第一单元分数乘法概念总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法概念总结
1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:的意义是:表示求5个的和是多少。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
例如:的意义是:表示求5的是多少。
的意义是:表示求的是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
1的倒数是1。0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
例如:
9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
例如:
10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
例如:
11.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
例如:a×12 = b×13 = c×54 (a、b、c都不为0)
因为13 <12 <54 ,所以b > a > c。
12.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?用乘法算
(2)找单位“1”的方法:从含有分数(分率)的句子中找,“的”前“比”后的规则。
(3)当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(4)乘法应用题中,单位“1”是已知的。
(5)单位“1”不同的两个分率不能相加减。
(6)分率与量要对应。
①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;
④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;
⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;
⑨部分的比较量对部分的分率;⑩总量的比较量对总量的分率;
第二单元分数除法概念总结
1.分数除法的意义:(一般意义)分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:表示:已知两个数的积是与其中一个因数是,求另一个因数是多少。
(具体意义)(1、)把吨化肥平均风给4个村,每个村分到化肥多少吨?算式表示把平均分成4份,每份是多少。(2、)一共有千克水果糖,每袋装千克,一共装多少袋?算式表示
里面有多少个。
(3、)根据测定,儿童体内的水分约占体重的。小明体内有28千克的水分,小明的体重是多少千克?乘法等量关系:体重 =体内水分重量
解答算式:表示:已知一个数的是多少,求这个数。
2.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。3.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。4.比的具体意义(1、)两个数是同类量,例如:长方形长15米,宽8米,长和宽的比是15:8 表示长是宽的多少倍。此时比值没有单位。
(2、)两个数不是同类量,例如:一列火车3小时行驶336千米,火车行驶路程和时间的比是336:3。表示火车速度---每小时行驶多少千米。
5.比值通常用分数、小数和整数表示。
6.比的后项不能为0。
7.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;8.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
9.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
10.根据比的基本性质,可以把一个不是最简单的整数比化成最简单的整数比,这叫做化简比。
11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
12.一个数(0除外)除以一个真分数,所得的商大于它本身。
13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
14.一个数(0除外)除以一个带分数,所得的商小于它本身。
解分数应用题注意事项:
1.找单位“1”的方法:从含有分数(分率)的句子中找,“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.找到单位“1”后,对照已知数量和所求问题,确定算法。已知单位“1”用乘法,未知单位“1”,求单位“1”,用除法。单位“1”×分率=分率对应量;分率对应量÷对应分率=单位“1”
第三单元分数四则混合运算和应用题概念总结
1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。有括号的先算括号里面的。2.在分数四则混合运算中,可以应用运算定律使计算简便。
运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。
3.解分数应用题注意事项:与第二单元相同。
第四单元圆概念总结
1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.
3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r = d
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是它的直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,一般取它的近似数(3.14)。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C= d 或C=2 r
12、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长×宽,所以圆的面积= r×r。14.圆的面积公式:S=r2或者S= (d 2)2或者S= (C 2)2 15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。