速度分解渡河模型22587
人教版2020年高考物理考点专题强化:运动的合成与分解(小船渡河、绳和杆末端速度分解模型)(含答案)
人教版2020年高考物理考点---点对点专题强化-----运动的合成与分解知识点:1.合运动和分运动的关系2.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 3.合运动性质的判断⎩⎪⎨⎪⎧加速度⎩⎪⎨⎪⎧恒定:匀变速运动变化:非匀变速运动加速度方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断5.运动分解的两类金典案例: 一、小船渡河问题1.小船渡河问题的分析思路2.小船渡河的两类问题、三种情景当船头方向垂直于河岸时,渡河时间最短,最短时间如果角垂直于河岸,渡河位移最短,等于河宽如果向最短,等于二、绳(杆)端速度分解模型:(1)模型特点:绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型. (2)模型分析①合运动→绳拉物体的实际运动速度v②分运动→⎩⎪⎨⎪⎧其一:沿绳(或杆)的分速度v 1其二:与绳(或杆)垂直的分速度v 2(3)解题原则:根据沿绳(杆)方向的分速度大小相等求解.常见实例如下:(注:A 沿斜 面下滑)(4)解题思路对点训练:典例1:(运动的合成与分解)质量为2 kg的质点在xOy平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图所示,下列说法正确的是()A.质点的初速度为5 m/s B.质点所受的合外力为3 N,做匀加速曲线运动C.2 s末质点速度大小为6 m/s D.2 s内质点的位移大小约为12 m【答案】ABD典例1解码:由x方向的速度图象可知,在x方向的加速度为1.5 m/s2,受力F x=3 N,由y方向的位移图象可知在y方向做匀速直线运动,速度为v y=4 m/s,受力F y=0.因此质点的初速度为5 m/s,A选项正确;受到的合外力为3 N,显然,质点初速度方向与合外力方向不在同一条直线上,B选项正确;2 s末质点速度应该为v=62+42m/s=213 m/s,C选项错误;2 s内x方向上位移大小x=v x t+12at2=9 m,y方向上位移大小y=8 m,合位移大小l=x2+y2=145 m≈12 m,D选项正确.典例2:(小船渡河问题)小船在200 m宽的河中横渡,水流速度为2 m/s,船在静水中的速度为4 m/s.(1)若小船的船头始终正对对岸,它将在何时、何处到达对岸?(2)要使小船到达正对岸,应如何航行?历时多长?(3)小船渡河的最短时间为多长?(4)若水流速度是5 m/s ,船在静水中的速度是3 m/s ,则怎样渡河才能使船漂向下游的距离最短?最短距离是多少? 【答案】见解析 典例2解码:(1)小船参与了两个分运动,即船随水漂流的运动和船在静水中的运动.因为分运动之间具有独立性和等时性,故小船渡河的时间等于垂直于河岸方向的分运动的时间, 即t =d v 船=2004s =50 s小船沿水流方向的位移s 水=v 水t =2×50 m =100 m 即船将在正对岸下游100 m 处靠岸.(2)要使小船到达正对岸,合速度v 应垂直于河岸,如图甲所示,则cos θ=v 水v 船=24=12,故θ=60°即船的航向与上游河岸成60°,渡河时间t =d v =2004sin 60° s =10033s.(3)考虑一般情况,设船头与上游河岸成任意角θ,如图乙所示.船渡河的时间取决于垂直于河岸方向的分速度v ⊥=v 船sin θ,故小船渡河的时间为t =dv 船sin θ.当θ=90°,即船头与河岸垂直时,渡河时间最短,最短时间为t min =50 s.(4)因为v 船=3 m/s<v 水=5 m/s ,所以船不可能垂直河岸横渡,不论航向如何,总被水流冲向下游.如图丙所示,设船头(v 船)与上游河岸成θ角,合速度v 与下游河岸成α角,可以看出:α角越大,船漂向下游的距离x ′越短.以v 水的矢尖为圆心,以v 船的大小为半径画圆,当合速度v 与圆相切时,α角最大.则cos θ=v 船v 水=35,故船头与上游河岸的夹角θ=53°又x ′d =v v 船=v 2水-v 2船v 船,代入数据解得x ′≈267 m. 典例3:(绳端速度分解模型)如图所示,做匀速直线运动的小车A 通过一根绕过定滑轮的长绳吊起一重物B ,设重物和小车速度的大小分别为v B 、v A ,则( )A .v A >vB B .v A <v BC .绳的拉力等于B 的重力D .绳的拉力大于B 的重力 【答案】 AD 典例3解码:小车A 向左运动的过程中,小车的速度是合速度,可分解为沿绳方向与垂直于绳方向的速度,如图所示,由图可知v B =v A cos θ,则v B <v A ,小车向左运动的过程中θ角减小,v B 增大,B 向上做加速运动,故绳的拉力大于B 的重力.故选项A 、D 正确.典例4:(轻杆末端速度分解模型)如图所示,一根长直轻杆AB 在墙角沿竖直墙与水平地面滑动.当AB 杆和墙的夹角为θ时,杆的A 端沿墙下滑的速度大小为v 1,B 端沿地面滑动的速度大小为v 2,则v 1、v 2的关系是( )A .v 1=v 2B .v 1=v 2cos θC .v 1=v 2tan θD .v 1=v 2sin θ【答案】C 典例4解码:将A 、B 两点的速度分解为沿AB 方向与垂直于AB 方向的分速度,沿AB 方向的速度分别为v 1∥和v 2∥,由于AB 不可伸长,两点沿AB 方向的速度分量应相同,则有v 1∥=v 1cos θ,v 2∥=v 2sin θ,由v 1∥=v 2∥,得v 1=v 2tan θ,选项C 正确.针对训练:1.如图,图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v-t 图象如图乙所示.人顶杆沿水平地面运动的s-t 图象如图丙所示.若以地面为参考系,下列说法中正确的是( )A .猴子的运动轨迹为直线B .猴子在2s 内做匀变速曲线运动C .t =0时猴子的速度大小为8m/sD .t =2s 时猴子的加速度为4m/s 2 【答案】BD【解析】竖直方向为初速度s m v x /8=、加速度2/4s m a -=的匀减速直线运动,水平方向为速度s m v x /4-=的匀速直线运动,初速度大小为,方向与合外力方向不在同一条直线上,故做匀变速曲线运动,故选项B 正确,选项A 错误;t=2s 时,2/4s m a y -=0=x a ,则合加速度为2/4s m a -=,选项C 错误,选项D 正确。
渡河问题、牵连速度问题
3.如图所示,一铁球用细线悬挂于天花板上,静止垂吊在 桌子的边缘,悬线穿过一光盘的中间孔,手推光盘在桌面 上平移,光盘带动悬线紧贴着桌子的边缘以水平速度v匀 速运动,当光盘由A位置运动到图中虚线所示的B位置时,
悬线与竖直方向的夹角为θ ,此时铁球(
A.竖直方向速度大小为vcosθ
B )
B.竖直方向速度大小为vsinθ
【例题3】如图所示,以速度v沿竖直杆匀速下滑的
物体A,用细绳通过定滑轮拉动物体B在水平桌面上
运动,当绳与水平面夹角为θ时,物体B的速率
为 ,
B
v
A
v sin
【答案】
vB=vsinθ
v
【例题4】如图所示,A、B两物体用细绳相连,在水
平面上运动,当α=450,β=300时,物体A的速度为2
m/s,这时B的速度为 。
v
v物
v=v物cos
物体的实际运动就是合运动
逐渐增大,v船也逐渐增大
练习3:如右图所示汽车以速度v匀速行驶,当 汽车到达某点时,绳子与水平方向恰好成角, 此时物体M的速度大小是多少?
[分析]滑轮左侧汽车后面的绳子实际上同时参 与了两个运动:沿绳子方向拉长的运动和左上 方摆动。而M的运动速度就是沿绳子方向拉长 的速度,所以:vM=vcosθ
运动的合成和分解专题
渡河问题、牵连速度
模型一:小船渡河问题
S1 B v1 t t v B’ S D t v2 S2
S1 v1 SB v D
v1 v B
D v2
A
A v2 S2
A
船头朝正对岸
t最短
合速度垂直河岸
v1>v2,s最短
小船渡河于绳子末端速度的分解介绍.ppt
玻璃板生产线上,需要将毛坯玻璃切割成 统一尺寸的玻璃成品,玻璃在流水线上不停 滞地被切割,金刚石切刀要在运动中将玻璃 横向切断.如果毛坯玻璃以 4m/s 的速度在 生产线上不断地向前移动,金刚石切刀的移 动速度为 8 m/s,为了将玻璃切割成矩形, 金刚石切刀的移动方向如何控制?切割一块 宽为 9 m 的玻璃需要多长时间?
最短时间
V 船》V 水时最短唯一
V 船《V 水时最短唯一
•
6
变式训练 1、 一条宽度为 L 的河流,水流速度为 V1,已知 船在静水中的速度为 V2,那么: (1)怎样渡河时间最短? (2)若 V2>V1,怎样渡河位移最小? (3)若 V2<V1,怎样渡河船漂下的距离最短?
练习、在抗洪抢险中,战士驾驶冲锋舟救人,假设江岸是平直 的,洪水沿江而下,水的流速为 5m/s,舟在静水中的航速 为 10m/s,战士救人的地点 A 离岸边最近点 0 的距离为 50m。 问:(1)战士要想通过最短的时间将人送上岸,求最短时间为 多长? (2)战士要想通过最短的航程将人送上岸,冲锋舟的驾驶员应 将舟头与河岸成多少度角? (3) 如果水的流速是 10m/s,而舟的航速(静水中)为 5m/s, 战士想通过最短的距离将人送上岸,求这个最短的距离.
物体拉绳或绳拉物体运动速度分解问题
(1)绳子末端速度的分解,应按运动的实际效果进行。 物体实际运动的速度为合速度 V,物体速度 V 在沿绳子方向 的分速度 V1 为绳子收缩或拉伸的速度,物体速度 V 的另一个 分速度 V2 一定与 V1 垂直,也就是使绳子摆动的速度。
(2)速度投影定理:不可伸长的杆或绳,尽管各点的 速度不同,但各点速度沿绳或杆方向的投影即分速度相同。
小船渡河于绳子末端速度 的分解介绍
复习回顾
高中物理模型组合27讲(Word下载)速度分解渡河模型
高中物理模型组合27讲(Word 下载)速度分解渡河模型【模型概述】在运动的合成与分解中,如何判定物体的合运动和分运动是首要咨询题,判定合运动的有效方法是看见的运动确实是合运动。
合运动的分解从理论上讲能够是任意的,但一样按运动的实际成效进行分解。
小船渡河和斜拉船等咨询题是常见的运动的合成与分解的典型咨询题【模型讲解】一、速度的分解要从实际情形动身例1. 如图1所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
图1解法一〔分解法〕:此题的关键是正确地确定物体A 的两个分运动。
物体A 的运动〔即绳的末端的运动〕可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。
如此就能够将A v 按图示方向进行分解。
因此1v 及2v 实际上确实是A v 的两个分速度,如图1所示,由此可得θθcos cos 01v v v A ==。
解法二〔微元法〕:要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时刻来求它的平均速率,当这一小段时刻趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t 时刻向左行驶△x 距离,滑轮右侧的绳长缩短△L ,如图2所示,当绳与水平方向的角度变化专门小时,△ABC 可近似看做是一直角三角形,因而有θcos x L ∆=∆,两边同除以△t 得:θcos txt L ∆∆=∆∆ 即收绳速率θcos 0A v v =,因此船的速率为:θcos 0v v A =图2总结:〝微元法〞。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是如何样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
解法三〔能量转化法〕:由题意可知:人对绳子做功等于绳子对物体所做的功。
人对绳子的拉力为F ,那么对绳子做功的功率为01Fv P =;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,那么绳子对物体做功的功率为θcos 2A Fv P =,因为21P P =因此θcos 0v v A =。
0衡水中学物理最经典-物理建模系列(五) 小船渡河模型分析
物理建模系列(五)小船渡河模型分析1.模型构建在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动,其中一个速度大小和方向都不变,另一个速度大小不变,方向在180°范围内(在速度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进行研究.这样的运动系统可看作“小船渡河模型”.2.模型展示3.三种速度:v1(水的流速)、v2(船在静水中的速度)、v(船的实际速度).4.三种情景12求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向当船头垂直河岸时,如图甲所示,合速度为倾斜方向,垂直分速度为v 1=5 m/s. t =d v 1=1805s =36 s v =v 21+v 22=52 5 m/s x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直于河岸,船头应朝上游与垂直河岸方向成某一夹角α如图乙所示, 有v 1sin α=v 2, 得α=30°所以当船头向上游垂直河岸方向偏30°时航程最短. x ′=d =180 m. t ′=d v 1cos 30°=180523 s=24 3 s.【答案】 (1)垂直河岸方向 36 s 90 5 m (2)向上游垂直河岸方向偏30° 24 3 s 180 m1.解这类问题的关键是:正确区分分运动和合运动. 2.运动分解的基本方法:按实际运动效果分解. (1)确定合速度的方向(就是物体的实际运动方向); (2)根据合速度产生的的实际运动效果确定分速度的方向;(3)运用平行四边形定则进行分解.3.小船渡河问题的处理(1)小船渡河问题,无论v船>v水,还是v船<v水,渡河的最短时间均为t min=Lv船(L为河宽).(2)当v船>v水时,船能垂直于河岸渡河,河宽即是最小位移;当v船<v水时,船不能垂直于河岸渡河,但此时仍有最小位移渡河,可利用矢量三角形定则求极值的方法处理.[高考真题]1.(2016·课标卷Ⅰ,18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【解析】因为质点原来做匀速直线运动,合外力为0,现在施加一恒力,质点的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变且一定与该恒力的方向相同,但若做匀变速曲线运动,单位时间内速率的变化量是变化的,故C正确,D错误.若做匀变速曲线运动,则质点速度的方向不会总是与该恒力的方向相同,故A错误;不管做匀变速直线运动,还是做匀变速曲线运动,质点速度的方向不可能总是与该恒力的方向垂直,故B正确.【答案】BC2.(2015·广东卷,14)如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v【解析】以帆板为参照物,帆船具有朝正东方向的速度v和朝正北方向的速度v,两速度的合速度大小为2v,方向朝北偏东45°,故选项D正确.【答案】 D3.(2014·四川卷,4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1【解析】设河岸宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.【答案】 B[名校模拟]4.(2018·山东潍坊高三上学期期中)关于曲线运动,下列说法正确的是()A.曲线运动是变速运动B.变速运动一定是曲线运动C.物体保持速率不变沿曲线运动,其加速度为零D.任何做圆周运动物体的加速度都指向圆心【解析】曲线运动是变速运动,但变速运动不一定是曲线运动,例如匀变速直线运动,故A对,B错;匀速圆周运动速率不变,但加速度不为零,C错;只有做匀速圆周运动的物体加速度才指向圆心,D错.【答案】 A5.(2018·山东烟台高三上学期期中)一物体从位于一直角坐标系xOy平面上的O点开始运动,前2 s在y轴方向的v-t图象和x轴方向的s-t图象分别如图甲、乙所示,下列说法正确的是()甲乙A.物体做匀变速直线运动B .物体的初速度为8 m/sC .2 s 末物体的速度大小为4 m/sD .前2 s 内物体的位移大小为8 2 m【解析】 由图象可知,y 轴方向为匀加速运动,x 轴方向为匀速直线运动,故合运动为曲线运动,A 错;物体初速度为4 m/s ,B 错;2 s 末速度v =42+(4×2)2 m/s =4 5 m/s ,C 错;前2 s 内位移x =82+⎝⎛⎭⎫12×4×222 m =82m ,D 对. 【答案】 D6.(2018·山东师大附中高三质检)如图所示,水平面上固定一个与水平面夹角为θ的斜杆A ,另一竖直杆B 以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为v cos θD .沿A 杆斜向上,大小为v cos θ【解析】 两杆的交点P 参与了两个分运动:与B 杆一起以速度v 水平向左的匀速直线运动和沿B 杆竖直向上的匀速运动,交点P 的实际运动方向沿A 杆斜向上,如图所示,则交点P 的速度大小为v P =vcos θ,故C 正确. 【答案】 C课时作业(十) [基础小题练]1.趣味投篮比赛中,运动员站在一个旋转较快的大平台边缘上,相对平台静止,向平台圆心处的球筐内投篮球.则下图各俯视图中篮球可能被投入球筐(图中箭头指向表示投篮方向)的是( )【解析】 当沿圆周切线方向的速度和出手速度的合速度沿球筐方向,球就会被投入球筐.故C 正确,A 、B 、D 错误.【答案】 C2.下列图中实线为河岸,河水的流动方向如图v 的箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线.则其中可能正确的是( )【解析】 船头垂直于河岸时,船的实际航向应斜向右上方,A 正确,C 错误;船头斜向上游时,船的实际航向可能垂直于河岸,B 正确;船头斜向下游时,船的实际航向一定斜向下游,D 错误.【答案】 AB3.(2018·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动.现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙种状态启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 的中点.则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)【解析】 雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t 1∶t 2=AB v ∶AFv =2∶1,选项A 正确.【答案】 A4.有甲、乙两只船,它们在静水中航行速度分别为v 1和v 2,现在两船从同一渡口向河对岸开去,已知甲船想用最短时间渡河,乙船想以最短航程渡河,结果两船抵达对岸的地点恰好相同.则甲、乙两船渡河所用时间之比t 1t 2为( )A.v 22v 1B .v 1v 2C.v 22v 21 D .v 21v 22【解析】 当v 1与河岸垂直时,甲船渡河时间最短;乙船船头斜向上游开去,才有可能航程最短,由于甲、乙两只船到达对岸的地点相同(此地点并不在河正对岸),可见乙船在静水中速度v 2比水的流速v 0要小,要满足题意,则如图所示.由图可得t 1t 2=v 2v 1·sin θ①cos θ=v 2v 0②tan θ=v 0v 1③由②③式得v 2v 1=sin θ,将此式代入①式得t 1t 2=v 22v 21.【答案】 C5.自行车转弯时,可近似看成自行车绕某个定点O (图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,前轮所在平面与车身间的夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s ,则轮轴A 的速度v 1大小为( )A.332 m/sB .2 3 m/s C. 3 m/sD .3 3 m/s【解析】 将两车轴视为杆的两端,杆两端速度沿杆方向的投影大小相等,有v 1cos 30°=v 2,解得v 1=2 3 m/s ,B 正确.【答案】 B6.(2018·山东济南一中上学期期中)如图所示,汽车用跨过定滑轮的轻绳提升物块A .汽车匀速向右运动,在物块A 到达滑轮之前,关于物块A ,下列说法正确的是( )A.将竖直向上做匀速运动B.将处于超重状态C.将处于失重状态D.将竖直向上先加速后减速【解析】v A=v车·cos θ,v车不变,θ减小,v A增大,由T-m A g=ma知T>m A g,物块A处于超重状态,B对.【答案】 B[创新导向练]7.生活科技——曲线运动的条件在飞行中孔明灯的应用春节期间人们放飞孔明灯表达对新年的祝福,如图甲所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,孔明灯的运动轨迹可能为图乙中的()A.直线OA B.曲线OBC.曲线OC D.曲线OD【解析】孔明灯在竖直Oy方向做匀加速运动,则合外力沿Oy方向,在水平Ox方向做匀速运动,此方向上合力为零,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知轨迹可能为曲线OD,故D 正确.【答案】 D8.体育运动——足球运动中的力学问题在足球场上罚任意球时,运动员踢出的足球,在行进中绕过“人墙”转弯进入了球门,守门员“望球莫及”,轨迹如图所示.关于足球在这一飞行过程中的受力方向和速度方向,下列说法中正确的是()A .合外力的方向与速度方向在一条直线上B .合外力的方向沿轨迹切线方向,速度方向指向轨迹内侧C .合外力方向指向轨迹内侧,速度方向沿轨迹切线方向D .合外力方向指向轨迹外侧,速度方向沿轨迹切线方向【解析】 足球做曲线运动,则其速度方向为轨迹的切线方向,根据物体做曲线运动的条件可知,合外力的方向一定指向轨迹的内侧,故C 正确.【答案】 C9.生活科技——教具中的运动合成与分解的原理如图所示为竖直黑板,下边为黑板的水平槽,现有一三角板ABC ,∠C =30°.三角板上A 处固定一大小不计的滑轮.现让三角板竖直紧靠黑板,BC 边与黑板的水平槽重合,将一细线一端固定在黑板上与A 等高的Q 点,另一端系一粉笔头(可视为质点).粉笔头最初与C 重合,且细线绷紧.现用一水平向左的力推动三角板向左移动,保证粉笔头紧靠黑板的同时,紧靠三角板的AC 边,当三角板向左移动的过程中,粉笔头会在黑板上留下一条印迹.关于此印迹,以下说法正确的是( )A .若匀速推动三角板,印迹为一条直线B .若匀加速推动三角板,印迹为一条曲线C .若变加速推动三角板,印迹为一条曲线D .无论如何推动三角板,印迹均为直线,且印迹与AC 边成75°角 【解析】在三角板向左移动的过程中,粉笔头沿AC 边向上运动,且相对于黑板水平方向向左运动,由于两个分运动的速度始终相等,故粉笔头的印迹为一条直线,如图中CD 所示,A 正确,B 、C 错误;根据图中的几何关系可得,∠ACD =∠ADC =180°-30°2=75°,D 正确.【答案】 AD10.科技前沿——做曲线运动的波音737飞机如图所示,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s 2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s 2的匀减速直线运动,则飞机落地之前( )A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s【解析】 由于合初速度的方向与合加速度的方向相反,故飞机的运动轨迹为直线,A 错误;由匀减速运动规律可知,飞机在第20 s 末的水平分速度为20 m/s ,竖直方向的分速度为2 m/s ,B 错误;飞机在第20 s 内,水平位移x =⎝⎛⎭⎫v 0x t 20+12a x t 220-⎝⎛⎭⎫v 0x t 19+12a x t 219=21 m ,竖直位移y =⎝⎛⎭⎫v 0y t 20+12a y t 220-⎝⎛⎭⎫v 0y t 19+12a y t 219=2.1 m ,C 错误.飞机在第20 s 内,水平方向的平均速度为21 m/s ,D 正确.【答案】 D[综合提升练]11.如图甲所示,质量m =2.0 kg 的物体在水平外力的作用下在水平面上运动,已知物体沿x 方向和y 方向的x -t 图象和v y -t 图象如图乙、丙所示,t =0时刻,物体位于原点O .g 取10 m/s 2.根据以上条件,求:(1)t =10 s 时刻物体的位置坐标; (2)t =10 s 时刻物体的速度大小.【解析】 (1)由图可知坐标与时间的关系为: 在x 轴方向上:x =3.0t m ,在y 轴方向上:y =0.2t 2 m 代入时间t =10 s ,可得:x =3.0×10 m =30 m ,y =0.2×102 m =20 m 即t =10 s 时刻物体的位置坐标为(30 m,20 m).(2)在x轴方向上:v0=3.0 m/s当t=10 s时,v y=at=0.4×10 m/s=4.0 m/sv=v20+v2y= 3.02+4.02m/s=5.0 m/s【答案】(1)(30 m,20 m)(2)5.0 m/s12.如图所示,在竖直平面内的xOy坐标系中,Oy竖直向上,Ox水平向右.设平面内存在沿x轴正方向的恒定风力.一小球从坐标原点沿Oy方向竖直向上抛出,初速度为v0=4 m/s,不计空气阻力,到达最高点的位置如图中M点所示(坐标格为正方形,g=10 m/s2)求:(1)小球在M点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x轴时的位置N;(3)小球到达N点的速度v2的大小.【解析】(1)设正方形的边长为x0.竖直方向做竖直上抛运动,有v0=gt1,2x0=v0 2t1水平方向做匀加速直线运动,有3x0=v1 2t1.解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x轴,水平方向做初速度为零的匀加速直线运动,所以回到x轴时落到x=12处,位置N的坐标为(12,0).(3)到N点时竖直分速度大小为v0=4 m/s水平分速度v x=a水平t N=2v1=12 m/s,故v2=v20+v2x=410 m/s.【答案】(1)6 m/s(2)见解析图(3)410 m/s。
高三复习考点强化:小船渡河模型及绳(杆)端速度分解模型 课件
其二:与绳(杆)垂直的速度v⊥
方法:v∥与v⊥的合成遵循平行四边形定则。 3.解题原则: 根据沿绳(杆)方向的分速度大小相等求解。 常见实例如下:
课堂互动 【例 3】 (2019·宝鸡模拟)如图所示,水平光滑长杆上套有一物块 Q,跨过悬挂于 O
点的轻小光滑圆环的轻绳一端连接 Q,另一端悬挂一物块 P。设轻绳的左边部分与水平方向 的夹角为 θ,初始时 θ 很小。现将 P、Q 由静止同时释放,关于 P、 Q 以后的运动下列说法正确的是( )
多维训练
1.(多选)一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边。小船相 对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图12所示。船相对于水的 初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变。由此可 以确定( )
A.沿AD轨迹运动时,船相对于水做匀减速直线运动 B.沿三条不同路径渡河的时间相同 C.沿AC轨迹渡河所用的时间最短 D.沿AC轨迹到达对岸的速度最小
A.小船渡河的轨迹为直线 B.小船在河水中的最大速度是 5 m/s C.小船在距南岸 200 m 处的速度小于在距北岸 200 m 处的速度 D.小船渡河的时间是 160 s
转到解析
备选训练
3. 如图所示,AB杆以恒定角速度绕A点转动,并带动套在光滑水平杆OC上的质量 为M的小环运动,运动开始时,AB杆在竖直位置,则小环M的速度将( )
多维训练
2.如图所示,不计所有接触面之间的摩擦,斜面固定,物块和滑块质量分别为 m1 和 m2,且 m1<m2。若将滑块从位置 A 由静止释放,当沿杆落到位置 B 时,滑块的速度 为 v2,且与滑块牵连的绳子与竖直方向的夹角为 θ,则此时物块的速度大小 v1 等于( )
速度的分解专题
2.模型分析
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。 (2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度)。
21
专题二 、小船渡河模型
(3)小船渡河的两类问题、三种情景 渡河时间最短 如果v船>v水,当船头方向与上游夹角θ 满足 v船cos θ =v水时,合速度垂直河岸,渡河位移 最短,等于河宽d
d 60 m 120m 6 cos 2
最短行程, s
小船的船头与上游河岸成 600 角时,渡河的最短航程为 120m。
31
针对训练
32
解析
解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托 艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸 方向的运动速度为v2,到达江岸所用时间t= 速v1在相同的时间内,被水冲下的距离 ;沿江岸方向的运动速度是水 ,即为登陆点距离0点距离 。
的运动也就是船的实际运动,是合运动,与船头所指方向一般情况下不共线。 (2)按实际效果分解,一般用平行四边形定则沿水流方向和船头所指方向分解。 (3)渡河时间只与船垂直河岸的分速度有关,与水流速度无关。 (4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况,用三角形定则求极限的 方法处理。
29
4
1.绳端速度分解问题
【例1】(多选)如图所示,做匀速直线运动的小车A通过一根绕过定滑轮的长绳 吊起一重物B,设重物和小车速度的大小分别为vB、vA,则( )
A.vA>vB B.vA<vB C.绳的拉力等于B的重力 D.绳的拉力大于B的重力
5
解析
6
1.绳端速度分解问题
7
解析
船的速度是合速度
物理渡河问题归纳总结
物理渡河问题归纳总结在物理学中,渡河问题是一类经典而有趣的问题,涉及到物体如何穿过一条河流或河谷。
渡河问题存在于不同的背景中,包括物理学、工程学和生物学等领域。
本文将对几个经典的物理渡河问题进行归纳总结。
1. 水下通道模型在水下通道模型中,一个物体需要从一边的河岸穿越到另一边。
而水流对物体的运动产生一定的阻力。
这个问题可以用牛顿第二定律来描述。
当物体受到水流的阻力和重力的作用时,物体的运动可由下式表示:ma = mg - F其中,m是物体的质量,a是物体的加速度,g是重力加速度,F是水流对物体的阻力。
根据方程可以解得物体穿越水下通道的时间。
2. 流速改变模型在流速改变模型中,水流的速度不是均匀的,而是按照一定的规律变化。
这个问题可以用微积分中的积分来解决。
假设水流速度由函数v(x)表示,其中x是物体在河谷中的位置。
那么物体通过河谷所需要的时间可以表示为下式的积分:t = ∫(1/v(x)) dx通过对函数v(x)积分,可以求得物体通过河谷的时间。
3. 弹簧板模型弹簧板模型中,物体需要通过一系列由弹簧连接的板块。
每个板块都有一定的初始压缩或伸长量,物体在板块之间来回弹跳,最终穿过整个弹簧板系统。
这个问题可以通过能量守恒来解决。
物体在不同板块之间的来回运动,其总能量保持不变。
通过计算初始能量和最终能量之间的差距,可以确定物体穿越整个弹簧板系统所需的时间。
4. 空气阻力模型空气阻力模型中,水流对物体的阻力是按照空气阻力模型计算的。
根据空气阻力模型,当物体的速度增加时,阻力也会增加。
因此,物体穿越河流的时间将取决于物体的质量以及其表面积。
较大的质量和表面积将导致更长的渡河时间。
总结起来,物理渡河问题是涉及物体如何穿越水流或河谷的一类经典问题。
解决这些问题的方法可以是基于牛顿定律、微积分、能量守恒等物理原理。
通过运用适当的模型和方法,我们可以准确计算出物体穿越河流所需要的时间。
这些问题不仅有助于加深对物理学原理的理解,还有助于培养解决实际问题的能力。
物理建模系列(五) 小船渡河模型分析
物理建模系列(五)小船渡河模型分析1.模型构建在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动,其中一个速度大小和方向都不变,另一个速度大小不变,方向在180°范围内(在速度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进行研究.这样的运动系统可看作“小船渡河模型”.2.模型展示3.三种速度:v1(水的流速)、v2(船在静水中的速度)、v(船的实际速度).4.三种情景12求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向当船头垂直河岸时,如图甲所示,合速度为倾斜方向,垂直分速度为v 1=5 m/s. t =d v 1=1805s =36 s v =v 21+v 22=525 m/s x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直于河岸,船头应朝上游与垂直河岸方向成某一夹角α如图乙所示, 有v 1sin α=v 2, 得α=30°所以当船头向上游垂直河岸方向偏30°时航程最短. x ′=d =180 m. t ′=d v 1cos 30°=180523 s=24 3 s.【答案】 (1)垂直河岸方向 36 s 90 5 m (2)向上游垂直河岸方向偏30° 24 3 s 180 m1.解这类问题的关键是:正确区分分运动和合运动. 2.运动分解的基本方法:按实际运动效果分解. (1)确定合速度的方向(就是物体的实际运动方向); (2)根据合速度产生的的实际运动效果确定分速度的方向;(3)运用平行四边形定则进行分解.3.小船渡河问题的处理(1)小船渡河问题,无论v船>v水,还是v船<v水,渡河的最短时间均为t min=Lv船(L为河宽).(2)当v船>v水时,船能垂直于河岸渡河,河宽即是最小位移;当v船<v水时,船不能垂直于河岸渡河,但此时仍有最小位移渡河,可利用矢量三角形定则求极值的方法处理.[高考真题]1.(2016·课标卷Ⅰ,18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【解析】因为质点原来做匀速直线运动,合外力为0,现在施加一恒力,质点的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变且一定与该恒力的方向相同,但若做匀变速曲线运动,单位时间内速率的变化量是变化的,故C正确,D错误.若做匀变速曲线运动,则质点速度的方向不会总是与该恒力的方向相同,故A错误;不管做匀变速直线运动,还是做匀变速曲线运动,质点速度的方向不可能总是与该恒力的方向垂直,故B正确.【答案】BC2.(2015·广东卷,14)如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v【解析】以帆板为参照物,帆船具有朝正东方向的速度v和朝正北方向的速度v,两速度的合速度大小为2v,方向朝北偏东45°,故选项D正确.【答案】 D3.(2014·四川卷,4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1【解析】设河岸宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.【答案】 B[名校模拟]4.(2018·山东潍坊高三上学期期中)关于曲线运动,下列说法正确的是()A.曲线运动是变速运动B.变速运动一定是曲线运动C.物体保持速率不变沿曲线运动,其加速度为零D.任何做圆周运动物体的加速度都指向圆心【解析】曲线运动是变速运动,但变速运动不一定是曲线运动,例如匀变速直线运动,故A对,B错;匀速圆周运动速率不变,但加速度不为零,C错;只有做匀速圆周运动的物体加速度才指向圆心,D错.【答案】 A5.(2018·山东烟台高三上学期期中)一物体从位于一直角坐标系xOy平面上的O点开始运动,前2 s在y轴方向的v-t图象和x轴方向的s-t图象分别如图甲、乙所示,下列说法正确的是()甲乙A.物体做匀变速直线运动B .物体的初速度为8 m/sC .2 s 末物体的速度大小为4 m/sD .前2 s 内物体的位移大小为8 2 m【解析】 由图象可知,y 轴方向为匀加速运动,x 轴方向为匀速直线运动,故合运动为曲线运动,A 错;物体初速度为4 m/s ,B 错;2 s 末速度v =42+(4×2)2 m/s =4 5 m/s ,C 错;前2 s 内位移x =82+⎝⎛⎭⎫12×4×222 m =82m ,D 对. 【答案】 D6.(2018·山东师大附中高三质检)如图所示,水平面上固定一个与水平面夹角为θ的斜杆A ,另一竖直杆B 以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为v cos θD .沿A 杆斜向上,大小为v cos θ【解析】 两杆的交点P 参与了两个分运动:与B 杆一起以速度v 水平向左的匀速直线运动和沿B 杆竖直向上的匀速运动,交点P 的实际运动方向沿A 杆斜向上,如图所示,则交点P 的速度大小为v P =vcos θ,故C 正确. 【答案】 C课时作业(十) [基础小题练]1.趣味投篮比赛中,运动员站在一个旋转较快的大平台边缘上,相对平台静止,向平台圆心处的球筐内投篮球.则下图各俯视图中篮球可能被投入球筐(图中箭头指向表示投篮方向)的是( )【解析】 当沿圆周切线方向的速度和出手速度的合速度沿球筐方向,球就会被投入球筐.故C 正确,A 、B 、D 错误.【答案】 C2.下列图中实线为河岸,河水的流动方向如图v 的箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线.则其中可能正确的是( )【解析】 船头垂直于河岸时,船的实际航向应斜向右上方,A 正确,C 错误;船头斜向上游时,船的实际航向可能垂直于河岸,B 正确;船头斜向下游时,船的实际航向一定斜向下游,D 错误.【答案】 AB3.(2018·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动.现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙种状态启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 的中点.则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)【解析】 雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t 1∶t 2=AB v ∶AFv =2∶1,选项A 正确.【答案】 A4.有甲、乙两只船,它们在静水中航行速度分别为v 1和v 2,现在两船从同一渡口向河对岸开去,已知甲船想用最短时间渡河,乙船想以最短航程渡河,结果两船抵达对岸的地点恰好相同.则甲、乙两船渡河所用时间之比t 1t 2为( )A.v 22v 1B .v 1v 2C.v 22v 21 D .v 21v 22【解析】 当v 1与河岸垂直时,甲船渡河时间最短;乙船船头斜向上游开去,才有可能航程最短,由于甲、乙两只船到达对岸的地点相同(此地点并不在河正对岸),可见乙船在静水中速度v 2比水的流速v 0要小,要满足题意,则如图所示.由图可得t 1t 2=v 2v 1·sin θ①cos θ=v 2v 0②tan θ=v 0v 1③由②③式得v 2v 1=sin θ,将此式代入①式得t 1t 2=v 22v 21.【答案】 C5.自行车转弯时,可近似看成自行车绕某个定点O (图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,前轮所在平面与车身间的夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s ,则轮轴A 的速度v 1大小为( )A.332 m/sB .2 3 m/s C. 3 m/sD .3 3 m/s【解析】 将两车轴视为杆的两端,杆两端速度沿杆方向的投影大小相等,有v 1cos 30°=v 2,解得v 1=2 3 m/s ,B 正确.【答案】 B6.(2018·山东济南一中上学期期中)如图所示,汽车用跨过定滑轮的轻绳提升物块A .汽车匀速向右运动,在物块A 到达滑轮之前,关于物块A ,下列说法正确的是( )A.将竖直向上做匀速运动B.将处于超重状态C.将处于失重状态D.将竖直向上先加速后减速【解析】v A=v车·cos θ,v车不变,θ减小,v A增大,由T-m A g=ma知T>m A g,物块A处于超重状态,B对.【答案】 B[创新导向练]7.生活科技——曲线运动的条件在飞行中孔明灯的应用春节期间人们放飞孔明灯表达对新年的祝福,如图甲所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,孔明灯的运动轨迹可能为图乙中的()A.直线OA B.曲线OBC.曲线OC D.曲线OD【解析】孔明灯在竖直Oy方向做匀加速运动,则合外力沿Oy方向,在水平Ox方向做匀速运动,此方向上合力为零,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知轨迹可能为曲线OD,故D正确.【答案】 D8.体育运动——足球运动中的力学问题在足球场上罚任意球时,运动员踢出的足球,在行进中绕过“人墙”转弯进入了球门,守门员“望球莫及”,轨迹如图所示.关于足球在这一飞行过程中的受力方向和速度方向,下列说法中正确的是()A .合外力的方向与速度方向在一条直线上B .合外力的方向沿轨迹切线方向,速度方向指向轨迹内侧C .合外力方向指向轨迹内侧,速度方向沿轨迹切线方向D .合外力方向指向轨迹外侧,速度方向沿轨迹切线方向【解析】 足球做曲线运动,则其速度方向为轨迹的切线方向,根据物体做曲线运动的条件可知,合外力的方向一定指向轨迹的内侧,故C 正确.【答案】 C9.生活科技——教具中的运动合成与分解的原理如图所示为竖直黑板,下边为黑板的水平槽,现有一三角板ABC ,∠C =30°.三角板上A 处固定一大小不计的滑轮.现让三角板竖直紧靠黑板,BC 边与黑板的水平槽重合,将一细线一端固定在黑板上与A 等高的Q 点,另一端系一粉笔头(可视为质点).粉笔头最初与C 重合,且细线绷紧.现用一水平向左的力推动三角板向左移动,保证粉笔头紧靠黑板的同时,紧靠三角板的AC 边,当三角板向左移动的过程中,粉笔头会在黑板上留下一条印迹.关于此印迹,以下说法正确的是( )A .若匀速推动三角板,印迹为一条直线B .若匀加速推动三角板,印迹为一条曲线C .若变加速推动三角板,印迹为一条曲线D .无论如何推动三角板,印迹均为直线,且印迹与AC 边成75°角 【解析】在三角板向左移动的过程中,粉笔头沿AC 边向上运动,且相对于黑板水平方向向左运动,由于两个分运动的速度始终相等,故粉笔头的印迹为一条直线,如图中CD 所示,A 正确,B 、C 错误;根据图中的几何关系可得,∠ACD =∠ADC =180°-30°2=75°,D 正确.【答案】 AD10.科技前沿——做曲线运动的波音737飞机如图所示,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s 2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s 2的匀减速直线运动,则飞机落地之前( )A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s【解析】 由于合初速度的方向与合加速度的方向相反,故飞机的运动轨迹为直线,A 错误;由匀减速运动规律可知,飞机在第20 s 末的水平分速度为20 m/s ,竖直方向的分速度为2 m/s ,B 错误;飞机在第20 s 内,水平位移x =⎝⎛⎭⎫v 0x t 20+12a x t 220-⎝⎛⎭⎫v 0x t 19+12a x t 219=21 m ,竖直位移y =⎝⎛⎭⎫v 0y t 20+12a y t 220-⎝⎛⎭⎫v 0y t 19+12a y t 219=2.1 m ,C 错误.飞机在第20 s 内,水平方向的平均速度为21 m/s ,D 正确.【答案】 D[综合提升练]11.如图甲所示,质量m =2.0 kg 的物体在水平外力的作用下在水平面上运动,已知物体沿x 方向和y 方向的x -t 图象和v y -t 图象如图乙、丙所示,t =0时刻,物体位于原点O .g 取10 m/s 2.根据以上条件,求:(1)t =10 s 时刻物体的位置坐标; (2)t =10 s 时刻物体的速度大小.【解析】 (1)由图可知坐标与时间的关系为: 在x 轴方向上:x =3.0t m ,在y 轴方向上:y =0.2t 2 m 代入时间t =10 s ,可得:x =3.0×10 m =30 m ,y =0.2×102 m =20 m 即t =10 s 时刻物体的位置坐标为(30 m,20 m).(2)在x 轴方向上:v 0=3.0 m/s当t =10 s 时,v y =at =0.4×10 m/s =4.0 m/sv =v 20+v 2y = 3.02+4.02m/s =5.0 m/s【答案】 (1)(30 m,20 m) (2)5.0 m/s12.如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v 0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s 2)求:(1)小球在M 点的速度v 1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ;(3)小球到达N 点的速度v 2的大小.【解析】 (1)设正方形的边长为x 0.竖直方向做竖直上抛运动,有v 0=gt 1,2x 0=v 02t 1 水平方向做匀加速直线运动,有3x 0=v 12t 1. 解得v 1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t 1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v 0=4 m/s水平分速度v x =a 水平t N =2v 1=12 m/s ,故v 2=v 20+v 2x =410 m/s.【答案】 (1)6 m/s (2)见解析图 (3)410 m/s。
5.2运动的合成与分解(小船渡河关联速度模型)课件高一下学期物理人教版(2019)
小船渡河时,同时参与了两个分运动:一个是船相对水的运
动(即船在静水中的运动),一个是船随水漂流的运动.
2.两类常见问题
渡河时间最短
渡河位移最短
学习目标一 渡河时间最短
当v船 垂直于河岸时(即船头垂直河岸),渡河时间最短:
d tmin= v船
v船 tanθ= v水
v船
θ
v
d
v水
v船
v垂直河岸的分速度
6.一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s。 (1)若船在静水中的速度为v2=5 m/s,求:①欲使船在最短的 时间内渡河,船头应朝什么方向?用多长时间?位移是多少?
②欲使船渡河的航程最短,船头应朝什么方向?用多长时间?
位移是多少?
(2)若船在静水中的速度v2=1.5 m/s,要使船渡河的航程最短, 船头应朝什么方向?用多长时间?位移是多少?
解题四步:
①画出合速度——物体的实际运动方向; ②画出分速度——沿绳(杆)、垂直于绳(杆); ③作矩形; ④沿绳(杆)方向的分速度大小相等。
【例】如图所示,绳以恒定速率v沿水平方向通过定滑轮牵引
小船靠岸,当绳与水面夹角为θ时,船靠岸的速度是
。
若使船匀速靠岸,则绳的速度是
。
(填:匀速、加速、减速)
多谢欣赏!
答案:
v'
v
cos
减速
知识总结: 处理关联速度问题的方法:首先认清哪
个是合速度、哪个是分速度。物体的实际速 度一定是 合速度 ,分解时两个分速度方向应 取 沿绳(杆)方向 和 垂直于绳(杆)方向。
练习
1.如图所示,汽车通过滑轮拉重物A,汽车沿
水平方向向右匀速运动,滑轮与绳的摩擦不计, 则物体的运动情况是( ) B A.匀速上升 B.加速上升 C.先加速后减速 D.减速上升
人教高中物理 必修二 5.1 小船渡河模型(含答案)
运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=(d 为河宽).dv 1②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=.v 2v 1③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=,最短航程:s 短==d .v 1v 2dcos αv 2v 1(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d =180 m ,水流速度v 1=2.5m /s.若船在静水中的速度为v 2=5m/s ,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s.t == s =36 sdv 21805v == m/s v 21+v 2525x =v t =90 m5(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v 2sin α=v 1,得α=30°所以当船头向上游偏30°时航程最短.x ′=d =180 m.t ′== s =24 sdv 2cos 30°1805233答案 (1)垂直河岸方向 36 s 90 m(2)向上游偏30° 24 s 180 m532、一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )A .船渡河的最短时间是25 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案C解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t = s =20 s ,A1005错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1= m /s 2=0.4 m/s 2,同理4-010x =50 m 到x =100 m 之间a 2= m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0-4100.4 m/s 2,C 正确;船在河水中的最大速度为v = m/s = m/s ,D 错误.52+42413、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t == s =100 s ,A dv 23003错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v = m /s =5 m/s ,C 错,D 对.42+324、(2019·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为( )A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定答案 C解析 设两人在静水中游速为v 0,水速为v ,则t 甲=+= t 乙==<xOAv 0+v xOAv 0-v 2v 0xOAv 20-v 22xOBv 20-v 22xOAv 20-v 22v 0xOAv 20-v2故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好233能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸答案 BD解析 渡河时间均为,乙能垂直于河岸渡河,对乙船由v cos60°=v 0得Hv sin 60°v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)=H ,刚好到达Hv sin 60°233A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a ==0.5 m/s 2,ΔvΔt 最短位移为x =100 m ,对快艇由x =at 2得:t = =s =20 s ,即最快到达浮标处122x a 2×1000.5所用时间为20 s ,D 正确.答案 BD。
高中物理新教材同步 必修第二册 第5章 专题强化 运动的合成与分解应用实例
专题强化运动的合成与分解应用实例[学习目标] 1.能利用运动的合成与分解的知识,分析小船渡河问题(重点)。
2.会分析小船渡河问题的两个分运动,会求渡河的最短时间和最短位移(重难点)。
3.能利用运动的合成与分解的知识,分析关联速度问题(重点)。
4.掌握常见的绳关联模型和杆关联模型的速度分解的方法(重点)。
一、小船渡河模型如图所示为一条宽为d的大河,小明驾着小船从A点出发,欲将一批货物运送到对岸。
已知河水流速为v水,小船在静水中的航速为v船。
(1)渡河过程中,小船参与了哪两个分运动?(2)怎么求解小船渡河过程所用的时间?小船如何渡河时间最短?最短时间为多少?此时渡河位移为多大?(3)小船如何渡河才能使渡河位移最小?最小位移为多大?(4)小船渡河时间的长短与水流速度是否有关?答案(1)①船相对水的运动(即船在静水中的运动)。
②船随水漂流的运动。
(2)由于水流速度始终沿河岸方向,不能提供指向河岸的分速度,用河的宽度除以垂直于河岸方向的速度得出过河时间。
因此若要渡河时间最短,只要使船头垂直于河岸航行即可。
由图可知,t min=dv船,此时船渡河的位移大小x=dsin θ,位移方向满足tan θ=v船v水。
(3)情况一:v水<v船最短的位移为河宽d,此时合速度垂直河岸。
船头与上游河岸夹角θ满足:v船cos θ=v水,如图所示。
渡河所用时间t=dv船sin θ。
情况二:v 水>v 船如图所示,以v 水矢量的末端为圆心,以v 船的大小为半径作圆,当合速度的方向与圆相切时,合速度的方向与河岸的夹角最大(设为α),此时航程最短。
由图可知sin α=v 船v 水,最短位移为x=dsin α=v 水v 船d 。
此时船头指向应与上游河岸成θ′角,且cos θ′=v 船v 水。
(4)无关。
例1 (2022·商洛市高一期末)某地进行抗洪抢险演练时,把一布娃娃放在一木盆(视为质点)中随河水流动,抢险战士发现这一情况时,抢险船(视为质点)和木盆的连线与河岸垂直,木盆到两岸的距离相等,两河岸平行,如图所示。
人教高中物理 必修二 5.1 小船渡河模型(含答案)
运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=dv 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法 垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=dcos α=v 2v 1d .(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移. 无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是 船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动, 一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流 方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况用三角形法 则求极限的方法处理.二、练习1、一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m /s.若船在静水中的速度为v 2=5 m/s ,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少? (2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少? 解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s. t =d v 2=1805 s =36 s v =v 21+v 22=525 m/s x =v t =90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直 河岸方向成某一夹角α,如图所示. 有v 2sin α=v 1, 得α=30°所以当船头向上游偏30°时航程最短. x ′=d =180 m.t ′=d v 2cos 30°=180523 s =24 3 s答案 (1)垂直河岸方向 36 s 90 5 m (2)向上游偏30° 24 3 s 180 m 2、一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x 变化的关系如图甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )A .船渡河的最短时间是25 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案 C 解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005 s =20 s ,A 错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010 m /s 2=0.4 m/s 2,同理x =50 m到x =100 m 之间a 2=0-410 m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42 m/s =41 m/s ,D 错误.3、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t =d v 2=3003 s =100 s ,A错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v =42+32 m /s =5 m/s ,C 错,D 对.4、(2011·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为 ( ) A .t 甲<t 乙 B .t 甲=t 乙C .t 甲>t 乙D .无法确定 答案 C解析 设两人在静水中游速为v 0,水速为v ,则 t 甲=x OA v 0+v +x OAv 0-v =2v 0x OA v 20-v2 t 乙=2x OB v 20-v 2=2x OAv 20-v 2<2v 0x OAv 20-v 2 故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 答案 BD解析 渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v 0得v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)H v sin 60°=233H ,刚好到达A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s 解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a =ΔvΔt =0.5 m/s 2,最短位移为x =100 m ,对快艇由x =12at 2得:t =2x a= 2×1000.5s =20 s ,即最快到达浮标处所用时间为20 s ,D 正确. 答案 BD。
专题12 小船渡河模型-高考物理模型法之实物模型法(解析版)
模型界定本模型是解决以小船渡河为载体的不同参考系中运动转换的问题,具体包括小船渡河、骑马射箭等。
模型破解1.合运动与分运动的关键特征 (i )等时性合运动与分运动是同时发生的,所用时间相等,可由任一分运动或合运动求解小船运动的时间。
(ii )等效性合运动的效果与几个分运动叠加后后的共同效果完全相同。
(iii )独立性一个物体同时参与几个分运动,各个分运动相互独立,任一分运动不受其它分运动的影响。
2.小船渡河问题的处理方法设小船在静止水中的匀速运动的速度是 v 1 ,均匀流动的河水的速度是 v 2 , 河宽为 d 。
又设 v 1 与河岸的夹角为θ( 0≤θ≤1800 ),合速度v 与河岸夹角为ϕ 。
(i )分解法如图 1 ,沿平行于河岸与垂直于河岸的方向上建立直角坐标系,将 v 1分解为v 1x =v 1cosθ和 v 1y =v 1sinθ ,则v x = v 1x +v 2 =v 1cosθ+ v 2、v y =v 1y = v 1sinθ。
①合速度2122122)sin ()cos (θθv v v v v v y x ++=+=211cos sin tan v v v v v xy +==θθϕ②合位移图1212211)sin ()cos (sin sin θθθϕv v v v dd s ++==③渡河时间θsin 1v d v s t ==(ii )合成法如图2,通常用于图示中能出现直角三角形的特殊情况下。
3.小船的运动速度与轨迹当小船在静水中航行的速度、水流的速度恒定时,小船的运动速度恒定,运动轨迹是一直线。
当小船相对静水的速度变化时、水流的速度随时间或空间变化时,小船的速度是变化的,任一时刻的速度由该瞬时水流速度与小船相对静水的航速决定,运动轨迹一般为曲线。
4.极值问题 (i )最短时间 由θsin 1v dt =可以看出,小船渡河的时间取决于河的宽度、小船相对于静水航行的速度大小及方向,与水流的速度大小无关。
速度分解渡河模型22797
模型组合讲解——速度分解渡河模型【模型概述】在运动的合成与分解中,如何判断物体的合运动和分运动是首要问题,判断合运动的有效方法是看见的运动就是合运动。
合运动的分解从理论上说可以是任意的,但一般按运动的实际效果进行分解。
小船渡河和斜拉船等问题是常见的运动的合成与分解的典型问题 【模型讲解】一、速度的分解要从实际情况出发例1.如图1所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
图1解法一(分解法):本题的关键是正确地确定物体A 的两个分运动。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。
这样就可以将A v 按图示方向进行分解。
所以1v 及2v 实际上就是A v 的两个分速度,如图1所示,由此可得θθcos cos 01v v v A ==。
解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L ,如图2所示,当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有θcos x L ∆=∆,两边同除以△t 得:θcos txt L ∆∆=∆∆ 即收绳速率θcos 0A v v =,因此船的速率为:θcos 0v v A =图2总结:“微元法”。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。
人对绳子的拉力为F ,则对绳子做功的功率为01Fv P =;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为θco s2A Fv P =,因为21P P =所以θc o s 0v v A =。
运动分解 尺规作图(渡河、比值)
尺规作图例1.河水流速15/v m s =,船在静水中的航速24/v m s =,河宽m d 10=,则船的最小航程多大?解析:由于河水的流速大于船速,故小船不可能垂直于河岸过河,如图5所示,设船从A 点开始渡河,按题意作出速度矢量三角形,若要航程最短,只要船的合速度v 的方向与AB 间的夹角α最小。
由于2v 的大小恒定,所以当v 与圆周相切,即2v ⊥v 时航程最短,由相以三角形关系知最短航程S 为1212.5d S v m v =⋅=. 解题小结:处理矢量(力、速度、场强等)的合成、分解问题时,先画出矢量三角形图示可将问题直观形象地展现出来,便于分析研究。
例2.当甲乙两船从同一地点都以最小位移渡河时,它们在同一地点相遇,或者说到达同一地点,求甲乙两船渡河所用时间的比值。
解析:河水流速1v 的大小为5/m s ,方向向下游,两者都确定,用有向线段表示;而2v 的大小为4/m s ,方向未定,可以用圆表示,大小是圆的半径,方向是可以沿着圆的任何一个半径(即圆心到圆的连线——射线),即圆上的点与圆心的连线 由正弦定理,得它们满足的函数关系,21sin sin sin()v v v βθθβ==+合. 最小航程意味着θ最大,即sin θ最大,对于甲船,tan 甲v d s v α==水①2222甲甲甲d d s t v v v s v ===++水水② 对于乙船,当乙v v >水时,最短航程是合(真实)运动沿正对面,不可能在同一地点,所以排除此种情况。
则当乙v v <水时,sin 乙v v α=水③2222sin cos 乙乙乙乙s d t d v v v v v s αα==+=--水水④ 已知v v 甲乙、,所以所有的函数表达式都要转化为它们二者的形式,即终极形式是仅仅且必须含有v 甲和v 乙,仔细观察①③,消去中间变量v 水,即tan 1/sin co s 甲甲乙乙==v v v v v v ααα=水水,sin tan cos cos 甲乙==v v d s v v αααα==水水可得图cos 乙=v v α甲,cos 乙甲甲=v v v α<. 甲乙两船渡河所用时间的比值是2cos /()()cos 甲乙乙乙甲乙甲甲t v v d d t v v v v αα===; 或2222222222222222/()乙甲乙乙甲甲乙甲v v t v v t v v v v v v v d s d s v --==++=++-+水水水水水水,上下同时除以v 水,化简可得 22222222222222(/)()11sin s s s ((co )co c )tan s si o 1n (/)1()co 甲乙乙乙乙甲甲甲t v v v v v t v v v v v ααααααα-====--==++++水水水水, 或22sin /()1()sin 1sin ()sin 甲乙乙乙乙乙t v v v v s s t v v v v v v αααα===---==-水水水水水甲. 根据相似三角形2222乙乙v v v v d s d s -==+水水.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型组合讲解
——速度分解渡河模型
【模型概述】
在运动的合成与分解中,如何判断物体的合运动和分运动是首要问题,判断合运动的有效方法是看见的运动就是合运动。
合运动的分解从理论上说可以是任意的,但一般按运动的实际效果进行分解。
小船渡河和斜拉船等问题是常见的运动的合成与分解的典型问题
【模型讲解】
一、速度的分解要从实际情况出发
例1. 如图1所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
图1
解法一(分解法):本题的关键是正确地确定物体A 的两个分运动。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。
这样就可以将A v 按图示方向进行分解。
所以1v 及2v 实际上就是A v 的两个分速度,如图1所示,由此可得θ
θcos cos 01
v v v A ==。
解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L ,如图2所示,当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有θcos x L ∆=∆,两边同除以△t 得:θcos t
x
t L ∆∆=∆∆ 即收绳速率θcos 0A v v =,因此船的速率为:
θ
cos 0
v v A =
图2
总结:“微元法”。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。
人对绳子的拉力为F ,则对绳子做功的功率为01Fv P =;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为
θcos 2A Fv P =,因为21P P =所以θ
cos 0
v v A =。
评点:①在上述问题中,若不对物体A 的运动认真分析,就很容易得出θcos 0v v A =的错误结果;②当物体A 向左移动,θ将逐渐变大,A v 逐渐变大,虽然人做匀速运动,但物体A 却在做变速运动。
总结:解题流程:①选取合适的连结点(该点必须能明显地体现出参与了某个分运动);②确定该点合速度方向(物体的实际速度为合速度)且速度方向始终不变;③确定该点合速度的实际运动效果从而依据平行四边形定则确定分速度方向;④作出速度分解的示意图,寻找速度关系。
二、拉力为变力,求解做功要正确理解
例2. 如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m 的重物,开始时人在滑轮的正下方,绳下端A 点离滑轮的距离为H 。
人由静止拉着绳向右移动,当绳下端到B 点位置时,人的速度为v ,绳与水平面夹角为θ。
问在这个过程中,人对重物做了多少功?
图3
解析:人移动时对绳的拉力不是恒力,重物不是做匀速运动也不是做匀变速运动,故无法用θcos Fs W =求对重物做的功,需从动能定理的角度来分析求解。
当绳下端由A 点移到B 点时,重物上升的高度为:
θθθsin )
sin 1(sin -=
-=
H H H h 重力做功的数值为:
θ
θsin )
sin 1(-=
mgH W G
当绳在B 点实际水平速度为v 时,v 可以分解为沿绳斜向下的分速度1v 和绕定滑轮逆时针转动的分速度2v ,其中沿绳斜向下的分速度1v 和重物上升速度的大小是一致的,从图中可看出:
θcos 1v v =
以重物为研究对象,根据动能定理得:
02
12
1-=
-mv W W G 人 2
cos sin )sin 1(22θθθmv mgH W +-=人
【实际应用】
小船渡河
两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
例3. 一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么: (1)怎样渡河时间最短?
(2)若水船v v >,怎样渡河位移最小? (3)若水船v v <,怎样渡河船漂下的距离最短?
解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
如图4所示。
设船头斜向上游与河岸成任意角θ。
这时船速在垂直于河岸方向的速度分量为θsin 1船v v =,渡河所需要的时间为θ
sin 1船v L v L t ==
,可以看出:L 、v 船一定时,t 随sin θ增大而减小;当︒=90θ时,1sin =θ(最大)。
所以,船头与河岸垂直船
v L t =
m in 。
图4
(2)如图5所示,渡河的最小位移即河的宽度。
为了使渡河位移等于L ,必须使船的合速度v 的方向与河岸垂直,即使沿河岸方向的速度分量等于0。
这时船头应指向河的上游,并与河岸成一定的角度θ,所以有水船v v =θcos ,
即船
水v v arccos =θ。
图5
因为1cos 0≤≤θ,所以只有在水船v v >时,船才有可能垂直河岸渡河。
(3)若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?
如图6所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水
船v v =
θcos
图6
船头与河岸的夹角应为水
船v v arccos
=θ,船沿河漂下的最短距离为:
θ
θsin )cos (min 船船水v L
v v x ⋅
-=
此时渡河的最短位移:船
水v Lv L
s =
=θcos 误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。
【模型要点】
处理“速度关联类问题”时,必须要明白“分运动”与“合运动”的关系:
(1)独立性:一物体同时参与几个分运动时,各分运动独立进行,各自产生效果(分分、s v )互不干扰。
(2)同时性:合运动与分运动同时开始、同时进行、同时结束。
(3)等效性:合运动是由各分运动共同产生的总运动效果,合运动与各分运动同时发生、同时进行、同时结束,
经历相等的时间,合运动与各分运动总的运动效果可以相互替代。
功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程,尤其是变力做功中更能体现出其空间积累的过程。
所以在处理变力功可采用动能定律、功能原理、图象法、平均法等。