实现系统的自 动控制。
信号反馈与调节
将系统的输出信号反馈给 控制器,通过调节输入信 号来控制系统的运行状态。
图像处理中的信号处理
变化规律是确定的,例如正弦波;随机 续变化的信号,例如声音的波形;数字
信号则是指信号的变化规律是不确定的, 信号则是指幅度离散变化的信号,例如
例如噪声。
计算机中的进制数。
02
系统的定义与分类
系统的基本概念
系统是由相互关联、 相互作用的若干组成 部分构成的有机整体。
系统可以用于描述自 然界、工程领域、社 会现象等各种领域中 的事物。
冲激响应与阶跃响应
冲激响应
系统对单位冲激信号的响应,反 映了系统对单位冲激信号的传递 特性。
阶跃响应
系统对单位阶跃信号的响应,反 映了系统对单位阶跃信号的传递 特性。
卷积积分与卷积和
卷积积分
描述信号与系统的相互作用,通过将 输入信号与系统的冲激响应进行卷积 积分来计算输出信号。
卷积和
将卷积积分简化为离散时间系统的卷 积和运算,用于计算离散时间系统的 输出序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 系统的数学模型
分析一个实际系统,首先要对实际系 统建立数学模型,在数学模型的基础上, 再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统, 对结果作出物理解释,并赋予物理意义。
所谓系统的模型是指系统物理特性的 抽象,以数学表达式或具有理想特性的符 号图形来表征系统特性。
随机信号(random signal)则与之不 同,它不是一个确定的时间函数,通常只 知道它取某一数值的概率,如噪音信号等。
实际传输的信号几乎都具有不可预知 的不确定性,因而都是随机信号。
如,通信系统中传输的信号带有不确 定性,接收者在收到所传送的消息之前, 对信息源所发出的消息是不知道的,否则, 接收者就不可能由它得知任何新的消息, 也就失去通信的意义。
另一方面,任意信号在一定条件下总 可以分解为许多不同频率的正弦分量,即 具有一定的频率成份,因而表现为一定波 形的频率特性,如含有大小不同频率分量、 主要频率分量占有不同的范围等。
信号的形式所以不同,就因为它们各 自有不同的时间特性和频率特性,而信号 的时间特性和频率特性有着对应的关系, 不同的时间特性将导致不同的频率特性的 出现。
输入和输出均为连续时间信号的系统 称为连续时间系统。
输入和输出均为离散时间信号的系统 称为离散时间系统。
模拟通信系统是连续时间系统,而数 字计算机就是离散时间系统。 连续时间系统的数学模型是微分方程, 而离散时间系统则用差分方程来描述。
2. 线性系统和非线性系统
线性系统是指具有线性特性的系统。 所谓线性特性(linearity)系指齐次性 与叠加性。
1.1.2 信号的分类
对于各种信号,可以从不同的角度进 行分类。
1.确定信号和随机信号
按时间函数的确定性划分,信号可分 为确定信号和随机信号两类。
确定信号(determinate signal)是指 一个可以表示为确定的时间函数的信号。
对于指定的某一时刻,信号有确定的 值。 如我们熟知的正弦信号、周期脉冲信 号等。
信号可看作是随时间变化的电压或电 流,信号 f(t) 在1欧姆的电阻上的瞬时功率 为 | f ( t ) | 2 ,在时间区间 所消耗的总能 量定义为:
E lim
T T
T
f (t ) dt
2
(1.1-1)
其平均功率定义为:
1 P lim T 2T
T
T
f (t ) dt (1.1-2)
当 f(t) 含有不连续点时,由于引入了 冲激函数的概念,f(t)在这些不连续点上仍 有导数,出现冲激,其强度为原函数在该 处的跳变量。
信号f (t)的积分是指或记作f (-1)(t),从 波形看,它在任意时刻t的值为从- 到t区 间,f (t)与时间轴所包围的面积。
1.2.3 信号的时移和折叠
信号f(t)可以是一个既非功率信号,又 非能量信号,如单位斜坡信号就是一个例 子。 但一个信号不可能同时既是功率信号, 又是能量信号。
一般说来周期信号都是功率信号,非 周期信号或者是能量信号,或者是功率信 号,或者既非能量信号又非功率信号。
属于能量信号的非周期信号称为脉冲 信号,它在有限时间范围内有一定的数值。
若系统输入增加k倍,输出也增加k倍, 这就是齐次性(homogeneity)。
若有几个输入同时作用于系统,而系 统总的输出等于每一个输入单独作用所引 起的输出之和,这就是叠加性 (superposition Property)。
系统同时具有齐次性和叠加性便呈现 线性特性 。 一个系统的输出不仅与输入有关,还 与系统的初始状态有关。
1.3 系统的数学模型及其分类
1.3.1 系统的概念
什么是系统(system)?广义地说, 系统是由若干相互作用和相互依赖的事物 组合而成的具有特定功能的整体。
例如,通信系统、自动控制系统、计 算机网络系统、电力系统、水利灌溉系统 等。 通常将施加于系统的作用称为系统的 输入激励;而将要求系统完成的功能称为 系统的输出响应。
另外,信号在传输过程中难免受各种 干扰和噪声的影响,将使信号产生失真。
所以,一般的通信信号都是随机信号。 但是,在一定条件下,随机信号也表 现出某些确定性,通常把在较长时间内比 较确定的随机信号,近似地看成确定信号, 以使分析简化。
2.连续信号和离散信号
按照函数时间取值的连续性划分,确 定信号可分为连续时间信号和离散时间信 号,简称连续信号和离散信号。
1.1.3 典型连续信号
下面给出一些典型连续信号的表达式 和波形,我们今后会经常遇到它们。 典型离散信号的表达式及波形将在第 五章中讨论。
1.单位阶跃信号(unit step signal)
单位阶跃信号的定义为:
0 (t ) 1 t0 t0
(1.1-3)
其波形在跃变点t = 0处,函数值未定。
满足此关系式的最小T 值称为信号的 周期。 只要给出此信号在任一周期内的变化 过程,便可确知它在任一时刻的数值。
非周期信号(aperiodic signal)在时 间上不具有周而复始的特性。
非周期信号也可以看作为一个周期T趋 于无穷大时的周期信号。
4. 能量信号与功率信号
信号按时间函数的可积性划分,可以 分为能量信号,功率信号和非功非能信号。
2
上两式中,被积函数都是f ( t )的绝对 值平方,所以信号能量E 和信号功率P 都 是非负实数。
若信号f (t)的能量0 < E < , 此时P = 0 ,则称此信号为能量有限信号,简称能 量信号(energy signal)。
若信号f (t)的功率0 < P < , 此时E = ,则称此信号为功率有限信号,简称 功率信号(power signal)。
它除在原点以外,处处为零,并且具 有单位面积值。
直观地看,这一函数可以设想为一列 窄脉冲的极限。 如一个矩形脉冲。即
0 (t )
t0 t0
和
(t )dt 1
3. 复指数信号(complex exponential signal)
f (t ) e
st
s j
信号与系统
第1章 信号与系统的基本概念
1.1
信号的描述及分类
信号的运算 系统的数学模型及其分类 系统的模拟
线性时不变系统分析方法概述
1.2
1.3
1.4
1.5
1.1 信号的描述及其分类
1.1.1 信号及其描述
什么是信号(signal)?广义地说,信 号是随时间变化的某种物理量。
在通信技术中,一般将语言、文字、 图像或数据等统称为消息(message)。 在消息中包含有一定数量的信息 (information)。
4.因果系统和非因果系统
由于信号是随时间而变化的,在数学 上可以用时间 t 的函数 f ( t ) 来表示,因此, “信号”与“函数”两个名词常常通用。
信号的特性可以从两个方面来描述, 即时间特性和频率特性。
信号可写成数学表达式,即是时间 t 的函数,它具有一定的波形,因而表现出 一定波形的时间特性,如出现时间的先后、 持续时间的长短、重复周期的大小及随时 间变化的快慢等。
连续信号(continuous signal)是指在 所讨论的时间内,对任意时刻值除若干个 不连续点外都有定义的信号,通常用f ( t ) 表示。
离散信号(discrete signal)是指只在 某些不连续规定的时刻有定义,而在其它 时刻没有定义的信号。通常用f(tk)或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。
公式化地表示为: 若 x(t) y(t) 则 x ( t – td) y ( t – td)
(1.3-7)
系统的线性和时不变性是两个不同的 概念,线性系统可以是时不变的,也可以 是时变的,非线性系统也是如此。
本课程只讨论线性时不变( LTI )系 统,简称线性系统。
线性时不变连续(离散)系统的数学 模型为常系数微分(差分)方程。
系统模型的建立是有一定条件的,对 于同一物理系统,在不同条件下可以得到 不同形式的数学模型。
另一方面,对于不同的物理系统,经 过抽象和近似,有可能得到形式上完全相 同的数学模型。
1.3.3 系统的分类
系统的分类比较复杂,我们主要考虑 其数学模型的差异来划分不同的类型。
1.连续时间系统和离散时间系统
为复数,称复频率。
由于复指数信号能概括多种情况,所 以可利用它来描述多种基本信号,如直流 信号、指数信号、等幅、增幅或减幅正弦 或余弦信号,因此,它是信号与系统分析 中经常遇到的重要信号。
上面我们介绍了几种最基本的信号, 接着来介绍有关信号的各种运算。
1.2 信号的运算
1.2.1 信号的相加与相乘
3.时不变系统和时变系统
只要初始状态不变,系统的输出仅取 决于输入而与输入的起始作用时刻无关, 这种特性称为时不变性。
具有时不变特性的系统为时不变系统 (time invariant system)。 不具有时不变特性的系统为时变系统 (time varying system)。
对时不变系统,如果激励是 x(t),系 统产生的响应是y ( t ),当激励延迟一段时 间td为x ( t –td),则系统的响应也同样延迟 td时间为y ( t –td),其波形形状不变。
设具有初始状态的系统加入激励时的 总响应为y ( t );仅有激励而初始状态为零 的响应为y z s ( t ),称为零状态响应;仅有 初始状态而激励为零时的响应为y z i ( t ), 称为零输入响应。
若将系统的初始状态看成系统的另一 种输入激励,则对于线性系统,根据系统 的线性特性,其输出总响应必然是每个输 入单独作用时相应输出的叠加。