64基和维数(二)

合集下载

线性空间的基与维数

线性空间的基与维数

2,
a
3,
a
T
4)
线性空间 V的任一元素在不同的基下所对的
坐标一般不同,一个元素在一个基下对应的坐标是
唯一的.
例2 所有二阶实矩阵组成的集合V,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性
空间.对于V中的矩阵
E
11
1 0
0 0
,
E
12
0 0
1 , 0
0 0
0 0
E
21
1
0
,
E
22
( x1, x2 , , xn )T
结论
1.数域 P上任意两个n 维线性空间都同
构2..同构的线性空间之间具有反身性、对称性
与传递性.
3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
( 2)
V中任一元素总可由1,2 ,
,
线
n

表示,
那末, 1,2 , ,n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为n 维线性空间,记作Vn . 当一个线性空间 V 中存在任意多个线性无关
的向量时,就称 V 是无限维的.
若1 ,2 , ,n为Vn的一个基,则Vn可表示为
一、线性空间的基与维数
已知:在 Rn中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?

基与维数的几种求法

基与维数的几种求法

线性空间基和维数的求法方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足:(1)n ααα,2,1 线性无关。

(2)V 中任一向量α总可以由n ααα,,21, 线性表示。

那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。

如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。

例1 设{}0V X AX ==,A 为数域P 上m n ⨯矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。

解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。

例2 数域P 上全体形如0a a b ⎛⎫⎪-⎝⎭的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。

解 易证0100,1001⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭为线性空间0,a V a b p a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭|的一组线性无关的向量组,且对V 中任一元素0a a b ⎛⎫ ⎪-⎝⎭有00100+1001a a b a b ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 按定义0100,1001⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭为V 的一组基,V 的维数为2。

方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。

例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----构成[]n R x 的基。

证明 考察()()1121110n n k k x k x -⋅+-++-=由1n x-的系数为0得0n k =,并代入上式可得2n x -的系数10n k -=依此类推便有110n n k k k -====,故()()11,1,,1n x x ---线性无关又[]nR x 的维数为n ,于是()()11,1,,1n x x ---为[]nR x 的基。

02 第二节 维数、基与坐标

02 第二节 维数、基与坐标
. 显然,是的倍数. 向量组与向量组等价,并且线性无关,进而是的 一组基,所以.
例6 (E04) 证明维线性空间 与维数组向量空间同构.
证 (1) 中的元素与中的元素形成一一对应关系;
(2) 则有
结论 1. 数域上任意两个维线性空间都同构. 2. 同构的线性空间之间具有反身性、对称性与传递性. 3. 同维数的线性空间必同构.
例4(E02) 所有二阶实矩阵组成的集合对于矩阵的加法和数量乘法, 构成实数域R上的一个线性空间. 试证
,,, 是中的一组基, 并求其中矩阵A在该基下的坐标.
证 先证其线性无关, 由有
即线性无关. 又对于任意二阶实矩阵 有 因此为的一组基. 而矩阵在这组基下的坐标是
例5 (E03) 求子空间的维数,其中 解 易知是由下列向量的全体线性组合所构成的集合:
第二节 基、维数与坐标
分布图示
★ 引言
★ 线性空间的基与维数
★ 生成子空间
★ 例1
★ 坐标
★ 例2
★ 例3 ★ 例4
★ 线性空间的同构
★ 例6
★ 内容小结
★ 课堂练习
★ 习题6-2
★ 例5 ★ 例7
内容要点
一、线性空间的基与维数 我们已知在中,线性无关的向量组最多由个向量组成,而任意个向
量都是线行相关的。现在我们要问:在线性空间中,最多能有多少个线 性无关的向量?
元素有序数组 定义2 设是线性空间的一个基,对于任一元素, 有且仅有一组有序数 使,则称有序数组为元素在基下的坐标, 并记作.
二、线性空间的同构 设是维线性空间的一组基,在这组基下,中的每个向量都有唯一确
定的坐标,而向量的坐标可以看作中的元素,因此向量与它的坐标之间 的对应就是到的一个映射。对于中不同的向量它们的坐标也不同,即对 应于中的不同元素。反过来,由于中的每个元素都有中的向量与之对 应,我们称这样的映射是与的一个一一对应的映射。这个映射的一个重 要特征表现在它保持线性运算(加法和数乘)的关系不变。

基与维数的几种求法

基与维数的几种求法

基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。

(2)v中任一向量α总可以由α1,α2,,αn线性则表示。

那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。

如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。

基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。

解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。

基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。

⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。

⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。

基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。

证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。

方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。

例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。

高等代数课程教学大纲

高等代数课程教学大纲

《高等代数》课程教学大纲一.课程教学目的与任务本课程是我院数学系数学教育专业的一门重要基础课程。

其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间、二次型等方面的系统知识。

它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识;另一方面还对提高学生的抽象思维、辑推理及运算能力,开发学生智能,加强“三基”(基础知识、基本理论、基本理论)和培养学生创造性能力等起到重要作用。

二.与各课程的联系本课程是数学专业的后继课程:如近世代数、数论、离散数学、计算方法、微分方程、泛函分析等的先导课程和基础课程。

三.教学时数及分配总学时198,其中课堂讲授 151学时,习题课(包括复习课)47学时。

各学期教学时数安排情况:第二学期:108学时,自第一章至第五章,周学时6第三学期:90学时,自第五章至第九章,周学时5四.讲授内容与要求:第一章基本概念(12学时)一.教学目的和要求:1. 正确理解集合的概念,明确集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系。

2.掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件。

3.理解和掌握数学归纳法原理,能熟练运用数学归纳法。

4.理解和掌握整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。

5.掌握数环,数域的概念,能够判别一些数集是否为数环、数域,懂得任意数域都包含有理数域。

二.教学内容:1.1 集合(2学时)1.2 映射(3学时)1.3 数学归纳法(2学时)1.4 整数的一些整除性质(3学时)1.5 数环,数域(2学时)第二章多项式(37学时)一.教学目的和要求:1.掌握数域上一元多项式的概念、运算以及多项式的和与积的次数。

2.正确理解多项式的整除概念和性质。

理解和掌握带余除法。

3.掌握最大公因式的概念、性质、求法以及多项式互素的概念和性质4.理解不可约多项式的概念,掌握多项式唯一因式分解定理。

基和维数的关系

基和维数的关系

基和维数的关系
基和维数是线性代数中的两个重要概念,它们之间有着密切的关系。

在矩阵论中,基的数量决定了矩阵的列空间的维数,也就是列向量的线性独立的数量。

因此,如果一个矩阵的列向量数量为 n,但其列向量中有重复的向量,那么矩阵的列空间的维数就会小于 n。

这时,我们需要找到一组线性无关的向量作为基,从而得到列空间的基和维数。

另一方面,矩阵的行空间的维数也和其基的数量有关系。

矩阵的行空间是由其行向量张成的向量空间,而行向量的数量和它们的线性独立的数量相同。

因此,矩阵的行空间的维数取决于它的行向量的线性独立的数量,也就是它的基的数量。

除了列空间和行空间,矩阵还有一个重要的概念——零空间。

零空间是由矩阵的所有零空间向量张成的向量空间。

零空间向量是指矩阵乘以该向量得到的结果为零向量的向量。

矩阵的零空间的维数也和其基的数量有关系。

根据线性代数的基本定理,矩阵的列空间和零空间的维数之和等于矩阵的列数。

因此,如果知道了矩阵的列空间的维数,就可以求得它的零空间的维数。

总之,基和维数在线性代数中起着至关重要的作用。

它们的关系非常紧密,互相影响。

通过矩阵的基和维数,我们可以更好地理解矩阵的性质和特征。

61.4基和维数

61.4基和维数

16
数学与计算机科学学院高等代数课件
4、有限生成的非零向量空间一定有基,其基就 是生成元组的一个极大无关组。
即若V
L(1,
2
,...,
m
),则1
,
2
,...Βιβλιοθήκη ,的一个m
极大无关组i1 ,i2 ,...,ir 就是V的一个基。
例8、 在R4中, 设1 2,1,11,2, 2 1,0,4,1,
3 1,4,16,15, 4 2,1,5,6, 5 1,6,22,23,
启示:对有限生成的子空间,生成元可以精简。 问题:怎样的一组生成元所含的向量个数最少?
5、定理6.4.1 设 1,2,...,n 是向量空间V 的
一组不全为零的向量,而 i1 ,i2 ,...,ir 是它的一
个极大无关组。那么
L1,2,...,n L i1 ,i2 ,...,ir
10
数学与计算机科学学院高等代数课件
2
数学与计算机科学学院高等代数课件
6.4.1 生成子空间
1、设V是数域F上向量空间,1, 2 ,, r
是V 中r个向量,则
W {a11 a22 ... arr ai F,i 1,2,...,r}
构成V的一个子空间。
3
数学与计算机科学学院高等代数课件
2、{a11 a22 ... arr ai F,i 1,2,...,r}
数学与计算机科学学院高等代数课件
6.4 基和维数
一、内容分布 6.4.1 生成子空间 6.4.2 向量空间的基 6.4.3 向量空间的维数 6.4.4 子空间的和、直和、余子空间
1
数学与计算机科学学院高等代数课件
二、教学目的 1.掌握有限维向量空间基与维数的概念 及其求法. 2.理解基在向量空间理论中所起的作用. 3.了解子空间的和、直和、余子空间. 三、重点、难点 基和维数的概念及求法、维数定理. 四、难点 子空间的直和、余子空间.

向量空间的基与维数

向量空间的基与维数
设矩阵
例6
向 量
解析几何
线性代数
既有大小又有方向的量
有次序的实数组成的数组
几何形象: 可随意 平行移动的有向线段
代数形象: 向量的 坐 标 表 示 式
坐标系
四、向量与向量空间
空 间
解析几何
线性代数
点空间:点的集合
向量空间:向量的集合
坐标系
代数形象: 向量空 间 中 的 平 面
说明
2. 维向量的集合是一个向量空间,记作 .
1.集合 对于加法及乘数两种运算封闭指
一、向量空间的概念
定义1 设 为 维向量的集合,如果集合 非空, 且集合 对于加法及乘数两种运算封闭,那么就称 集合 为向量空间.
.
,
3
3
是一个向量空间
维向量的全体
R
例1
例2 判别下列集合是否为向量空间.
几何形象: 空间 直线、曲线、空间 平面或曲面
一 一 对 应
叫做 维向量空间.
时, 维向量没有直观的几何形象.
叫做 维向量空间 中的 维超平面.
确定飞机的状态,需 要以下6个参数:
飞机重心在空间的位置参数P(x,y,z)
机身的水平转角
机身的仰角
机翼的转角
所以,确定飞机的状态,需用6维向量
m
m
m
m
m
m
l
l
l
l
l
l
L
L
L
L
L
L
例5
定义2 设有向量空间 及 ,若向量空间 , 就说 是 的子空间.
实例
设 是由 维向量所组成的向量空间,
二、子空间
那末,向量组 就称为向量 的一个

线性代数基和维数

线性代数基和维数

对于矩阵A,A的列之间的线性关系可以表 成Ax=0,其中x为相应的组合系数构成的列 向量.(如果A的某列在某个关系式中不出现, 则相应的系数为零.)
A经初等行变换化为B后,B的列一般与A的 列完全不同,但Ax=0和Bx=0两个方程组同 解,这意味着,A的列与B的相应列之间有 完全相同的线性关系. 因而有以下结果:
一向量 必可表为 1,2,..., p 的线性组合.
如果 能用两种方式表成1,2,..., p 的线性 组合,即
k11 k22 ... k p p , l11 l22 ... lp p.
两式相减,有
0 (k1 l1)1 (k2 l2 )2 ... (k p lp ) p.
(2) 如果 H 0, 则必有S的某个子集是H的基.
证明:(1)不妨设 p 是1, , p1 的线性组合:
p c11 c p1 p1.
H中的任意向量 可以表为
k11 k p1 p1 k p p ,
代入上式,容易验证 是1, , p1的线性组合.
可以看出,线性相关的生成集包含了冗余信息,
即如果 S 1,2, ,p是子空间H的线性相关生成
集,则至少有一个向量可以写成其余p-1个向量的 线性组合,从而可以从S中去除,得到一个较小的 生成集.
另一方面,如果B 1, 2, , r是H的线性无关生成
集,则B中任一向量都不能由其余r-1个向量线性表 出,因此从B中去除一个向量后得到的B的子集一 定不是H的生成集(去除的向量不能由剩余向量线 性表出).
解: 设 在基 1, 2 , 3下的坐标为 x1, x2, x3 T,则
x1
1
2

基与维数的基本概念与应用

基与维数的基本概念与应用

基与维数的基本概念与应用线性代数是现代数学中非常重要的一部分,而作为线性代数的基本概念之一,基与维数在很多领域中都有着重要的应用和作用。

在本文中,我们将着眼于基与维数的基本概念和应用,希望能够给读者带来全面且深入的了解。

基的概念基是线性空间的一个基本概念。

在线性代数中,所谓线性空间就是一个向量空间的特殊情形,向量空间由向量组成,这些向量可以用数字来表示。

而基就是指这些向量的数量最少的子集,这个子集中的向量可以表示出这个向量空间中的其他所有向量。

具体来说,基的定义是:如果一个向量空间V中的向量集S有以下两个性质:1. 向量集S中的向量是线性无关的;2. 向量集S中的任意向量都可以用向量集S中的有限个向量线性组合表示(即,对于任意一个向量v∈V,都存在一组系数a1,a2,……,an使得v=a1s1+a2s2+……+ansn,其中si∈S,ai∈K,K是所在域)那么,S就是V的一个基。

基的一些性质包括:1. 基是线性无关的。

2. 基中的任意向量都不可由其他向量线性组合得到。

3. 维数相同的向量空间会有同样数量的基。

4. 所有向量空间都有基,包括零向量空间。

维数的概念维数是向量空间的另一个重要概念。

在数学中,向量空间的维数是指基中向量的数量的大小。

具体来说,如果一个向量空间V有一个n个线性无关向量的基,那么V就称为一个n维向量空间。

维数可以理解为空间中向量的独立自由度,向量空间的维数可以用来区分不同的向量空间,也用来确定矩阵的秩等重要性质。

基的应用基作为线性代数中的基本概念,应用十分广泛。

以下列举了一些基的应用:1. 矩阵乘法:矩阵乘法的前提是两个矩阵的行列数满足要求。

具体来说,矩阵A的列数必须等于矩阵B的行数。

而每一个矩阵可以看做是向量空间中向量的组合,因而矩阵的乘法实际上就是向量之间的线性组合,而基恰好是向量的组合表示。

2. 解方程组:在线性代数中,矩阵可以看做是线性方程组的系数,而矩阵的秩和向量空间的维数有密切关系。

求基和维数的典型题目

求基和维数的典型题目

以下是求基和维数的典型题目:1.设V是数域F上的线性空间,α1, α2, ..., αs是V中的一组向量,β是V中的一个向量。

证明:如果α1, α2, ..., αs线性无关,且α1, α2, ...,αs, β线性相关,那么β可以由α1, α2, ..., αs线性表示。

2.设A是n阶方阵,证明:R(A) + N(A) = n,其中R(A)表示A的秩,N(A)表示A的零空间的维数。

3.设V是数域F上的n维线性空间,α1, α2, ..., αn是V的一组基,A是V上的一个线性变换。

证明:如果A在基α1, α2, ..., αn下的矩阵是A,那么A的值域R(A)的维数等于A的秩r(A)。

4.设V是数域F上的n维线性空间,α1, α2, ..., αs是V中的一组线性无关的向量。

证明:存在V中的一组基β1, β2, ..., βn,使得α1, α2, ...,αs可以由β1, β2, ..., βs线性表示。

5.设V是数域F上的n维线性空间,证明:V中任意n个线性无关的向量都可以作为V的一组基。

6.设V和W是数域F上的两个有限维线性空间,T是从V到W的一个线性映射。

证明:如果T是单射,那么dim V ≤ dim W。

7.设V是数域F上的n维线性空间,W是V的一个子空间,α1, α2, ..., αm是W中的一组基。

证明:存在V中的一组基β1, β2, ..., βn,使得β1, β2, ..., βm是W中的一组基。

8.设V是数域F上的n维线性空间,证明:V中的任意一个向量都可以表示为V的一组基的线性组合,且这种表示方式是唯一的。

9.设V和W是数域F上的两个有限维线性空间,T是从V到W的一个线性映射。

证明:R(T) + N(T) = dim V,其中R(T)表示T的值域的维数,N(T)表示T的核的维数。

10.设A是一个n阶矩阵,证明:矩阵A的秩r(A)加上矩阵A的零空间的维数n - r(A)等于n。

线性代数6-2维数基坐标

线性代数6-2维数基坐标

坐标.
例1 在线性空间P[x]3中, p1 1, p2 x, p3 x2, p4 x3 就是它的一个基.
任一不超过3次的多项式
p a0 a1x a2x2 a3x3
可表示为 p a0 p1 a1 p2 a2 p3 a3 p4
因此 p 在这个基下的坐标为 (a0, a1, a2, a3)

y2
yn

并且两组基间有线性关系式
1, 2,, n 1,2 ,,n A
则有如下的关系式
x1
y1
x2

xn


A
y2
yn
,
y1
x1


若取另一组基为 q1 1, q2 1 x, q3 2x2 , q4 x3,
p

( a0
a1)q1

a1q2

a2 2
q3

a3q4
因此 p 在这个基下的坐标为
说明:
(a0

a1, a1,
a2 2
, a3 )
(2)一个向量在一组基下的 坐标是唯一的.
(3)同一个向量在不同基下 的坐标一般是不同的 .
则称此公式为基变换公式.
2.利用分块矩阵的方法可将上述公式写成
其中
1, 2 ,, n 1,2 ,,n A
a11 a12 a1n
A

a21
a23

a2n


an1
an2

ann

则称上述矩阵A为由基1,2,,n到基1, 2,, n的
设 a11 a22 ann , b11 b2 2 bn n

二向量空间的基与维数

二向量空间的基与维数

设 b1 = x11α1+x21α2+x31α3
b2 = x12α1+x22α2+x32α3 即
( b1,b2 )= (α1,α2,α3 )
x11
x21
x31
x12
x22
,
x32
记作 B = AX。
对矩阵(A|B)施行初等行变换,若 A 能变为 E,则
α1,α2,α3为R3的一个基,且当 A变成 E 时,B 变为X = A-1B.
1 c111 c212
2
c121
c22 2
n c1n1 c2n2
cn1n cn2n
cnnn
即(β1 , β2 ,… , βn ) = (α1 , α2 , … , αn )C. 称矩阵 C 为由基α1 , α2 , … , αn到基 β1 , β2 ,… , βn的过渡矩阵。其中Fra bibliotekx1
y2
C 1
x2
.
yn
xn
例7 已知R3的两组基分别为
a 0 0
A
: 1
1
,2
b
,3
0
,
1
1
c
1 y 1
B
:
1
1
,
2
1
,
3
z
,
x 1 1
且由基 α1,α2,α3到基 β1, β2, β3 的过渡矩阵为
1 1 1
C
0
0
1 2
2 0
,
求a、b、c、及x、y、z。
解 由基变换公式
1 y 1 a 0 0 1 1 1
1
1
z
1
b

向量空间的基和维数

向量空间的基和维数
为什么唯一
8
例如:在 R3 中,
= (2, -3, 1)T
= 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
9
例 求向量 (x1, x2在,如下x基n下) 的坐标 1 (1, 0,K 0),2 (1,1,K 0),K n (1,1,K 1)
10
5
注1:若将向量空间V看成无穷个向量组成的向量组,其基就是其极大
线性无关组,其维数就是其秩。
注2:零空间 { } 没有基,规定其维数为0。
6
例如:对于Rn
(1) 基本单位向量组
是一1 ,组 2基,K,称, 为n 标准基。
(2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …,n = (1, 1,…, 1) 也是 基。
x1 y1 (x2 y2 ) x3 y3 0, V1
k (kx1, kx2 , kx3 )T , kx1 kx2 kx3 k(x1 x2 x3 ) 0, k V1
4
二、向量空间的基与维数
定义
设V为向量空间,若存在1, 2, …, r V.
且满足: (1) 1, 2, …, r 线性无关; (2) V 中任一向量都可以由1, 2, …, r 线性表示; 则称1, 2, …, r 为V的一组基底,简称基, r 为V的维数,并称 V 为 r 维向量空间。
向量空间、基和维数
1
Hale Waihona Puke 一、向量空间概念定义 设V是非空的n维向量的集合,如果
(1)V对加法运算具有封闭性,

,有
(2) V对数乘运算具有封闭性,

, V
V
R, V ,有 V

高等代数教案

高等代数教案

《高等代数》课程教学总体安排一、课程名称:高等代数二、课程性质与类型:专业必修课,理论课三、课程总学时及学分:150学时,学分四、教学目的与要求:教学目的:高等代数是数学与应用数学专业必修基础课,也是一门重要主干课程,是中学代数的提高,也是近代数学的基础。

通过本课程的教学,使学生掌握高等代数的基本知识,基本方法,基本思路,适当地了解代数的一些历史,一些背景,以加深对中学数学的理解,获得独立分析和解决有关的理论和实际问题的能力,并为进一步学习其他后继课程:近世代数、微分方程、泛函分析等,以及将来从事教学,科研及其他实际工作打下基础。

教学基本要求:基本掌握全书的基本概念;能独立处理书后的绝大部分习题;通过本书抽象理论的学习,提高自学能力,数学思维,专业素质,以便阅读较深的文献。

五、教材及参考书目教材:张禾瑞,郝炳新著,高等代数,高等教育出版社,2007年6月第四版,ISBN:7-04-021465-9,主要参考书:[1] 北京大学数学系,高等代数,高等教育出版社,2003年7月第三版ISBN:7-04-011915-3[2] 李师正等编,高等代数解题方法与技巧,高等教育出版社,2004 年2月版ISBN:7-04-012942-6[3] 徐仲,陆全,张凯院,高等代数考研教案,西北工业大学出版社,2006年6月出版,ISBN:7-5612-2088-X六、考核方式及成绩计算方法期末进行闭卷考试,综合平时学习态度、课堂表现、平时作业确定学生学习成绩。

具体计算方法为:学科成绩=期末考试成绩×90%+平时成绩×10%七、课程教学日历第一章基本概念教学安排说明章节题目:§1.5数环数域学时分配:2学时。

教学时数为2学时本章教学目的与要求:掌握数环和数域概念,判别方法,理解有理数域的最小性。

其它:本章以自学为主,只讲授第五节课堂教学方案§1.5数环数域课程名称:§1.5数环数域授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:掌握数环和数域概念,判别方法,理解有理数域的最小性。

线性空间的基与维数

线性空间的基与维数

线性空间的基与维数线性空间是线性代数中的重要概念,它在数学和应用领域中都有广泛的应用。

本文将探讨线性空间的基与维数,以及它们在线性代数中的意义和应用。

一、线性空间的概念与性质线性空间是指一个具备了加法运算和数乘运算的集合,且满足以下性质:1. 封闭性:对于任意向量组成的集合S,如果对于任意向量a,b∈S和任意标量c∈F(其中F表示该线性空间定义域内的域),都有a + b和c·a仍然属于S,则称S是该线性空间的一个子空间;2. 零向量:对于线性空间V,存在一个特殊的向量0,使得对于任意向量v∈V,有v + 0 = v;3. 加法逆元:对于线性空间V中的任意向量v,存在一个逆元向量−v,使得v + (−v) = 0;4. 结合律和分配律:对于线性空间V中的任意向量a,b和c,有(a + b) + c = a + (b + c)和c(a + b) = ca + cb。

二、线性空间的基在线性空间V中,如果存在一组向量{v1, v2, ..., vn},满足:1. 这组向量线性无关;2. 任意向量v∈V都可以由这组向量线性表示。

那么,这组向量{v1, v2, ..., vn}被称为线性空间V的一个基。

基是线性空间中最重要的概念之一,它可以用来表示线性空间中的任意向量。

三、线性空间的维数线性空间的维数是指该线性空间的基所包含的向量个数。

记线性空间V的维数为dim(V),则对于线性空间V的任意基,它所包含的向量个数都相同,即dim(V)是唯一确定的。

维数的概念在线性代数中具有重要的意义。

它可以用来衡量线性空间的大小以及其所能表示的向量的种类。

维数为1的线性空间只包含一个向量,而维数为n的线性空间可以表示任意n维向量。

四、线性空间的维数与基的关系线性空间的维数与其基是密切相关的。

根据线性代数的基本定理,任意线性空间中的所有基都包含相同数量的向量,即具有相同的维数。

设线性空间V的维数为n,则任意一个基包含n个线性无关的向量。

基与维数的求法

基与维数的求法

例1数域P 上全体形解易证I a.bep\P 1、 (J 0, AO+h 为V 的一组基,V线性空间基和维数的求法 (邓云斯、李秀珍、高华艳)方法一(定义法):根据线性空间基和维数的走义求空间的基和维数,即:在线性空间V 中,如 果有〃个向呈满足:⑴ms …,弘线性无关;(2)V 中任一向星a 总可以由 6,氏2,.久线性表示.那么称V 为n 维(有限维践性空间,"为V 的维数,记为dim v = n , 并称 qar :%为线性空间V 的一组基•如果在V 中可以找到任意多个线性无关的向呈,那么V 就成为无限维的.的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间r 求此空间的维数和一组基.方法二(维数确定基法):在已知线性空间的维数为〃时,任意〃个向呈组成的线性无关向呈组 均作成线性空间的基.例2假走/?[•{]”是一切次数小于〃的实系数多项式添上零多项式所形成的线性空间,证明: l,(x —l ),(x —1)2,…,(x —1)' I 构成/?[虬的基.证明何•1 +他(牙一1) +・・・+兌(尤一1)"“ =0 由疋"的系数为0得心=0 ,并代入上式可得疋J 的系数k n _{ = 0 依此类推便有k“=kz=・.・ = k\=0 , 故1,(—1),…,(―1厂线性无关组,且对V 中任一元素 0 b '0 1 、一 1 0按定义 r0>又川虬的维数为心于是1心一1),…心一1)2为乩吐的基方法三(利用同构求维数法):数域P上两个有限维线性空间同构的充分必要条件是它们有相同的维数.(0 _1\例3设人= ,证明:由实数域上的矩阵A的全体实系数多项式/(A)组成的空间11 °丿f fo -1YV=y(A)\A=(与复数域C作为实数域/?上的线性空间I I】。

/V = {a+bi\ a.b w R}同构,并求它们的维数.证明V中任一多项式可记为f(A)=aE+bA,(abwR),建立V到V的如下映射b:e =a A +Z?J—> /;(4) = «]£+/?[A wR)易证CT是/到V上既是单射又是满射即一一映射.再设弘=心+加,a^b. eR.K eR,则有■■■厶■b(y + a2) =+«2)4-(/?1+优"]=(® +a1)E+(b x 4-Z?2)A = <7(a1) + o-(6Z2)<T( toj) = b( ka、+ kbj) = ka{E+ka y A = kb(xj故cr是/到'/的同构映射,所以V到V同构另外,易证H的一个基为1 , / ,故dimV =2vV^V.•.dimV = 2方法四(求可逆矩阵确走基法):设冬,勺,匕与卩、、・•••、卩“是"维线性空间V中两组向星,已知0],02,・-,0”可由少心,…“线性表出:A =如匕+佝勺+- + %心Pl =叱|+eg+••• + %"5令人=«21 如…d\Cl nl Cl n2 …a nn 7如果^,色,…,%为V 的一组基,另吆当且仅当A 可逆时,卩\、卩J …、卩"也是u 的一组基. 例4已知1,圮疋,_?是卩[虬的一组基,证明1,1 +兀(1 +龙)2,(1+刃'也是“[虬的一组基・ 证明因为l = ll + 0x+0x 2+0-x 3l + x = 1-1 + 1-x+O-x 2+0-x 3(l + x)~ = 1-1 + 2-x+l-x 2+0x 3(1 + X)3= 1 • 1 + 3 • A + 3 • x 2+1 • X 311110 0 0 1所以1,1 + X, (1 + ,(1 +町"也为P [x]4的一组基.方法五(向呈等价求基法):如果空间y 中一向量组与V 中一组基等价,则此向量组一走为此 空间的一组基.例5设/?卜】2表示次数不超过2的一切实系数一元多项式添上零多项式所构成的线性空间 的一组基,证明x 2+ x,疋一圮% +1为这空间的一组基. 证明 k } (x 2+x)+k 2 (x 2一/)+他(兀+1) = 0 则 k l +k 2=0< « _ 他 + £3 = o&3=0解得他=鸟2=/=0于是V 2+ X, * - X, X + 1线性无关,它们皆可由%2, X, 1线性表示,因此A-2+ X, F - X, X+ 1与 x\x,\等价,从而R[X ]2中任意多项式皆可由x 2+x t x 2-x,x+\线性表示,故X2 + X,x2 -x,x + l 为[x],的基.方法六(求两个子空间交集的基确走维数法):对以一组向量a\、j、卩、、P"为列向呈做成的矩阵施行行初等变换和列初等变换,不改变矩阵卬,色,0,02间的线性关系•任何一个m x H(j B、矩阵A ,总可以通过行初等变换和列变换化为标准阶梯型矩阵:' ,其中表示邛介I。

线性空间基与维数-精选文档

线性空间基与维数-精选文档


机动 目录 上页 下页 返回 结束
二、元素在给定基下的坐标
定义2 设 , , , 是线性空间 V 的一个基 ,对 1 2 n n
于任一元素 V ,总有且仅有一组有 n 数 x ,x , ,x ,使 1 2 n
x x x ,
1 1 2 2 n n
维数为 n 的线性空间称为 n 维线性空 , 记作 V . n
当一个线性空间 V中存在任意多个线性无关 的向量时,就称 V是无限维的.
若 , , , 为 V 的一个基 , 则 V 可表 1 2 n n n
V x x x x , x , , x R n 1 1 2 2 n n 1 2 n
有序数组 x , x , , x 称为元素 在 , , , 这 1 2 n 1 2 n
T x , x , , x 基下的坐标 , 并记作 1 2 n.
机动 目录 上页 下页 返回 结束
2 例1 在线性空间 P [ x ] 中 , 1 , x , ,p p p p x 4 1 2 3 4
1 (a0 ,a , a2, a3, a4) a 1 1 2 注意 线性空间 V 的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
机动 目录 上页 下页 返回 结束
例2 所有二阶实矩阵组成的集合 V,对于矩阵 的加法和数量乘法,构成实数域 R 上的一个线性 空间.对于 V中的矩阵
机动 目录 上页 下页 返回 结束
一、线性空间的基与维数
已知:在 R 中,线性无关的向量组最多由 n 个向量组成,而任意 n1 个向量都是线性相关的.
n
问题:线性空间的一个重要特征——在线性空 间 V 中,最多能有多少线性无关的向量?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)(2)(3)即M n (F ) S T
21
数学与计算机科学学院高等代数课件
课堂练习
P235-236:1,5
课外作业
P236:2,3,4,7
22
1、设V是数域F上向量空间,1, 2 ,, r
是V 中r个向量,则
W {a11 a22 ... arr ai F,i 1,2,...,r}
构成V的一个子空间。
4
数学与计算机科学学院高等代数课件
2、{a11 a22 ... arr ai F , i 1,2,...,r}
叫做由1,2 ,...,r所生成的子空间。记为 L( 1,2 ,..., r ) 或L( 1,2 ,..., r )
即L( 1,2 ,..., r )
{a11 a22 ... arr ai F,i 1,2,...,r}
1
,

2
,...,

叫做生成子空间
中的每个向量都能唯一地表示成 1 2 ,1 W1,2 W2
则称W1 W2为这两个子空间的直和,记为W1 W2
16
数学与计算机科学学院高等代数课件
例9、 在F 3中,1 1,0,0, 2 0,1,0, 取:
W1 L(1) {(a1,0,0) a1 F} W2 L(2 ) {(0, a2,0) a2 F} 则W1 W2 L(1) L(2 ) L(1,2 )
个线性无关的向量都可以取作基。
12
数学与计算机科学学院高等代数课件
4、定理6.4.5 设W和W都是数域F上向量空 间V的有限维子空间.那么W+W也是有限维
的,并且
dim(W+W) =dimW+dimW-dim(W∩W)
维数公式
13
数学与计算机科学学院高等代数课件
6.4.4 子空间的和、 直和、余子空间
1、子空间的和
W1、W2是向量空间V的两个子空间,
(1)定义 :W1 W2 {1 2 1 W1,2 W2}; (2)W1 W2也是V的子空间; (3)设1,2,,s与1, 2,t是V的两个向量组, 则L(1,2,,s ) L(1, 2,t ) L(1,2 ,,s , 1, 2 ,t )
不等于零子空间, 那么它总可以由一组线性无关 的生成元生成。
7
数学与计算机科学学院高等代数课件
6.4.2 向量空间的基
1、定义 设V是数域F上一个向量空间,如果在
V中存在一组向量 1,2 ,..., n 满足: (1) 1,2,...,n 线性无关; (2)V的每一个向量都可以由 1,2,...,n 线性
r
L(
1,2 ,..., r )
的一组生成元。
3、可以由有限个向量生成的子空间叫做有限生 成子空间。
5
数学与计算机科学学院高等代数课件
4、几点注意 (1)生成子空间提供了一种构造子空间的方法; (2)有限生成的子空间所含向量个数不一定有限;
只有L(0)={0}所含向量个数是有限的; (3)除零空间外,任意一个向量空间都可以构造出 无数个子空间,当然其中可能有许多是相同的; (4)等价的向量组生成相同的子空间。来自1,2,
.
.
.
,
的线性组合。
n
9
数学与计算机科学学院高等代数课件
4、有限生成的非零向量空间一定有基,其基就 是生成元组的一个极大无关组。
即若V

L(1,
2
,
.
.
.,
m
),则1,

2
,...,
的一个
m
极大无关组i1 ,i2 ,...,ir 就是V的一个基。
5、一个向量空间如果有基的话,其基一般并不
证明:(1)→(2)→(3)→(4) →(1)
19
数学与计算机科学学院高等代数课件
3、余子空间 (1)定理:设W是向量空间V的一个子空间, 那么一定存在V的一个子空间U,使得
V W U
(2)定义:设W是向量空间V的一个子空间,
如果V的子空间U满足V W U ,则称U为
W的一个余子空间。
例11、在几何空间V3中,W为过原点的平面, 那么W的余子空间是任一过原点且不在此平面 内的直线。
2
数学与计算机科学学院高等代数课件
二、教学目的 1.掌握有限维向量空间基与维数的概念 及其求法. 2.理解基在向量空间理论中所起的作用. 3.了解子空间的和、直和、余子空间. 三、重点、难点 基和维数的概念及求法、维数定理. 四、难点 子空间的直和、余子空间.
3
数学与计算机科学学院高等代数课件
6.4.1 生成子空间
唯一。但一个向量空间的任意两个基是彼此等价
的,并且所含向量个数相同。
10
数学与计算机科学学院高等代数课件
6.4.3 向量空间的维数
1、定义 一个向量空间V的基所含向量个数叫 做V的维数。记作dimV。 零空间的维数定义0。
例如:dimV2 2,dimV3 3; dim F n n; dim M m,n (F ) mn; dim Fn[x] n 1。
14
数学与计算机科学学院高等代数课件
问题 :W1 W2中任一向量都可以表示成一个W1 中向量1与一个W2中向量 2的和,即 1 2 ,1 W1,2 W , 那么这种表示是不是唯一的?
15
数学与计算机科学学院高等代数课件
2、子空间的直和 (1)直和的定义 设W1、W2是向量空间V的两个子空间,如果W1 W2
{(a1, a2,0) a1, a2 F} 因为W1 W2中每一向量表示成W1与W2中向量的 和的方式是唯一的,故W1 W2是直和,即W1 W2
17
数学与计算机科学学院高等代数课件
例10、 在F 3中,1 1,0,0, 2 0,1,0, 取:
W1 L(1) {(a1,0,0) a1 F} W2 L(1,2 ) {(b1,b2,0) b1,b2 F} 则W1 W2 L(1) L(1,2 ) L(1,1,2 ) L(1,2 ) {(a,b,0) a,b F}
数学与计算机科学学院高等代数课件
第6章 向量空间
6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标 6.6 向量空间的同构 6.7 矩阵的秩 齐次线性方程组的解空间
1
数学与计算机科学学院高等代数课件
6.4 基和维数
一、内容分布 6.4.1 生成子空间 6.4.2 向量空间的基 6.4.3 向量空间的维数 6.4.4 子空间的和、直和、余子空间
6
数学与计算机科学学院高等代数课件
5、定理6.4.1 设 1,2,...,n 是向量空间V 的
一组不全为零的向量,而 i1 ,i2 ,...,ir 是它的一
个极大无关组。那么
L1,2,...,n L i1 ,i2 ,...,ir
根据这个定理,如果有限生成子空间 L1,2,...,n
因为W1 W2中每一向量表示成W1与W2中向量 的和的方式不是唯一的,故W1 W2不是直和, 不能写成W1 W2。
18
数学与计算机科学学院高等代数课件
(2)直和的等价条件
设W1、W2是向量空间V的两个子空间, 则下列条件等价: (1)W1 W2是直和; (2)W1 W2 {0} (3) dim(W1 W2 ) dim W1 dim W2 (4)W 1,W2的基可凑成W1 W2的基
(3) 余子空间不唯一。
20
数学与计算机科学学院高等代数课件
例12、 设S {A M n (F ) A A},
T {A M n (F ) A A} 证明: (1)S,T是M n (F )的子空间; (2)M n (F ) S T ; (3)S T {0}.
11
数学与计算机科学学院高等代数课件
2、n维向量空间中任意多于n个向量的向量组一 定线性相关。
3、定理6.4.4 设 1,2,...,r 是n维向量空间
V中一组线性无关的向量.那么总可以添加 n – r
个向量 r1,...,n ,使得 1,...,r ,r1,...,n
作成V的一个基。特别地,n维向量空间中任意n
表示。
则称1,2,..., n是V的一个基。
8
数学与计算机科学学院高等代数课件
2、1, 2 ,..., n是V的一个基,那么 V L(1,2,...,n )。
即V的一个基就是V的一组线性无关的生成元。
3、基的重要意义还在于:
定理6.4.2 设1,2,...,n是向量空间V的一个 基,那么V的每一个向量都可以唯一地表为
相关文档
最新文档