一元二次方程考点分析归纳,初三数学一元二次方程常考题型及答案解析
《一元二次方程》总复习、练习、中考真题【题型解析】
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
专题08 一元二次方程(4大考点)2022-2024年中考数学真题分类汇编
专题08 一元二次方程(4大考点)【考点归纳】一、考点01 解一元二次方程-------------------------------------------------------------------------------------------------------------------1二、考点02 一元二次方程根的判别式------------------------------------------------------------------------------------------------------2三、考点03 根与系数的关系-------------------------------------------------------------------------------------------------------------------3四、考点04 一元二次方程的实际应用------------------------------------------------------------------------------------------------------4考点01 解一元二次方程一、考点01 解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为( )A .2B .2-C .2或2-D .123.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为( )A .4B .4-C .3D .3-4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为( )A .17或13B .13或21C .17D .136.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或18.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为 .9.(2023·广东广州·中考真题)解方程:2650x x -+=.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.考点02 一元二次方程根的判别式二、考点02 一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m的取值范围是( )A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( )A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =( )A .9-B .4C .1-D .116.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A .0B .1C .2D .318.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .1620.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为 .22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为 .23.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为 .24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是 .25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c = .26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.考点03 根与系数的关系三、考点03 根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .134.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为 .36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是 .37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.39.(2023·内蒙古通辽·中考真题)阅读材料:材料1:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根12x x ,和系数a ,b ,c 有如下关系:12b x x a+=-,12c x x a =.材料2:已知一元二次方程210x x --=的两个实数根分别为m ,n ,求22m n mn +的值.解:∵m ,n 是一元二次方程210x x --=的两个实数根,∴1,1m n mn +==-.则()22111m n mn mn m n +=+=-⨯=-.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程22310x x +-=的两个实数根为12x x ,,则12x x +=___________,12x x =___________;(2)类比:已知一元二次方程22310x x +-=的两个实数根为m ,n ,求22m n +的值;(3)提升:已知实数s ,t 满足2223102310s s t t +-=+-=,且s t ≠,求11s t-的值.考点04 一元二次方程的实际应用四、考点04 一元二次方程的实际应用40.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=41.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是( )A .()0.6410.69x +=B .()20.6410.69x +=C .()0.64120.69x +=D .()20.64120.69x +=42.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( )A .()67012780x ⨯+=B .()26701780x ⨯+=C .()26701780x ⨯+=D .()6701780x ⨯+=43.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为( )A .20%B .22%C .25%D .28%44.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段10m 长的铁丝网围成一个一边靠墙(墙长5.5m )的矩形鸭舍,其面积为215m ,在鸭舍侧面中间位置留一个1m 宽的门(由其它材料制成),则BC 长为( )A .5m 或6mB .2.5m 或3mC .5mD .3m45.(2023·浙江衢州·中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x 人,则可得到方程( )A .()136x x ++=B .()2136x +=C .()1136x x x +++=D .2136x x ++=46.(2023·湖北襄阳·中考真题)我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x 步,根据题意列方程正确的是( )A .22(12)864x x ++=B .22(12)864x x ++=C .(12)864x x -=D .(12)864x x +=47.(2023·黑龙江哈尔滨·中考真题)为了改善居民生活环境,云中小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x 米,根据题意,所列方程正确的是( )A .()6720x x -=B .()6720x x +=C .()6360x x -=D .()6360x x +=48.(2023·黑龙江·中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m,则小路的宽是()A.5m B.70m C.5m或70m D.10m49.(2022·黑龙江·中考真题)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.950.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是.51.(2023·黑龙江牡丹江·中考真题)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是.52.(2022·上海·中考真题)某公司5月份的营业额为25万,7月份的营业额为36万,已知6、7月的增长率相同,则增长率为.53.(2022·四川成都·中考真题)若一个直角三角形两条直角边的长分别是一元二次方程2640x x-+=的两个实数根,则这个直角三角形斜边的长是.54.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为2S.cm(1)求y与,x s与x的关系式.(2)围成的矩形花圃面积能否为2750cm,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.55.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?56.(2023·江苏·中考真题)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD (如图),生态园一面靠墙(墙足够长),另外三面用18m 的篱笆围成.生态园的面积能否为240m ?如果能,请求出AB 的长;如果不能,请说明理由.57.(2023·江苏·中考真题)如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为cm cm cm cm a b c d 、、、.若纸张大小为16cm 10cm ⨯,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的70%,则需如何设置页边距?58.(2023·湖北黄冈·中考真题)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中21000m 的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位;元/2m )与其种植面积x (单位:2m )的函数关系如图所示,其中200700x ≤≤;乙种蔬菜的种植成本为50元/2m .(1)当x =___________2m 时,35y =元/2m ;(2)设2023年甲乙两种蔬菜总种植成本为W 元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这21000m 土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下a,当a为何值时,2025降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降%年的总种植成本为28920元?59.(2022·山东德州·中考真题)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为2800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.60.(2022·辽宁沈阳·中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.专题08 一元二次方程(4大考点)(解析版)【考点归纳】一、考点01 解一元二次方程----------------------------------------------------------------------------------------------------------1二、考点02 一元二次方程根的判别式----------------------------------------------------------------------------------------------5三、考点03 根与系数的关系--------------------------------------------------------------------------------------------------------16四、考点04 一元二次方程的实际应用--------------------------------------------------------------------------------------------22考点01 解一元二次方程一、考点01 解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为( )A .2B .2-C .2或2-D .12【答案】A【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为0.由一元二次方程的定义,可知20a +≠;一根是0,代入()22240a x x a +++-=可得240a -=,即可求答案.【详解】解:()22240a x x a +++-=是关于x 的一元二次方程,20a ∴+≠,即2a ≠-①由一个根0x =,代入()22240a x x a +++-=,可得240a -=,解之得2a =±;②由①②得2a =;故选A3.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为( )A .4B .4-C .3D .3-【答案】B【分析】本题考查了一元二次方程的解,熟练掌握“能使一元二次方程左右两边相等的未知数的值是一元二次方程的解”是解题的关键.把1x =代入一元二次方程得到130++=m ,求解即可得出m 的值.【详解】解:把1x =代入方程230x mx +=+得:130++=m ,解得:4m =-.故选:B .4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为( )A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .6.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A8.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为 .【答案】3【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.将2y x =代入22330x y x -+-=,转化为解一元二次方程,20y x =≥,要进行舍解.【详解】解:∵20y x -=,∴2y x =,将2y x =代入22330x y x -+-=得,2330x x x -+-=,即:2230x x --=,()()310x x -+=,∴3x =或=1x -,∵20y x =≥,∴=1x -舍,∴3x =,故答案为:3.9.(2023·广东广州·中考真题)解方程:2650x x -+=.【答案】11x =,25x =【分析】直接利用因式分解法解一元二次方程即可.【详解】解:2650x x -+=,()()150x x --=,10x -=或50x -=,11x =,25x =.【点睛】本题考查因式分解法解一元二次方程,正确计算是解题的关键.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.二、考点02 一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是( )A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠【答案】D 【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠.故选:D .12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是( )A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( )A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠【答案】D【分析】由于关于x 的一元二次方程2210mx x ++=有实数根,根据一元二次方程根与系数的关系可知0∆≥,且0m ≠,据此列不等式求解即可.【详解】解:由题意得,440m -≥,且0m ≠,解得,1m £,且0m ≠.故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-【答案】B【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =( )A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .16.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <【答案】A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +-+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案.【详解】解: 关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,∴()()22410m ∆=--+>,解得:0m <,10m +≠ ,1m ∴≠-,m ∴的取值范围是:0m <且1m ≠-.故选:A .17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为( )A .0B .1C .2D .3【答案】A 【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程2210x x k ++-=无实数根,∴()Δ4410k =--<,解得:0k <,则函数y kx =的图象过二,四象限,18.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=有两个相等的实数根,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .2690x x -+=20.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是 .21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为.22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为 .【答案】2【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=->;有两个相等的实数根,则240b ac ∆=-=;没有实数根,则24<0b ac ∆=-.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=-=--⨯⨯=,解得:2k =故答案为:223.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为.24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是 .25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c = .【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是.【答案】1k <【分析】本题考查了一元二次方程根的判别式.根据根的判别式的意义得到()2240k -->,然后解不等式即可.【详解】解:根据题意得()2240k ∆=-->,解得1k <.故答案为:1k <.27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.【答案】(1)证明见解析;(2)11m =或22m =-.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=-x x m ,进行变形后代入即可求解.【详解】(1)证明:()()22Δ24118m m m ⎡⎤=-+-⨯⨯-=+⎣⎦,∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m -++-=的两个实数根,∴122x x m +=+,121⋅=-x x m ,∴()()()22221212121232319x x x x x x x x m m +-=+-=+--=,解得:11m =或22m =-.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.【答案】(1)证明见解析(2)m 的值为1或2-【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:∵()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵()22210x m x m m -+++=的两个实数根为,a b ,∴221,a b m ab m m +=+=+.∵()()2220a b a b ++=,∴2224220a ab b ab +++=,22()20a b ab ++=.∴222(21)20m m m +++=.即220m m +-=.解得1m =或2m =-.∴m 的值为1或2-.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.三、考点03 根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .1【答案】A【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵1x ,2x 是方程220220x x --=的两个实数根,∴2112022x x -=,122022x x =-,121x x =+321122022-+x x x ()()()2222211212121220222122022x x x x x x x x x =-+=+=+-=-⨯-4045=故选A【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,掌握一元二次方程根与系数的关系是解题的关键.34.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为 .【答案】7【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是 .37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k -+-+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可.。
一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)
一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。
3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
一元二次方程(考题猜想,15种题常考题型)解析版—2024-2025学年九年级数学上学期期中考点串讲
一元二次方程(考题猜想,15种题常考题型)➢直接开平方➢配方法➢因式分解法➢公式法➢用适当的方法解方程➢含绝对值的一元一次方程➢换元法➢判断一元二次方程根的情况➢确定字母的取值或范围➢根与系数关系的综合应用➢与几何图形的综合应用➢储蓄问题➢行程问题➢工程问题➢进制问题一.直接开平方(共3小题)1.(23-24九年级上·吉林长春·期中)方程260x -=的解是( )A.12x x ==B.1x =2x =C .126x x ==D .16x =,26x =-2.(23-24九年级上·广东韶关·期中)一元二次方程260x -=的根为 .3.(23-24九年级上·江苏常州·期中)解方程:()22910x x --=.二.配方法(共3小题)4.(20-21九年级上·四川成都·期中)一元二次方程2610x x --=配方后可变形为( )A .2(3)8x -=B . ()2310x -=C .2(3)8x +=D .2(3)10x +=【答案】B【分析】本题考查解一元二次方程—配方法.根据配方法可以将题目中的方程写成完全平方的形式.【详解】解:2610x x --=Q ,261x x \-=,26919x x \-+=+,()2310x \-=,故选:B .5.(22-23九年级上·湖南永州·期中)用配方法解方程2810x x ++=时,则方程需变形为()24x += .【分析】本题考查解一元二次方程—配方法,将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,即可得出答案.解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.【详解】解:∵2810++=,x x∴281+=-,x x∴2816116++=.x xx x++=-+,即281615故答案为:156.(23-24九年级上·福建福州·期中)解方程:(1)()224x-=(2)213-=x x三.因式分解法(共3小题)7.(22-23九年级上·安徽芜湖·期中)若实数x 满足()()222616=0x x x x +-+-,则2x x +的值为( )A .8B .2-C .8或2-D .8-或2【答案】A【分析】本题考查解一元二次方程,把2x x +看成一个整体,利用因式分解法解方程即可.【详解】解:()()2226160x x x x +-+-=,因式分解得,()()22820x x x x +-++=,∴280x x +-=,220x x ++=,∴28x x +=,22x x +=-(满足此式实数不存在,舍去),故选:A .8.(23-24九年级上·湖北武汉·期中)一元二次方程232x x =的根为 .9.(22-23九年级上·海南省直辖县级单位·期中)解下列方程(1)2350x x -=(2)2314x x+=四.公式法(共3小题)10.(23-24九年级上·福建厦门·期中)x)A.2x x2310-+=2310x x++=B.2C.22310x x+-=+-=D.22310x x-的值互为相反数,那么x的值为.2x12.(23-24九年级上·广东东莞·期中)解方程.(1)2--=;2510x x2五.用适当的方法解方程(共3小题)13.(22-23九年级上·辽宁锦州·期中)按指定的方法解方程:(1)22410x x -+=(公式法)(2)2926x x -=+(因式分解法)14.(22-23九年级上·江苏无锡·期中)选择合适的方法解方程:(1)2540x x -+=;(2)2(1)40x +-=.【答案】(1)11x =,24x =(2)11x =,23x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用因式分解法求解可得;(2)利用直接开平方法求解可得.【详解】(1)2540x x -+=,(1)(4)0x x --=,10x \-=或40x -=,解得:11x =,24x =;(2)2(1)40x +-=,2(1)4x +=,12x +=或12x +=-,解得:11x =,23x =-.15.(22-23九年级上·山东济宁·期中)(1)解方程:()24190x --=;(2)解方程:2420x x --=.六.含绝对值的一元二次方程(共2小题)16.(22-23九年级上·湖南永州·期中)阅读下面的材料,并完成相应的任务.材料:解含绝对值的方程:2560x x --=.解:分两种情况:(1)当0x ³时,原方程可化为:2560x x --=,解得16x =,21x =-(舍去);(2)当0x <时,原方程可化为:2560x x +-=,解得16x =-,21x =(舍去).综上所述:原方程的解是16x =,26x =-.任务:请参照上述方法解方程:220x x --=.【答案】12x =,22x =-【分析】分两种情况讨论∶ 当0x ³时,当0x <时,即可求解.【详解】解:分两种情况讨论(1)当0x ³时,原方程可化为220x x --=解得:12x =,21x =-(舍去);(2)当0x <时,原方程可化为220x x +-=解得:12x =-,21x =(舍去);∴综上所述,原方程的根是12x =,22x =-.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.17.(23-24九年级上·河南洛阳·期中)有人说“数学是思维的体操”,运用和掌握必要的“数学思想”和“数学方法”是学好数学的重要法宝.阅读下列例题及其解答过程:例:解方程22||30x x --=.解:①当0x ³时,原方程为2230x x --=,解得11x =-(与0x ³矛盾,舍去),23x =.②当0x <时,原方程为2230x x +-=,解得11x =(与0x <矛盾,舍去),23x =-.所以原方程的根是13x =,23x =-.在上面的解答过程中,我们对x 进行讨论,从而化简绝对值.这是解决数学问题的一种重要思想——分类讨论.请仿照上述例题的解答过程,解方程:2||10x x --=.七.换元法(共3小题)18.(23-24九年级上·内蒙古呼和浩特·期中)关于x 的方程()20a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ¹),则方程()220a x m b +++=的解是( )A .10x =,21x =-B .10x =,23x =C .14x =-,21x =-D .14x =,23x =19.(23-24九年级上·江苏苏州·期中)若()()2222260x y x y +-+-=,则22x y +的值为.【答案】3【分析】本题主要考查换元法解一元二次方程,将22x y +看成一个整体计算即可.【详解】解:设22z x y =+,原方程为:260z z --=,解得123,2z z ==-,Q 220³+x y ,223x y \+=.故答案为:3.20.(23-24九年级上·辽宁锦州·期中)阅读材料:为了解方程()()22215140x x ---+=,我们可以将21x -看作一个整体,设21x y -=…①,那么原方程可化为2540y y -+=,解得11y =,24y =,当1y =时,211x -=,∴22x =,∴x =当4y =时,214x -=,∴25x =,∴x =,故原方程的解为1x =,2x =3x =4x =以上解题方法叫做换元法,在由原方程得到方程①的过程中,利用换元法达到了解方程的目的,体现了转化的数学思想;请利用以上知识解方程:()()22260x x x x +++-=八.判断一元二次方程根的情况(共3小题)21.(22-23九年级上·重庆綦江·期中)关于x 的一元二次方程2810x x +-=的根的情况是( )A .有两个不相等实数根B .没有实数根C .有两个相等的实数根D .不能确定【答案】A【分析】本题主要考查了一元二次方程根的判别式的运用,熟练掌握相关方法是解题关键.根据根的判别式即可求出答案.【详解】解:2810x x +-=∵()2248411680b ac --D ==´´-=>,∴方程有两个不相等的实数根.故选:A .22.(23-24九年级上·辽宁沈阳·期中)一元二次方程26100x x +=-根的情况是 实数根(填“有”或“没有”).【答案】没有【分析】此题考查了一元二次方程的根,利用一元二次方程根的判别式24b ac D =-判断方程的根的情况即可,熟练掌握方程的判别式24b ac D =-,当0D >时方程有两个不相等的实数根,当0D =时方程有两个相等的实数根,当0D <时方程无实数根.【详解】解:()2246411040b ac D =-=--´´=-<,∴方程没有实数根,故答案为:没有23.(23-24九年级上·广东河源·期中)证明:无论k 取何值,关于x 的方程()2310k x kx -++=恒有实数根所以方程有两个不相等的实数根,所以不论k 取何值,方程总有实数根九.确定字母的取值或范围(共3小题)24.(22-23九年级上·福建莆田·期中)若关于x 的一元二次方程240x x k -+=有两个相等实数根,则k 的值是( )A .1-B .1C .4-D .4【答案】D【分析】本题考查的是根的判别式,即一元二次方程20ax bx c ++=(0a ¹)的根与24b ac -有如下关系:①当240b ac ->时,方程有两个不相等的两个实数根;②当240b ac -=时,方程有两个相等的两个实数根;③当240b ac -<时,方程无实数根.根据关于x 的一元二次方程240x x k -+=有两个相等的实数根可知240b ac -=,求出k 即可.【详解】解:Q 关于x 的一元二次方程240x x k -+=有两个相等实数根,\2(4)40k D =--=,解得:4k =.故选:D .25.(21-22九年级上·天津滨海新·期中)若关于x 的一元二次方程230x x c -+=有两个实数根,则c 的取值范围为 .26.(23-24九年级上·新疆伊犁·期中)已知关于x 的方程()221210m x m x +-+=有两个不相等的实数根.求实数m 的取值范围.十.根与系数关系的综合应用(共3小题)27.(23-24九年级上·湖北武汉·期中)已知实数a ,b 满足 23510a a +-=,2530b b --=,且1ab ¹,则ab的值为( )A .53-B .1-C .3-D .13-28.(22-23九年级上·四川内江·期中)如果m n 、是两个不相等的实数,23m m -=,23n n -=,那么代数式2222021n mn m -++ .【答案】2032【分析】此题考查一元二次方程根与系数的关系,代数式求值.熟练运用一元二次方程根的定义和根与系数的关系,把代数式化成已知式子形式及两根和、积的形式,是解此题的关键.由题意得m ,n 是230x x --=的两个不相等的实数根,则根据根的定义和根与系数的关系可知:2226n n -=,1m n +=,3=-mn ,变形2222021n mn m -++,为222222021n n mn m n --+++,代入求解即可.【详解】mn Q 是两个不相等的实数,且满足2233m m n n -=-=,,mn \是方程230x x --=的两根,2226n n \-=,1m n +=,3=-mn ,2222021n mn m \-++222222021n n mn m n =--+++6322021=+++2032=.故答案为:2032.29.(23-24九年级上·山西临汾·期中)已知关于x 的一元二次方程()2931104kx k x k -+++=有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在k 的值,使得两根互为相反数.若存在,求出此时k 的值,若不存在,请说明理由.十一.与几何图形的综合应用(共4小题)30.(23-24九年级上·云南昆明·期中)若一个三角形不是等边三角形且边长均满足方程21090-+=,则x x此三角形的周长是()A.11B.19C.20D.11或1931.(20-21九年级上·四川凉山·期中)已知等腰三角形(不是等边三角形)的三边长均满足方程22860x x -+=,则这个等腰三角形的周长为,【答案】7【分析】根据题意由等腰三角形的底和腰是方程22860x x -+=的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当1是等腰三角形的腰时与当3是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.【详解】解:22860x x -+=Q ,(1)(3)0,x x \--=解得:1x =或3x =,∵等腰三角形的底和腰是方程22860x x -+=的两根,∴当1是等腰三角形的腰时,113+<,不能组成三角形,舍去;当3是等腰三角形的腰时,133+>,则这个三角形的周长为1337++=.故答案为:7.【点睛】本题考查等腰三角形的性质和三边关系以及解一元二次方程.解题的关键是注意分类讨论思想的应用32.(23-24九年级上·山西长治·期中)已知等腰ABC V 的两边长是关于x 的一元二次方程()()21210x k x k -++-=的两个实数根.(1)当5k =时,求ABC V 的周长.(2)若ABC V 为等边三角形,求k 的值.【答案】(1)10(2)3k =【分析】(1)将5k =代入方程,求出方程的两个根,根据等腰三角形的定义,分两种情况讨论求解;(2)根据题意,得到方程有两个相等的实数根,进而得到240b ac D =-=,求解即可.【详解】(1)解:当5k =时,一元二次方程为2680x x -+=,解得2x =或4x =.∴ABC V 是等腰三角形,∴三边长为4,4,2或2,2,4(舍去),∴ABC V 的周长44210=++=.(2)∵ABC V 为等边三角形,∴方程有两个相等的实数根,∴()()()22222418121886930b ac k k k k k k k k -=-+--=++-+=-+=-=éùëû,解得3k =.【点睛】本题考查解一元二次方程,根的判别式.熟练掌握解一元二次方程的方法,以及根的判别式与根的个数的关系,是解题的关键.33.(23-24九年级上·山东济宁·期中)已知关于x 的一元二次方程()()220b c x ax b c +-+-=,其中a ,b ,c分别为ABC V 三边的长.(1)已知1x =是方程的根,求证:ABC V 是等腰三角形;(2)如果ABC V 是直角三角形,其中90B Ð=°,请你判断方程的根的情况,并说明理由.十二.储蓄问题(共2小题)34.(21-22九年级上·广西河池·期中)王洪存银行5000元,定期两年后取出共6050元,如果每年的年利率不变,则年利率为( )A .5%B .20%C .15%D .10%【答案】D【分析】设年利率为x ,根据“两年后的定期本息=本金´(1+年利率)2”建立方程,解方程即可得.【详解】解:设年利率为x ,由题意得:()2500016050x +=,解得120.110%, 2.10x x ===-<(不符题意,舍去),即年利率为10%,故选:D .【点睛】本题考查了一元二次方程的应用,正确建立方程是解题关键.35.(22-23九年级上·广东佛山·期中)某人在银行存了400元钱,两年后连本带息一共取款484元,设年利率为x ,则列方程为 .【答案】24001484x +=()【分析】本题为复利问题,一般形式为21a x b +()=,如果设年利率为x ,那么根据题意可得出方程.【详解】解:设年利率为x ,则根据公式可得:24001484x +=();故答案为:24001484x +=().【点睛】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式21a x b +()=,其中a 是变化前的原始量,b 是两次变化后的量,x 表示平均每次的增长率十三.行程问题(共3小题)36.(23-24九年级上·山西临汾·期中)飞机起飞前,先要在跑道上滑行一段路程,滑行时是匀加速运动,其公式为212s at =,如 果飞机起飞前滑行距离750m ,其中215m/s a =,则飞机起飞的时间t = s .故答案为:10.37.(23-24九年级上·湖南岳阳·期中)在京珠高速公路上行驶着一辆时速为108千米的汽车,突然发现前面有情况,紧急刹车后又滑行30米才停车.刹车后汽车滑行10米时用了 秒.的算术平均数)与路程s ,时间t 的关系为s v t =×.现有一个小球以5m/s 的速度开始向前滚动,并且均匀减速,4s 后小球停止运动.(1)小球的滚动速度平均每秒减少多少?(2)小球滚动5m 1.41»)【答案】(1)小球的滚动速度平均每秒减少1.25m/s (2)小球滚动5m 约用了1.2秒【分析】(1)根据以5m/s 的速度开始向前滚动,并且均匀减速,4s 后小球停止运动列式计算即可;(2)设小球滚动5m 约用了x 秒,由时间´速度=路程,列出一元二次方程,解方程即可.【详解】(1)解:小球的滚动速度平均每秒减少()54 1.25m/s ¸=,十四.工程问题(共1小题)39.(22-23九年级上·四川成都·期中)由于疫情反弹,某地区开展了连续全员核酸检测,9月7日,医院派出13名医护人员到一个大型小区设置了A 、B 两个采样点进行核酸采样,当天共采样9220份,已知A 点平均每人采样720份,B 点平均每人采样700份.(1)求A 、B 两点各有多少名医护人员?(2)9月8日,医院继续派出这13名医护人员前往这个小区进行核酸采样,这天,社区组织者将附近数个商户也纳入这个小区采样范围,同时重新规划,决定从B 点抽调部分医护人员到A 点经调查发现,B 点每减少1名医护人员,人均采样量增加份,A 点人均采样量不变,最后当天共采样9360份,求从B 点抽调了多少名医护人员到A 点?【答案】(1)A 检测队有6人,B 检测队有7人(2)从B 检测队中抽调了2人到A 检测队【分析】(1)设A 点有x 名医护人员,B 点有y 名医护人员,根据“A 、B 两个采样点共13名医护人员,且当天共采样9220份”,即可得出关于x ,y 的且当天共采样9220份,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设从B 点抽调了m 名医护人员到A 点,则B 点平均每人采样()70010m +份,根据重新规划后当天共采样9360份,即可得出关于m 的一元_二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设A 检测队有x 人,B 检测队有y 人,依题意得:137207009200x y x y +=ìí+=î,分解得:67x y =ìí=î答:A 检测队有6人,B 检测队有7人;(2)解:设从B 检测队中抽调了m 人到A 检测队,则B 检测队人均采样()70010m +人,依题意得:()()()72067001079360m m m +++-=,解得:29140m m -+=,解得:12m =,27m =,由于从B 对抽调部分人到A 检测队,则7m <故2m =,答:从B 检测队中抽调了2人到A 检测队.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程十五.进制问题(共1小题)40(22-23九年级上·河北保定·期中)第十四届国际数学教育大会(-14ICME )会徽的主题图案(如图)有着丰富的数学元素,展现了我国古代数学的文化魅力,其下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021´+´+´+´=,表示-14ICME 的举办年份.(1)八进制数3746换算成十进制数是 ;(2)小华设计了一个n 进制数120,则n 的值为.【答案】 2022 9【分析】(1)根据已知,从个位数字起,将八进制的每一位数分别乘以08,18,28,38,再把所得结果相加即可得解;(2)根据n 进制数和十进制数的计算方法得到关于n 的方程,解方程即可求解.【详解】解:(1)3210374638784868=´+´+´+´1536448326=+++2022=.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:21043120n n n +´+´=,解得19n =,213n =-(舍去).故n的值是9.【点睛】本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.。
中考数学压轴题之一元二次方程组(中考题型整理,突破提升)附答案解析
(2)若方程两实根 x1 , x2 满足 x1 x2 x1x2 1 0 ,求 k 的值.
【答案】(1) k< 1 ;(2) k=0. 4
【解析】 【分析】 (1)根据一元二次方程的根的判别式得出△ >0,求出不等式的解集即可; (2)根据根与系数的关系得出 x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入 x1+x2+x1x2-1=0,即可 求出 k 值. 【详解】 解:(1)∵ 关于 x 的一元二次方程 x2+(2k-1)x+k2=0 有两个不等实根 x1,x2,
月份
用水量 (吨)
水费 (元)
四月
35
59.5
五月
80
151
【答案】
5.有一个人患了流感,经过两轮传染后共有 36 人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染? 【答案】(1)5;(2)180 【解析】 【分析】 (1)设平均一人传染了 x 人,根据有一人患了流感,经过两轮传染后共有 36 人患了流 感,列方程求解即可; (2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即 可. 【详解】 (1)设每轮传染中平均一个人传染了 x 个人,根据题意得: x+1+(x+1)x=36, 解得:x=5 或 x=﹣7(舍去). 答:每轮传染中平均一个人传染了 5 个人; (2)根据题意得:5×36=180(个), 答:第三轮将又有 180 人被传染.
2a
2 2
2
∴ x1=-1+ 6 ,x2=-1- 6
2
2
(2)(y+2)2-(3y-1)2=0
初三数学一元二次方程常考应用题型附答案解析
初三数学一元二次方程常考应用题型附答案解析一、列一元二次方程解决率类问题例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。
假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 (B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。
【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一只股票某天跌停,之后两天时间又涨回到原价。
若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。
(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。
部编数学九年级上册专题一元二次方程的解法(考点题型)【一题三变系列】考点题型精讲(解析版)含答案
专题02 一元二次方程的解法【思维导图】◎题型1:直接开平方法技巧:把方程ax2+c=0(a≠0)这解一元二次方程的方法叫做直接开平方法。
例.(2022·浙江绍兴·八年级期末)一元二次方程x2 -1=0的根是()A.x1=x2=1B.x1=1,x2=-1C.x1=x2=-1D.x1=1,x2=0【答案】B【解析】【分析】先移项,再两边开平方即可.【详解】解:∵x2-1=0,∴x2=1,∴x=±1,即x1=-1,x2=1.故选:B.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.变式1.(2023·福建省福州第十六中学八年级期末)方程210x -=的解是( )A .121x x ==B .120,1x x ==C .121,1x x ==-D .120,1x x ==-【答案】C【解析】【分析】先移项,再两边开平方可得解.【详解】解:由原方程可得:x 2=1,两边开平方可得:121,1x x ==-,故选:C .【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程的求解方法是解题关键.变式2.(2022·江苏·苏州市吴中区城西中学八年级期中)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-【答案】D【解析】【分析】根据直接开平方法求解可得.【详解】解:∵2(9)4x m -=+,且方程2(9)4x m -=+可以用直接开平方法求解,∴40m +³,∴4m ³-.故选:D .【点睛】此题主要考查了直接开平方法解一元二次方程,正确化简方程是解题关键.变式3.(2022·全国·九年级课时练习)方程y2=-a有实数根的条件是()A.a≤0B.a≥0C.a>0D.a为任何实数【答案】A【解析】【分析】根据平方的非负性可以得出﹣a≥0,再进行整理即可.【详解】解:∵方程y2=﹣a有实数根,∴﹣a≥0(平方具有非负性),∴a≤0;故选:A.【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a≥0.◎题型2:配方法技巧:将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如x²+例.(2020·江苏无锡·九年级期中)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=5B.(x-2) 2=5C.(x-2) 2=3D.(x+2) 2=3【答案】D【解析】【分析】移项后两边配上一次项系数一半的平方可得.【详解】解:∵x 2+4x +1=0,∴x 2+4x =-1,∴x 2+4x +4=-1+4,即(x +2)2=3,故选:D .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法解一元二次方程的基本步骤是解题的关键.变式1.(2021·浙江温州·八年级期中)用配方解方程2610x x -+=,原方程可变形为( )A .()2335x -=B .()238x -=C .()238x +=D .()2335x +=【答案】B【解析】【分析】方程常数项移到右边,两边加上9变形得到结果即可.【详解】解∶ 2610x x -+=,变形得-=-261x x ,配方得26919x x -+=-+,即2(3)8x -=.故选∶B .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.变式2.(2022·河北·大城县教学研究中心九年级期末)用配方法解方程241x x =+,配方后得到的方程是( )A .2(2)5x +=B .2(2)5x -=C .2(2)3x +=D .2(2)1x -=【答案】B【解析】【分析】先把一次项移到等式的左边,然后在左右两边同时加上一次项系数−4的一半的平方.【详解】解:把方程x 2=4x +1移项,得:x 2−4x =1,方程两边同时加上一次项系数一半的平方,得到x2−4x+4=1+4,配方得(x−2)2=5,故选:B.【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.变式3.(2022·江苏·九年级专题练习)关于x的方程x(x﹣1)=3(x﹣1),下列解法完全正确的是( )A.A B.B C.C D.D【答案】D【解析】【分析】A.不能两边同时除以(x﹣1),会漏根;B.化为一般式,利用公式法解答;C.利用配方法解答;D.利用因式分解法解答【详解】解:A.不能两边同时除以(x﹣1),会漏根,故A错误;B.化为一般式,a=l,b=﹣4,c=3,故B错误;C.利用配方法解答,整理得,x 2﹣4x =﹣3,配方得,x 2﹣4x +22=1,故C 错误;D.利用因式分解法解答,完全正确,故选:D【点睛】本题考查解一元二次方程,涉及公式法、配方法、因式分解法等知识,是重要考点,掌握相关知识是解题关键.◎题型3:配方法的应用例.(2022·全国·九年级课时练习)已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【解析】【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【详解】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.变式1.(2022·全国·九年级课时练习)已知方程264x x -+=W ,等号右侧的数字印刷不清楚,若可以将其配方成()27x p -=的形式,则印刷不清楚的数字是( )A .6B .9C .2D .2-【答案】C【解析】【分析】设印刷不清的数字是a ,根据完全平方公式展开得出x 2-2px +p 2=7,求出x 2-2px +4=11-p 2,再根据题意得出-2p =-6,a =11-p 2,最后求出答案即可.【详解】设印刷不清的数字是a ,(x -p )2=7,x 2-2px +p 2=7,∴x 2-2px =7-p 2,∴x 2-2px +4=11-p 2,∵方程x 2-6x +4=□,等号右侧的数字印刷不清楚,可以将其配方成(x -p )2=7的形式,∴-2p =-6,a =11-p 2,∴p =3,a =11-32=2,即印刷不清的数字是2,故选:C .【点睛】本题考查了解一元二次方程和完全平方公式,能求出-2p =-6是解此题的关键.变式2.(2020·福建省泉州第一中学九年级阶段练习)已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-【答案】A【分析】由2104m m c -+=变形得214m m c -=-,代入22112124n m m c =-++中得到2134n c c =-+,再进行配方,根据非负数的性质即可得到答案.【详解】2104m m c -+=Q \ 214m m c -=-\22111(244m m m -=--³-1c \£22222211111121212()12()344444n m m c m m c c c c c \=-++=-++=´-++=-+23(22n c \=-- 231(24c -³Q 74n \³- 故选:A .【点睛】本题主要考查了配方法的应用,涉及非负数的性质、偶次方,熟练运用上述知识是解题的关键.变式3.(2022·全国·九年级课时练习)若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【解析】【分析】把二次三项式进行配方即可解决.【详解】配方得:226(3)9x x c x c-+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.◎题型4:公式法技巧:一元二次方程ax 2+bx+c =0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a ,b ,c 的值代入两根公式中直接解出,所以把这种方法=0(a ≠0)的求根公式。
全国中考数学一元二次方程的综合中考真题汇总附详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;4.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.7.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.8.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解9.解方程:x 2-2x =2x +1.【答案】x 1=2-5 ,x 2=2+5.【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式24b b ac x -±-=求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =420±=2±5 , ∴x 1=2-5 ,x 2=2+5.10. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】。
解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)
解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。
温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。
根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。
《常考题》初中九年级数学上册第二十一章《一元二次方程》知识点总结(含答案解析)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM2.27742322x -+⨯⨯=⨯是下列哪个一元二次方程的根( )A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=3.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( ) A .()50166x += B .()250166x += C .()2501266x +=D .()()5011266x x ++=4.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7 B .7或10 C .10或11 D .11 5.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-46.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6789101112abcd ef ghi图1图2A .17B .18C .19D .207.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( ) A .(1)81x x x ++= B .2181x x ++= C .1(1)81x x x +++=D .(1)81x x +=8.用配方法解方程23620x x -+=时,方程可变形为( ) A .21(3)3x -= B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=9.一元二次方程20x x -=的根是( ) A .10x =,21x = B .11x =,21x =- C .10x =,21x =-D .121x x ==10.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( ) A .1B .0C .1-D .1或011.方程23x x =的解为( ) A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-12.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定13.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人. A .40 B .10 C .9D .814.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=515.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题16.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)217.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 18.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.19.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____. 20.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____ 21.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.22.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.23.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x ,根据题意,可得方程_______24.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.25.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.26.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x,可列方程.为____________.三、解答题27.已知关于x的方程x2﹣8x﹣k2+4k+12=0.(1)求证:无论k取何值,这个方程总有两个实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.28.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒?(2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a,红茶每盒降价4a%,桃片糕数量在(1)问最多的数量下增加6a%,红茶数量在(1)问最少的数量下增加4a%,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a 元,求a的值.29.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,其部分对应数据如下表所示:(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元? 30.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m>元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.。
初三数学一元二次方程试题答案及解析
初三数学一元二次方程试题答案及解析1. (1)解方程:;(2)解不等式组:【答案】(1)x1=﹣,x2=2;(2)1<x<4.【解析】(1)用因式分解法进行求解即可;(2)先求得不等式组中每一个不等式的解集,然后取其交集.试题解析:(1)(2x+1)(x-2)=0,解得x1=﹣,x2=2;(2)不等式①的解集为:x>1;不等式②的解集为:x<4.故原不等式的解集为: 1<x<4.【考点】1.解一元二次方程2.解不等式组.2.小明的家庭作业中有这样一道题:“如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.在第n个图中,黑、白瓷砖各有多少块.(用含n的代数式表示)”小明做完作业后发现这些图案很美.正好小明爸爸的商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.于是他建议爸爸按照图案方式进行装修.已知每块白色瓷砖40元,每块黑色瓷砖20元,贴瓷砖的费用每平方米15元.经测算,瓷砖无须切割,且恰好能完成铺设,总费用需7260元.问两种瓷砖各需买多少块?【答案】白色瓷砖需买110块,黑色瓷砖需买44块.【解析】设白色瓷砖的行数为n,利用总费用为7260元为等量关系列出方程求解即可.设白色瓷砖的行数为n,根据题意,得40n(n+1)+20×4(n+1)+15(n+1)(n+2)=7260,解得n1=10,n2=-13(不合题意,舍去).白色瓷砖块数为n(n+1)=110,黑色瓷砖块数为4(n+1)=44,答:白色瓷砖需买110块,黑色瓷砖需买44块.【考点】1.一元二次方程的应用;2.规律型:图形的变化类.3.已知⊙O1与⊙O2的半径分别是方程的两实根,且,若这两个圆相切,则t =【答案】2或0.【解析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况列出关于t的方程讨论求解.试题解析:∵⊙O1、⊙O2的半径分别是方程x2-4x+3=0的两根,解得⊙O1、⊙O2的半径分别是1和3.①当两圆外切时,圆心距O1O2=t+2=1+3=4,解得t=2;②当两圆内切时,圆心距O1O2=t+2=3-1=2,解得t=0.∴t为2或0.考点: 1.圆与圆的位置关系;2.解一元二次方程-因式分解法.4.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1x2有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中正确的结论是__________(填正确结论的序号)【答案】②③.【解析】将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.试题解析:一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,∵方程有两个不相等的实数根x1、x2,∴b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:m>-,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),令y=0,可得(x-2)(x-3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.考点: 1.抛物线与x轴的交点;2.一元二次方程的解;3.根的判别式;4.根与系数的关系.5.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.⑴当x为何值时,△APD是等腰三角形?⑵若设BE=y,求y关于x的函数关系式;⑶若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.【答案】.【解析】(1)过D点作DH⊥AB于H,则四边形DHBC为矩形,在Rt△AHD中,由勾股定理可求得DH、AD、PH的值,若△ADP为等腰三角形,则分三种情况:①当AP=AD时,x=AP=AD,②当AD=PD时,有AH=PH,故x=AH+PH,③当AP=PD时,则在Rt△DPH中,由勾股定理可求得DP的值,有x=AP=DP.(2)易证:△DPH∽△PEB⇒,即,故可求得y与x的关系式.(3)利用△DPH∽△PEB,得出,进而利用根的判别式和一元二次不等式解集得出即可.试题解析:(1)过D点作DH⊥AB于H,则四边形DHBC为矩形,∴DH=BC=4,HB=CD=6.∴AH=2,AD=2.∵AP=x,∴PH=x﹣2,情况①:当AP=AD时,即x=2.情况②:当AD=PD时,则AH=PH.∴2=x﹣2,解得x=4.情况③:当AP=PD时,则Rt△DPH中,x2=42+(x﹣2)2,解得x=5.∵2<x<8,∴当x为2、4、5时,△APD是等腰三角形.(2)∵∠DPE=∠DHP=90°,∴∠DPH+∠EPB=∠DPH+∠HDP=90°.∴∠HDP=∠EPB.又∵∠DHP=∠B=90°,∴△DPH∽△PEB.∴,∴.整理得:y=(x﹣2)(8﹣x)=﹣x2+x﹣4;(3)存在.设BC=a,则由(2)得△DPH∽△PEB,∴,∴y=,当y=a时,(8﹣x)(x﹣2)=a2x2﹣10x+(16+a2)=0,∴△=100﹣4(16+a2),∵△≥0,∴100﹣64﹣4a2≥0,4a2≤36,又∵a>0,∴a≤3,∴0<a≤3,∴满足0<BC≤3时,存在点P,使得PQ经过C.【考点】1.一元二次方程2.相似三角形的判定与性质.6.已知:关于的方程x2+(2-m)x-2m=0.⑴求证:无论取什么实数值,方程总有实数根;⑵取一个m的值,使得方程两根均为整数,并求出方程的两根。
初三数学九上一元二次方程所有知识点总结和常考题型练习题
一元二次方程知识点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2、一元二次方程的一般形式:,它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和,二根之积。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用三、一元二次方程根的判别式根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即I.当△〉0时,一元二次方程有2个不相等的实数根;II.当△=0时,一元二次方程有2个相同的实数根;III。
当△〈0时,一元二次方程没有实数根四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
(中考考点梳理)一元二次方程-中考数学一遍过
考点05 一元二次方程一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一般形式20ax bx c ++=(其中,,a b c 为常数,0a ≠),其中2,,ax bx c 分别叫做二次项、一次项和常数项,,a b 分别称为二次项系数和一次项系数.注意:(1)在一元二次方程的一般形式中要注意0a ≠,因为当0a =时,不含有二次项,即不是一元二次方程;(2)一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.二、一元二次方程的解法1.直接开平方法适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程.2.配方法(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程.3.公式法(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入x =即可. 4.因式分解法基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=.三、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=. 四、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.1.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.2.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%. 3.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.图1图2 图3考向一 一元二次方程的概念一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.典例1 下列方程中是关于x 的一元二次方程的是A .2210x x += B .ax 2+bx +c =0 C .x 2+x +1=0D .x (x +1)=x 2+7 【答案】C【名师点睛】本题主要考查一元二次方程的定义.根据一元二次方程的定义对每个选项进行判断即可.注意D 选项需要化简后进行观察.1.若方程()2110m x mx +--=是关于x 的一元二次方程,则m 的取值范围是 A .m ≠−1 B .m =−1C .m ≥−1D .m ≠0考向二 解一元二次方程一元二次方程的常见解法及适用情形:典例2 若2x =-是关于x a 的值为_______________. 【答案】1或4-【解析】因为2x =-是关于x2340a a +-=,整理得1)40()(a a +-=, 解得14a =-,21a =.故a 的值是1或4-.典例3 用配方法解方程2210x x +-=时,配方结果正确的是A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B【解析】因为2210x x +-=,所以2212x x ++=,即2(1)2x +=.故选B .2.一元二次方程23830x x +-=的解是_______________.3.方程()32)11(x x x -=-的根是_______________.考向三 一元二次方程根的判别式对于方程2(0)0ax bx c a ++=≠,24b ac ∆=-,①若∆>0,方程有两个不相等的实数根;②若∆=0,方程有两个相等的实数根;③若∆<0,方程没有实数根.典例4 已知关于x 的一元二次方程2210ax x +-=无实数根,则a 的取值范围是_______________.【答案】1a <-【解析】因为关于x 的一元二次方程2210ax x +-=无实数根,所以0a ≠,且44(1)0a ∆-⨯⨯-<=,解得1a <-.故a 的取值范围是1a <-.学-科网典例5 有两个一元二次方程:①20ax bx c ++=,②20cx bx a ++=,其中0a c +=,以下四个结论中,错误的是A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根B .如果方程①和方程②有一个相同的实数根,那么这个根必定是1x =C .如果4是方程①的一个根,那么14是方程②的一个根 D .方程①的两个根的符号相异,方程②的两个根的符号也相异【答案】B【解析】选项A ,214b ac ∆=-,224b ac ∆=-,12∆∆=,所以A 正确;选项B ,因为将1±分别代入方程,值相等,结合0a c +=,可知B 不正确;选项C ,因为1640a b c ++=,110164c b a ++=,即1640a b c ++=,故C 正确; 选项D ,由根与系数关系可知D 正确.故选B .4.一元二次方程22520x x --=的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .1B .1-C .2D .2-考向四 根与系数关系设一元二次方程20(0)ax bx c a ++=≠的两根分别为1x ,2x ,则12bx x a +=-,12cx x a =.典例6 若1-是方程220x x c -+=的一个根,则c 的值为A .2-B .2-C .3D .1【答案】A【解析】由根与系数的关系可得另一个根为2(11-=+,所以(12c ==-. 故选A .典例7 如果1x ,2x 是一元二次方程2650x x --=的两个实根,那么2212x x +=_______________.【答案】46【解析】由根与系数关系,可得126x x +=,125x x =-,则222121212()2365246x x x x x x +=+-=+⨯=.6.若方程2410x x -+=的两根是1x ,2x ,则122(1)x x x ++的值为_______________.7.关于x 的方程022=++n mx x 的两个根是2-和1,则m n 的值为A .8- B .8C .16D .16-考向五 一元二次方程在实际问题中的应用列一元二次方程解实际问题的关键是找出题中的等量关系,利用等量关系列出方程.其中分析实际问题是解决问题的前提和基础,解一元二次方程是重要方法和手段,并注意解出的方程的解是否符合实际问题.典例8 某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是_______________.【答案】25%【解析】设药品平均每次降价的百分率是a ,则由题意可得243(616)a -=,25%. 典例9 经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是_______________.【答案】203(512)x -=【解析】由题意可得203(512)x -=.8.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是A .20%B .25%C .50%D .62.5%9.如图,在一块长为22米、宽为17米的长方形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与长方形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为A .()()2217300x x +-=B .()()22172300x x --=C .()()2217300x x ++=D .()()2217300x x --=1.下列方程为一元二次方程的是A .2220x xy y -+=B .223x x -=C .()231x x x +=-D .10x x+= 2.设1x ,2x 是方程2530x x +-=的两个根,则12x x +=A .5B .5-C .3D .3-3.如果2是方程230x x k -+=的一个根,则常数k 的值为A .1 B .2C .1-D .2-4.用公式法解﹣x 2+3x =1时,先求出a 、b 、c 的值,则a 、b 、c 依次为A .﹣1,3,﹣1B .1,﹣3,﹣1C .﹣1,﹣3,﹣1D .﹣1,3,15.方程230x x -=的解是A .3x =B .10x =,23x =C .10x =,23x =-D .11x =,23x = 6.方程()11x x x +=+的解是A .1x =B .1x =-C .10x =,21x =-D .11x =,21x =-7.若关于x 的一元二次方程22(2)520m x x m m -++-=的常数项为0,则m 的值为A .1B .2C .0或2D .0 8.一元二次方程2210x x --=的根的情况为A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根 9.已知关于x 的一元二次方程22(2)0x x m +--=有实数根,则m 的取值范围是A .1m >B .1m <C .1m ≥D .1m ≤10.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是A .16q <B .16q >C .4q ≤D .4q ≥11.已知c b a ,,为常数,点),(c a P 在第二象限,则关于x 的方程02=++c bx ax 根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断12.关于x 的一元二次方程22(2)10x a a x a +-+-=的两个实数根互为相反数,则a 的值为A .2B .0C .1D .2或013.如果2是方程230x x k -+=的一个根,则此方程的另一根为A .2B .1C .1-D .2- 14.设α,β是方程2210x x --=的两根,则代数式αβαβ++的值是A .1B .1-C .3D .3- 15.若关于x 的一元二次方程20x bx c -+=的两个实数根分别为2和4-,则b c +=A .10-B .10C .6-D .1- 16.已知一元二次方程2210x x --=的两根分别为1x ,2x ,则1211x x +的值为 A .2B .1-C .12- D .2- 17.2018年某市人民政府投入1000万元用于改造乡村小学班班通工程建设,计划到2020年再追加投资210万元,如果每年的平均增长率相同,那么该市这两年该项投入的平均增长率为A .10%B .8%C .1.21%D .12.1%18.已知一次函数y =kx +b 的大致图象如图所示,则关于x 的一元二次方程x 2﹣2x +kb +1=0的根的情况是A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个根是019.用配方法解方程x 2+6x ﹣5=0时,应该变形为_______________.20.若方程220x x k ++=有两个不相等的实数根,则k 的取值范围是_______________. 21.已知关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值是_______________. 22.在一次聚会中,参加聚会的人每两位都相互握一次手,一共握手28次,设参加聚会有x 人,则可列方程_______________.23.若12,x x 是一元二次方程2350x x +-=的两个根,则221212x x x x +的值是_______________. 24.已知直角三角形两边的长是方程218650x x -+=的两个根,则第三边的长为_______________. 25.设α,β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+=_______________. 26.解下列方程:(1)2235()x -=;(2)22330x x --=; (3)2()330x x --+=.27.关于x 的一元二次方程2(3)220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.28.已知关于x 的方程28120x x a ++-=有两个不相等的实数根.(1)求a 的取值范围;(2)当a 取满足条件的最小整数时,求出方程的解. 29.根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程2210x x -+=的解为________________________; ②方程2320x x -+=的解为________________________; ③方程2430x x -+=的解为________________________;……(2)根据以上方程特征及其解的特征,请猜想:①方程2980x x -+=的解为________________________;②关于x 的方程________________________的解为11x =,2x n =. (3)请用配方法解方程2980x x -+=,以验证猜想结论的正确性.30.如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东、南、西、北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的15,小路与观赏亭的面积之和占草坪面积的325,求小路的宽.31.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6 cm2?(2)在(1)中,△PQB的面积能否等于8 cm2?说明理由.32.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨(或跌)1元,月销售量就减少(或增加)10kg,解答以下问题:(1)当销售单价定为每千克35元时,计算月销售量和月销售利润;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?1.(2018贵州省铜仁)关于x的一元二次方程x2﹣4x+3=0的解为A.x1=﹣1,x2=3 B.x1=1,x2=﹣3C.x1=1,x2=3 D.x1=﹣1,x2=﹣32.(2018湖南省湘西州)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为A.1 B.﹣3C.3 D.43.(2018甘肃省陇南)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是A.k≤﹣4 B.k<﹣4C.k≤4D.k<44.(2018辽宁省锦州)一元二次方程2x2−x+1=0的根的情况是A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断5.(2018四川省泸州)若关于x 的一元二次方程()222110x k x k +-+-=有实数根,则k 的取值范围是A .k ≥1B .k >1C .k <1D .k ≤16.(2018福建)已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和﹣1都是关于x 的方程x 2+bx +a =0的根D .1和﹣1不都是关于x 的方程x 2+bx +a =0的根7.(2018河南)下列一元二次方程中,有两个不相等实数根的是 A .x 2+6x +9=0 B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=08.(2018湖北省咸宁)已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是 A .x 1+x 2=1 B .x 1•x 2=﹣1 C .|x 1|<|x 2|D .x 12+x 1=129.(2018广西壮族自治区贵港)已知α,β是一元二次方程x 2+x ﹣2=0的两个实数根,则α+β﹣αβ的值是 A .3 B .1 C .﹣1D .﹣310.(2018山东省潍坊)已知关于x 的一元二次方程mx 2﹣(m +2)x +4m=0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是 A .2B .﹣1C .2或﹣1D .不存在11.(2018黑龙江省龙东地区)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛? A .4B .5C .6D .712.(2018浙江省舟山)欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC △,使90ACB ∠= ,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是A .AC 的长B .AD 的长C .BC 的长D .CD 的长13.(2018四川省资阳)已知关于x 的一元二次方程mx 2+5x +m 2﹣2m =0有一个根为0,则m =_____. 14.(2018云南省曲靖)关于x 的方程ax 2+4x ﹣2=0(a≠0)有实数根,那么负整数a =_____(一个即可). 15.(2018贵州省毕节)已知关于x 的一元二次方程x 2﹣x ﹣m =0有两个不相等的实数根,则实数m 的取值范围是_____.16.(2018湖南省益阳)规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x =_____.17.(2018湖北省荆州)关于x 的一元二次方程x 2﹣2kx +k 2﹣k =0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.18.(2018四川省达州)已知:m 2﹣2m ﹣1=0,n 2+2n ﹣1=0且mn ≠1,则1mn n n++的值为_____. 19.(2018甘肃省兰州)解方程:23220x x --=.20.(2018湖北省十堰)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.21.(2018湖北省孝感)已知关于x 的一元二次方程()()()321x x p p --=+. (1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值. 22.(2018黑龙江省绥化)已知关于x 的一元二次方程2520x x m -+=有实数根. (1)求m 的取值范围; (2)当52m =时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.23.(2018重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a %,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a %,5a %,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a %,8a %,求a 的值.1.【答案】A【解析】根据一元二次方程的定义可得:m +1≠0,解得:m ≠−1. 故选A .【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程必须满足三个条件: (1)必须是整式方程;(2)未知数的最高次数是2;(3)二次项系数不为0.根据一元二次方程的定义求解即可. 2.【答案】113x =,23x =-3.【答案】11x =,223x =【解析】()32)11(x x x -=-,即312()(0)1x x x ---=,即()(20)31x x --=,即320x -=或10x -=,解得11x =,223x =. 4.【答案】B【解析】由22520x x --=可得2(5)42(2)410∆=--⨯⨯-=>,所以方程22520x x --=有两个不相等的实数根. 故选B . 5.【答案】A【解析】由题可得=4401k k ∆-=⇒=. 故选A . 6.【答案】5【解析】根据题意得124x x +=,121x x =,所以12212124(1)15x x x x x x x ++=+=+=+. 7.【答案】C【解析】因为关于x 的方程022=++n mx x 的两个根是2-和1,所以12m -=-,22n=-,所以2m =,4n =-,所以2(4)16m n =-=.故选C .9.【答案】D【解析】设道路的宽应为x 米, 由题意得(22−x )(17−x )=300, 故选D .【名师点睛】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.1.【答案】B【解析】A 、是二元二次方程,故不是一元二次方程,故此选项错误; B 、是一元二次方程,故此选项正确;C 、原方程化简整理后是一元一次方程,故此选项错误;D 、是分式方程,不是一元二次方程,故此选项错误; 故选B .【名师点睛】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.利用一元二次方程的定义:含有一个未知数,未知数的最高次数为2次,这样的整式方程称为一元二次方程,判断即可. 2.【答案】B故选B . 3.【答案】B【解析】因为2是方程230x x k -+=的一个根,所以22320k -⨯+=,解得2k =. 故选B . 4.【答案】A【解析】方程﹣x 2+3x =1整理得:﹣x 2+3x ﹣1=0, 则a ,b ,c 依次为﹣1,3,﹣1. 故选A .【名师点睛】将一元二次方程整理成一般形式后即可判断出a ,b ,c 的值. 5.【答案】B【解析】由230x x -=,可得3()0x x -=,则10x =,23x =. 故选B . 6.【答案】D【解析】()11x x x +=+,即(1)(1)0x x x +-+=,即(1)(1)0x x +-=,即10x +=或10x -=, 所以11x =-,21x =, 故选D.【名师点睛】本题是个易错题,因为不知道1x +是否为0,所以不能直接利用等式的性质2两边除以(1)x +.7.【答案】D【解析】由题意可得22020m m m ⎧-=⎨-≠⎩,解得0m =.故选D .【名师点睛】本题主要考查一元二次方程的概念,一元二次方程的解和解方程的应用,关键是得出220m m -=且20m -≠.8.【答案】B【解析】因为2241(1(0))8∆=--⨯⨯-=>,所以方程有2个不相等的实数根. 故选B . 9.【答案】C【解析】由题意得240b ac ∆=-≥,即2[20)12]4(m -⨯⨯--≥,解得1m ≥. 故选C . 10.【答案】A【解析】由题可得6440q ∆=->,解得16q <. 故选A . 11.【答案】B【解析】因为点),(c a P 在第二象限,所以0a <,0c >,所以0ac <,所以240b ac ∆=->,所以方程02=++c bx ax 有两个不相等的实数根. 故选B .13.【答案】B,有一个根是2,则另一个根是321-=.故选B . 12cx x a=.故选B . 14.【答案】A【解析】由根与系数关系,可得2αβ+=,1αβ=-,则211αβαβ++=-=. 故选A . 15.【答案】A【解析】由根与系数关系可得2(4)b +-=,2(4)c ⨯-=,解得2b =-,8c =-.所以10b c +=- .故选A .16.【答案】D【解析】由根与系数的关系可得122x x +=,121x x =-,所以22121111221x x x x x x ++===--. 故选D . 17.【答案】A【解析】设该市这两年该项投入的平均增长率为x ,依题意可得21000(1)2101000x ⨯+=+,解得10.110%x ==,2 2.1x =-(舍去). 即该市这两年该项投入的平均增长率为10%. 故选A . 18.【答案】A【解析】∵一次函数y =kx +b 的图象经过第一、三、四象限,∴k >0,b <0, ∴△=(−2)2−4(kb +1)=−4kb >0,∴方程x 2﹣2x +kb +1=0有两个不等的实数根. 故选A .【名师点睛】判断根的情况,只要看根的判别式△=b 2−4ac 的值的符号就可以了. 19.【答案】(x +3)2=14【解析】方程移项得:x 2+6x =5,配方得:x 2+6x +9=14,即(x +3)2=14.【名师点睛】此题考查了解一元二次方程的方法:配方法,熟练掌握完全平方公式是解本题的关键.方程中常数项移到右边,两边加上9,利用完全平方公式化简得到结果,即可作出判断. 20.【答案】1k <【解析】因为方程220x x k ++=有两个不相等的实数根,所以∆>0,即22410k -⨯⨯>,解得1k <,故填1k <.学=科网21.【答案】1-【解析】因为关于x 的一元二次方程220x x m +-=有两个相等的实数根,所以2240m ∆=+=,解得1m =-. 22.【解析】参加聚会的有x 人,每个人都要握手(1)x -次,可列方程: 23.【答案】15【解析】因为12,x x 是一元二次方程2350x x +-=的两个根,所以123x x +=-,125x x =-,所以2212121212()15x x x x x x x x +=+=.25.【答案】47【解析】方程(1)(4)5x x +-=-可化为2310x x -+=,因为α,β是方程(1)(4)5x x +-=-的两实数根,所以3αβ+=,1αβ=,所以222(+)27αβαβαβ=-=+,4422222=()2αβαβαβ++-47=,所以334447βααβαβαβ+=+=.26.【答案】(1)3x =±;(2)x =;(3)13x =,24x =.【解析】(1)2235()x -=,开平方可得3x -=,即3x =±,所以方程2235()x -=的解为3x =±. (2)由22330x x --=,可得2,3,3a b c ==-=-,24330b ac ∆=-=>,所以x ==,所以方程22330x x --=的解为x =(3)2()330x x --+=,即2()(30)3x x ---=,即()[()1]330x x --=-, 即4)30()(x x --=,解得13x =,24x =, 所以方程2()330x x --+=的解为13x =,24x =.【名师点睛】一元二次方程的解法:(1)直接开平方法,没有一次项的方程适用;(2)配方法,所有方程适用;(3)公式法,所有方程适用;(4)因式分解法,可因式分解的方程适用. 27.【答案】(1)证明见解析;(2)0k <.【解析】(1)因为222[(3)]4(22)21(1)0k k k k k ∆=-+-+=-+=-≥, 所以方程总有两个实数根.(2)因为2(3)22(2)(01)x k x k x x k -+++=--=-,所以12x =,21x k =+,因为方程总有一根小于1,所以11k +<,即0k <.故k 的取值范围为0k <.【思路分析】(1)由方程根的判别式0∆≥即可求证;(2)由因式分解法可将方程化为1()2)(x x k ---的形式,解出两根即可.28.【答案】(1)4a >-;(2)13x =-,25x =-.【解析】(1)根据题意可得284(12)0a ∆=-->,解得4a >-.(2)因为4a >-,所以最小的整数为3-,所以2812(3)0x x ++--=,即28150x x ++=,解得13x =-,25x =-.【思路分析】(1)方程有两个不相等的实数根,判别式大于0,由此可求参数的取值范围;(2)利用(1)的结论求出a 的值,代入原方程解方程即可.29.【答案】(1)①11x =,21x =,②11x =,22x =,③11x =,23x =;(2)①11x =,28x =,②2)0(1x n x n ++=-;(3)11x =,28x =,猜想结论正确.【解析】(1)①11x =,21x =;②11x =,22x =;③11x =,23x =.(2)①11x =,28x =;②2)0(1x n x n ++=-.(3)2980x x -+=,即298x x -=-,即281819844x x -+=-+,即249(924x =-, 所以7292x -=±, 所以11x =,28x =.故猜想结论正确.30.【答案】小路的宽为2米.【解析】设小路的宽为x 米,由题意得,(5x )2+(40+50)x ﹣2×x ×5x =325×40×50, 解得x =2或x =﹣8(不合题意,舍去)答:小路的宽为2米.【名师点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.根据“小路与观赏亭的面积之和占草坪面积的325”,建立方程求解即可得出结论. 31.【答案】(1)2或3秒;(2)不能.【解析】(1)设经过x 秒以后△PBQ 的面积为6 cm 2, 则12×(5﹣x )×2x =6, 整理得:x 2﹣5x +6=0,解得:x =2或x =3.答:2或3秒后△PBQ 的面积等于6 cm 2 .(2)设经过x 秒以后△PBQ 面积为8 cm 2,则12×(5﹣x )×2x =8, 整理得:x 2﹣5x +8=0,因为△=25﹣32=﹣7<0,所以此方程无解,故△PQB 的面积不能等于8 cm 2.【名师点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ 的面积等于6 cm 2”,得出等量关系是解决问题的关键.(1)设经过x 秒钟,△PBQ 的面积等于6 cm 2,根据点P 从A 点开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2 cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8 cm 2.32.【答案】(1)月销售量为450千克,月销售利润为6750元;(2)销售单价应为60元;(3)销售单价应为50元,此时利润为9000元.【解析】(1)月销售量为500−10×(35−30)=450(千克),月销售利润为(35−20)×450= 6750(元).(3)设应涨价x 元,∵月销售利润()()2302050010104005000y x x x x =+--=-++ 210(20)9000x =--+,∴当20x =时,9000y =最大值,答:商店要使得月销售利润达到最大,销售单价应为50元,此时利润为9000元.【名师点睛】本题考查的是一元二次方程的应用和二次函数的应用,解答本题的关键是读懂题意,找到合适的等量关系,然后设出未知数正确列出方程.注意熟记等量关系:销售利润=每件利润×数量.(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量即可求出题目的结果;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x 元,根据这个等式即可列出方程求解,再结合销售成本不超过6000元进行取舍即可;(3)根据(2)中的相等关系列出函数解析式,化为顶点式即可求出答案.1.【答案】C 【解析】x 2−4x +3=0,分解因式得:(x −1)(x −3)=0,解得:x 1=1,x 2=3.故选C .【名师点睛】本题考查了解一元二次方程——因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2.【答案】C【解析】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3.故选C .【名师点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.设方程的另一个解为x 1,根据两根之和等于﹣b a,即可得出关于x 1的一元一次方程,解之即可得出结论.3.【答案】C【解析】根据题意得∆=42﹣4k ≥0,解得k ≤4.故选C .【名师点睛】本题考查了根的判别式,根据判别式的意义得∆=42﹣4k ≥0,然后解不等式即可.一元二次方程ax 2+bx +c =0(a≠0)的根与∆=b 2﹣4ac 有如下关系:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程无实数根.4.【答案】C【解析】∵∆=b 2 −4ac =1−8=−7<0,∴一元二次方程2x 2 −x +1=0没有实数根.故选C .【名师点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的判别式∆=b 2−4ac ,先计算∆=b 2−4ac 的值,再根据计算结果判断方程根的情况即可.当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.5.【答案】D【解析】∵关于x 的一元二次方程x 2+2(k ﹣1)x +k 2﹣1=0有实数根,∴∆=b 2﹣4ac =4(k ﹣1)2﹣4(k 2﹣1)=﹣8k +8≥0,解得:k ≤1.故选D .【名师点睛】直接利用根的判别式进而分析得出k 的取值范围.∆>0时,一元二次方程有两个不等实根;∆=0时,一元二次方程有两个相等实根;∆<0时,一元二次方程无实根.6.【答案】D【解析】∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴()()22102410a b a +≠⎧⎪⎨∆-+⎪⎩==,∴b =a +1或b =−(a +1). 当b =a +1时,有a −b +1=0,此时−1是方程x 2+bx +a =0的根;当b =−(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠−(a +1),∴1和−1不都是关于x 的方程x 2+bx +a =0的根.故选D .【名师点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当∆=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根可得出b =a +1或b =−(a +1),当b =a +1时,−1是方程x 2+bx +a =0的根;当b =−(a +1)时,1是方程x 2+bx +a =0的根.再结合a +1≠−(a +1),可得出1和−1不都是关于x 的方程x 2+bx +a =0的根.7.【答案】B【解析】A 、x 2+6x +9=0.∆=62−4×9=36−36=0,方程有两个相等实数根;B 、x 2=x ,即x 2−x =0.∆=(−1)2−4×1×0=1>0,方程有两个不相等实数根;C 、x 2+3=2x ,即x 2−2x +3=0.∆=(−2)2−4×1×3=−8<0,方程无实根;D 、(x −1)2+1=0,即(x −1)2=−1,则方程无实根.故选B .【名师点睛】本题考查的是一元二次方程根的判别式,根据一元二次方程根的判别式判断即可. 一元二次方程ax 2+bx +c =0(a ≠0)的根与∆=b 2−4ac 有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.8.【答案】D【解析】根据题意得x 1+x 2=﹣22=﹣1,x 1x 2=﹣12,故A 、B 选项错误; ∵x 1+x 2<0,x 1x 2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误; ∵x 1为一元二次方程2x 2+2x ﹣1=0的根,∴2x 12+2x 1﹣1=0,∴x 12+x 1=12,故D 选项正确, 故选D .【名师点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.直接利用根与系数的关系对A 、B 进行判断;由于x 1+x 2<0,x 1x 2<0,则利用有理数的性质得到x 1、x 2异号,且负数的绝对值大,则可对C 进行判断;利用一元二次方程解的定义对D 进行判断.9.【答案】B【解析】∵α,β是方程x 2+x ﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1−(−2)=−1+2=1,故选B .【名师点睛】本题考查了一元二次方程根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.根据根与系数的关系得α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.10.【答案】A【解析】∵关于x 的一元二次方程mx 2﹣(m +2)x +4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩,解得:m >﹣1且m ≠0,。
中考数学一元二次方程的综合热点考点难点附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答: ①∠FCD 的最大度数为 ; ②当FC ∥AB 时,AD= ;③当以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边时,AD= ; ④△FCD 的面积s 的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.3.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2, 解得k=2,∴当k=2时,S 的值为2 ∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值. 【答案】1【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x 2+2ax+a 2=0得到关于a 的一元二次方程1﹣2a+a 2=0,然后解此一元二次方程即可. 试题解析:把x=﹣1代入x 2+2ax+a 2=0得 1﹣2a+a 2=0, 解得a 1=a 2=1, 所以a 的值为1.7.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围. 【答案】(1)m=517-;(2)0<T≤4且T≠2. 【解析】 【分析】由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围. 【详解】∵方程由两个不相等的实数根, 所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3) =﹣4m+4>0,所以m <1,又∵m 是不小于﹣1的实数, ∴﹣1≤m <1∴x 1+x 2=﹣2(m ﹣2)=4﹣2m ,x 1•x 2=m 2﹣3m+3; (1)∵x 12+x 22=6, ∴(x 1+x 2)2﹣2x 1x 2=6,即(4﹣2m )2﹣2(m 2﹣3m+3)=6 整理,得m 2﹣5m+2=0 解得m=;∵﹣1≤m <1 所以m=. (2)T=+=====2﹣2m .∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.9.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x , 根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%; (2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.10.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= ,AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t . (3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形? 【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】 【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可. 【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==, ∵QB 16t =-, 当t=2时,则BQ=14,则1S QB PM 2=⨯=12×14×12=84; (2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-: 解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2=; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ , 所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ , 得 1163t =,216t =(不合题意,舍去); 综上所述,当7t 2=或163时,以B 、P 、Q 为顶点的三角形是等腰三角形. 【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.。
2023年中考数学-----《一元二次方程之解一元二次方程》知识总结与专项练习题(含答案解析)
2023年中考数学-----《一元二次方程之解一元二次方程》知识总结与专项练习题(含答案解析)知识总结1. 直接开方法解一元二次方程:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0)①p x =2时,方程的解为:p x p x −==21,。
②()p a x =+2时,方程的解为:a p x a p x −−=−=21,。
③()p b ax =+2时,方程的解为:abp x a b p x −−=−=21,。
2. 配方法解一元二次方程:运用公式:()2222b a b ab a ±=+±。
具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。
②移项——把常数项移到等号右边。
③配方——两边均加上一次项系数一半的平方。
④开方——整理式子,利用完全平方式开方降次得到两个一元一次方程。
⑤解一元一次方程即得到一元二次方程的根。
即:2222222222442420a acb a b x ac a b a b x a b x a cx a b x acx a b x c bx ax −=⎪⎭⎫ ⎝⎛+−=⎪⎭⎫ ⎝⎛++−=+=++=++∴a ac b a b x a ac b a b x 24224222−−=+−=+, aacb b x a ac b b x 24242221−−−=−+−=, 若042≥−ac b ,则即可求得两根。
3. 公式法解一元二次方程:(1)根的判别式:由配方法可知,ac b 42−即为一元二次方程根的判别式。
用∆表示。
①⇔−=∆042>ac b 方程有两个不相等的实数根。
②⇔=−=∆042ac b 方程有两个相等的实数根。
③⇔−=∆042<ac b 方程没有实数根。
(2)求根公式:当042≥−=∆ac b 时,则一元二次方程可以用aacb b x 242−±−=来求出它的两个根,这就是一元二次方程的求根公式。
初中数学《一元二次方程的解法》十大题型含解析
一元二次方程的解法【十大题型】【题型1直接开平方法解一元二次方程】【题型2配方法解一元二次方程】【题型3公式法解一元二次方程】【题型4因式分解法解一元二次方程】【题型5十字相乘法解一元二次方程】【题型6用适当方法解一元二次方程】【题型7用指定方法解一元二次方程】【题型8用换元法解一元二次方程】【题型9解含绝对值的一元二次方程】【题型10配方法的应用】知识点1:直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1直接开平方法解一元二次方程】1(23-24九年级上·广东深圳·期中)将方程(2x-1)2=9的两边同时开平方,得2x-1=,即2x-1=或2x-1=,所以x1=,x2=.【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可【详解】∵(2x-1)2=9∴2x-1=±3∴2x-1=3,2x-1=-3∴x1=2,x2=-1【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键2(23-24九年级上·贵州遵义·阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为()A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A )移项可得x 2=-9,故选项A 无解;(B )-2x 2=0,即x 2=0,故选项B 有解;(C )移项可得x 2=3,故选项C 有解;(D )x -2 2=0,故选项D 有解;故选A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.3(23-24九年级上·陕西渭南·阶段练习)如果关于x 的一元二次方程x -5 2=m -7可以用直接开平方求解,则m 的取值范围是.【答案】m ≥7【分析】根据平方的非负性得出不等式,求出不等式的解集即可.【详解】解:∵方程x -5 2=m -7可以用直接开平方求解,∴m -7≥0,解得:m ≥7,故答案为:m ≥7.【点睛】本题考查了解一元二次方程和解一元一次不等式,能得出关于m 的不程是解此题的关键.4(23-24九年级上·河南南阳·阶段练习)小明在解一元二次方程时,发现有这样一种解法:如:解方程x x +4 =6.解:原方程可变形,得:x +2 -2 x +2 +2 =6.x +2 2-22=6,x +2 2=10.直接开平方并整理,得.x 1=-2+10,x 2=-2-10.我们称小明这种解法为“平均数法”(1)下面是小明用“平均数法”解方程x +5 x +9 =5时写的解题过程.解:原方程可变形,得:x +a -b x +a +b =5.x +a 2-b 2=5,∴x +a 2=5+b 2.直接开平方并整理,得.x 1=c ,x 2=d .上述过程中的a 、b 、c 、d 表示的数分别为______,______,______,______.(2)请用“平均数法”解方程:x -5 x +7 =12.【答案】(1)7,2,-4,-10.(2)x 1=-1+43,x 2=-1-43.【分析】(1)仿照平均数法可把原方程化为x +7 -2 x +7 +2 =5,可得x +7 2=9,再解方程即可;(2)仿照平均数法可把原方程化为x +1 -6 x +1 +6 =12,可得x +1 2=48,再解方程即可;【详解】(1)解:∵x +5 x +9 =5,∴x +7 -2 x +7 +2 =5,∴x +7 2-4=5,∴x +7 2=9,∴x +7=3或x +7=-3,解得:x 1=-4,x 2=-10.∴上述过程中的a 、b 、c 、d 表示的数分别为7,2,-4,-10.(2)∵x -5 x +7 =12,∴x +1 -6 x +1 +6 =12,∴x +1 2-36=12,∴x +1 2=48,∴x +1=43,x +1=-43,解得:x 1=-1+43,x 2=-1-43.【点睛】本题考查的是一元二次方程的解法,新定义运算的含义,理解平均数法结合直接开平方法解一元二次方程是解本题的关键.知识点2配方法解一元二次方程将一元二次方程配成(x +m )2=n 的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】1(23-24九年级上·广东深圳·期中)用配方法解方程,补全解答过程.3x 2-52=12x .解:两边同除以3,得______________________________.移项,得x 2-16x =56.配方,得_________________________________,即x -112 2=121144.两边开平方,得__________________,即x -112=1112,或x -112=-1112.所以x 1=1,x 2=-56.【答案】x 2-56=16x x 2-16x +112 2=56+112 2 x -112=±1112【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】3x 2-52=12x .解:两边同除以3,得x 2-56=16x .移项,得x 2-16x =56.配方,得x2-16x+1122=56+112 2,即x-1 122=121144.两边开平方,得x-112=±1112,即x-112=1112,或x-112=-1112.所以x1=1,x2=-5 6.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.2(23-24九年级下·广西百色·期中)用配方法解方程x2-6x-1=0时,配方结果正确的是()A.x-32=9 B.x-32=10 C.x+32=8 D.x-32=8【答案】B【分析】此题考查了配方法求解一元二次方程,解题的关键是掌握配方法求解一元二次方程的步骤.根据配方法的步骤,求解即可.【详解】解:x2-6x-1=0移项得:x2-6x=1配方得:x2-6x+9=1+9即x-32=10故选:B3(24-25九年级上·全国·假期作业)用配方法解方程:x2+2mx-m2=0.【答案】x1=-m+2m,x2=-m-2m【分析】本题考查了解一元二次方程--配方法.先移项,再进行配方,最后开方即可得.【详解】解:移项得x2+2mx=m2,配方得x2+2mx+m2=m2+m2,即x+m2=2m2,所以原方程的解为:x1=-m+2m,x2=-m-2m.4(2024·贵州黔东南·一模)下面是小明用配方法解一元二次方程2x2+4x-8=0的过程,请认真阅读并完成相应的任务.解:移项,得2x2+4x=8第一步二次项系数化为1,得x2+2x=4第二步配方,得x+22=8第三步由此可得x+2=±22第四步所以,x1=-2+22,x2=-2-22第五步①小明同学的解答过程,从第步开始出现错误;②请写出你认为正确的解答过程.【答案】①第三步;②详见解析【分析】本题主要考查了解一元二次方程,熟练掌握配方法,先将方程2x2+4x-8=0变为x2+2x=4,然后配方为x+12=8,再开平方即可.【详解】解:①小明同学的解答过程,从第三步开始出现错误;②2x2+4x-8=0,移项,得2x2+4x=8,二次项系数化为1,得x2+2x=4,配方,得x+12=5,由此可得x+1=±5,所以,x1=-1+5,x2=-1-5.知识点3公式法解一元二次方程当b2-4ac≥0时,方程ax2+bx+c=0(a≠0)通过配方,其实数根可写为x=-b±b2-4ac2a的形式,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】1(23-24九年级上·山西大同·阶段练习)用公式法解关于x的一元二次方程,得x= -6±62-4×4×12×4,则该一元二次方程是.【答案】4x2+6x+1=0【分析】根据公式法的公式x=-b±b2-4ac2a,可得方程的各项系数,即可解答.【详解】解:∵x=-b±b2-4ac2a=-6±62-4×4×12×4,∴a=4,b=6,c=1,从而得到一元二次方程为4x2+6x+1=0,故答案为:4x2+6x+1=0.【点睛】本题考查了用公式法解一元二次方程,熟记公式是解题的关键.2(23-24九年级上·广东深圳·期中)用公式法解一元二次方程:x-23x-5=0.解:方程化为3x2-11x+10=0.a=3,b=,c=10.Δ=b 2-4ac =-4×3×10=1>0.方程实数根.x ==,即x 1=,x 2=53.【答案】-11(-11)2有两个不相等的--11 ±12×311±162【分析】根据公式法解一元二次方程的解法步骤求解即.【详解】解:方程化为3x 2-11x +10=0.a =3,b =-11,c =10.Δ=b 2-4ac =-11 2-4×3×10=1>0.方程有两个不相等的实数根.x =--11 ±12×3=11±16,即x 1=2,x 2=53.故答案为:-11;(-11)2;有两个不相等的;--11 ±12×3;11±16;2.【点睛】本题考查公式法解一元二次方程,熟练掌握公式法解一元二次方程的解法步骤是解答的关键.3(23-24九年级上·河南三门峡·期中)用公式法解方程-ax 2+bx -c =0 (a ≠0),下列代入公式正确的是()A.x =-b ±b 2-4a ×(-c )2×(-a ) B.x =b ±b 2-4ac2a C.x =b ±b 2-4a ×(-c )2×(-a ) D.x =-b ±b 2-4ac2a【答案】B【分析】先将方程进行化简,然后根据一元二次方程的求根公式,即可做出判断.【详解】解:方程-ax 2+bx -c =0 (a ≠0)可化为ax 2-bx +c =0由求根公式可得:x =-(-b )±(-b )2-4ac 2a =b ±b 2-4ac 2a 故选:B【点睛】本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.4(23-24九年级上·广东深圳·期中)用求根公式法解得某方程ax 2+bx +c =0(a ≠0)的两个根互为相反数,则()A.b =0B.c =0C.b 2-4ac =0D.b +c =0【答案】A【分析】根据求根公式法求得一元二次方程的两个根x 1、x 2,由题意得x 1+x 2=0,可求出b =0.【详解】∵方程ax2+bx+c=0(a≠0)有两根,∴Δ=b2-4ac≥0且a≠0.求根公式得到方程的根为x=-b±b2-4ac2a,两根互为相反数,所以x1+x2=0,即-b+b2-4ac2a+-b-b2-4ac2a=0,解得b=0.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.知识点4因式分解法解一元二次方程当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】1(23-24九年级下·安徽亳州·期中)关于x的一元二次方程x x-2=2-x的根是()A.-1B.0C.1和2D.-1和2【答案】D【分析】本题主要考查了解一元二次方程,先移项,然后利用因式分解法解方程即可得到答案.【详解】解:∵x x-2=2-x,∴x x-2+x-2=0,∴x+1x-2=0,∴x+1=0或x-2=0,解得x=-1或x=2,故选:D.2(23-24九年级上·陕西榆林·阶段练习)以下是某同学解方程x2-3x=-2x+6的过程:解:方程两边因式分解,得x x-3=-2x-3,①方程两边同除以x-3,得x=-2,②∴原方程的解为x=-2.③(1)上面的运算过程第______步出现了错误.(2)请你写出正确的解答过程.【答案】(1)②(2)过程见解析【分析】(1)根据等式的性质作答即可;(2)先移项,然后用因式分解法求解.【详解】(1)解:∵x-3可能为0,∴不能除以x-3,∴第②步出现了错误故答案为②.(2)解:方程两边因式分解,得x x-3=-2x-3,移项,得x x-3+2x-3=0,∴x-3x+2=0,∴x1=3,x2=-2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3(23-24九年级下·安徽安庆·期中)对于实数m,n,定义运算“※”:m※n=m2-2n,例如:2※3=22 -2×3=-2.若x※5x=0,则方程的根为()A.都为10B.都为0C.0或10D.5或-5【答案】C【分析】本题考查的知识点是新定义运算、解一元二次方程,解题关键是理解题意.现根据新定义运算得出一元二次方程,再求解即可.【详解】解:根据定义运算m※n=m2-2n可得,x※5x=0即为x2-5x·2=0,即x x-10=0,∴x1=0,x2=10,则方程的根为0或10.故选:C.4(13-14九年级·浙江·课后作业)利用因式分解求解方程(1)4y2=3y;(2)(2x+3)(2x-3)-x(2x+3)=0.【答案】(1)y1=0,y2=34;(2)x1=-32,x2=3【分析】(1)利用移项、提公因式法因式分解求出方程的根;(2)利用提公因式法分解因式求出方程的根.【详解】(1)4y2=3y;4y2-3y=0y(4y-3)=0y=0或4y-3=0∴y1=0,y2=34,故答案为:y1=0,y2=3 4;(2)(2x+3)(2x-3)-x(2x+3)=0(2x+3)(x-3)=02x+3=0或x-3=0 x1=-32,x2=3,故答案为:x1=-32,x2=3.【点睛】本题考查利用因式分解解方程,关键是防止丢掉方程的根.例如:解方程4y2=3y时,给方程两边同除以y,解得y=34,而丢掉y=0的情况.【题型5十字相乘法解一元二次方程】1(23-24九年级下·广西百色·期中)以下是解一元二次方程ax2+bx+c=0(a≠0)的一种方法:二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2排列为:然后按斜线交叉相乘,再相加,得到a1c2+a2c1,若此时满足a1c2+a2c1=b,那么ax2+bx+c=0(a≠0)就可以因式分解为(a1x +c1)(a2x+c2)=0,这种方法叫做“十字相乘法”.那么6x2-11x-10=0按照“十字相乘法”可因式分解为()A.(x-2)(6x+5)=0B.(2x+2)(3x-5)=0C.(x-5)(6x+2)=0D.(2x-5)(3x+2)=0【答案】D【分析】根据“十字相乘法”分解因式得出6x2-11x-10=(2x-5)(3x+2)即可.【详解】∵∴6x2-11x-10=2x-53x+2=0.故选:D.【点睛】本题主要考查了利用因式分解法解一元二次方程以及十字相乘法分解因式,正确分解常数项是解题关键.2(23-24九年级上·江西上饶·期末)试用十字相乘法解下列方程(1)x2+5x+4=0;(2)x2+3x-10=0.【答案】(1)x1=-4,x2=-1;(2)x1=2,x2=-5.【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案.【详解】(1)解:x2+5x+4=0x+4=0x+1x+4=0或x+1=0∴x1=-4,x2=-1;(2)解:x2+3x-10=0x+5=0x-2x+5=0或x-2=0∴x1=2,x2=-5.3(23-24九年级下·广西梧州·期中)解关于x的方程x2-7mx+12m2=0得()A.x1=-3m,x2=4mB.x1=3m,x2=4mC.x1=-3m,x2=-4mD.x1=3m,x2=-4m【答案】B【分析】本题主要考查了解一元二次方程,掌握运用十字相乘法求解即可.直接运用十字相乘法解一元二次方程即可.【详解】解:x2-7mx+12m2=0,x-3mx-4m=0,x-3m=0或x-4m=0,x1=3m,x2=4m.故选B.4(23-24九年级下·重庆·期中)阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x,y的二次三项式ax2+bxy+cy2,如图1,将x2项系数a=a1⋅a2,作为第一列,y2项系数c=c1⋅c2,作为第二列,若a1c2+a2c1恰好等于xy项的系数b,那么ax2+bxy+cy2可直接分解因式为:ax2+bxy+cy2=a1x+c1ya2x+c2y示例1:分解因式:x2+5xy+6y2解:如图2,其中1=1×1,6=2×3,而5=1×3+1×2;∴x2+5xy+6y2=(x+2y)(x+3y);示例2:分解因式:x2-4xy-12y2.解:如图3,其中1=1×1,-12=-6×2,而-4=1×2+1×(-6);∴x2-4xy-12y2=(x-6y)(x+2y);材料二:关于x,y的二次多项式ax2+bxy+cy2+d x+ey+f也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将a=a1a2作为一列,c=c1c2作为第二列,f=f1f2作为第三列,若a1c2+a2c1=b,a1f2+a2f1=d,c1f2+c2f1=e,即第1、2列,第1、3列和第2、3列都满足十字相乘规则,则原式分解因式的结果为:ax2+bxy+cy2+d x+ey+f=a1x+c1y+f1a2x+c2y+f2;示例3:分解因式:x2-4xy+3y2-2x+8y-3.解:如图5,其中1=1×1,3=(-1)×(-3),-3=(-3)×1;满足-4=1×(-3)+1×(-1),-2=1×(-3)+1×1,8=(-3)×(-3)+(-1)×1;∴x2-4xy+3y2-2x+8y-3=(x-y-3)(x-3y+1)请根据上述材料,完成下列问题:(1)分解因式:x2+3x+2=;x2-5xy+6y2+x+2y-20=;(2)若x,y,m均为整数,且关于x,y的二次多项式x2+xy-6y2-2x+my-120可用“十字相乘法”分解为两个一次式的乘积,求出m的值,并求出关于x,y的方程x2+xy-6y2-2x+my-120=-1的整数解.【答案】(1)(x+1)(x+2),(x-3y+5)(x-2y-4);(2)m=54m=-56,x=-1y=4和x=2y=-4【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【详解】解:(1)①1=1×1,2=1×2,3=1×1+1×2,∴原式=(x+1)(x+2);②1=1×1,6=(-2)×(-3),-20=5×(-4)满足(-5)=1×(-2)+1×(-3),1=1×5+1×(-4),2=(-2)×5+(-3)×(-4)∴原式=(x-3y+5)(x-2y-4);(2)①1-35a1c1f11-2-4a2c2f2{a1c2+a2c1=-5a1f22+a2f1=1c1f2+c2f1=2②1-21013-12{a1c2+a2c1=1a1f2+a2f1=-2c1f2+c2f1=m1-2-121310(x-2y+10)(x+3y-12)=x2+xy-6y2-2x+my-120∴m=54(x-2y-12)(x+3y+10)=x2+xy-6y2-2x+my-120∴m=-56当m=54时,(x-2y+10)(x+3y-12)=-1{x-2y+10=1x+3y-12=-1或{x-2y+10=-1x+3y-12=1,x=-75y=245(舍),{x=-1y=4当m=-56时,(x-2y-12)(x+3y+10)=-1{x-2y-12=1x+3y+10=-1或{x-2y=12=1x+3y+10=1,{x=2y=-4或x=695y=25(舍)综上所述,方程x2+xy-6y2-2x+my-120=-1的整数解有{x=-1y=4和{x=2y=-4;方法二:x2+xy+(-6y2)-2x+my-120=(x+3y)(x-2y)-2x+my-12y =(x+3y+a)(x-2y+b)=(x+3y)(x-2y)+(a+b)x+(3b-2a)y+ab {a+b=-2⇒{a=-123b-2a=m ab=-120 b=10或{a=10⇒m=54b=-12m=-56.【点睛】本题考查了因式分解的方法--十字相乘法,弄清题目中的十字相乘的方法是解题关键.【题型6用适当方法解一元二次方程】1(23-24九年级上·江苏宿迁·期末)用适当的方法解下列方程:(1)x2=4x;(2)x-32-4=0;(3)2x2-4x-5=0;(4)x-1x+2=2x+2.【答案】(1)x1=4,x2=0(2)x1=5,x2=1(3)x1=2+142,x2=2-142(4)x1=-2,x2=3【分析】本题考查了一元二次方程的解法,解一元二次方程-因式分解法,公式法,熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)利用解一元二次方程-因式分解法进行计算,即可解答;(3)利用解一元二次方程-公式法进行计算,即可解答;(4)利用解一元二次方程-因式分解法进行计算,即可解答.【详解】(1)解:x2-4x=0x x-4=0,解得x1=4,x2=0(2)解:x-3-2x-3+2=0x-5x-1=0,解得x1=5,x2=1(3)解:∵a=2,b=-4,c=-5∴b2-4ac=-42-4×2×-5=16--40=56∴x=4±562×2=2±142解得x1=2+142,x2=2-142(4)解:x-1x+2-2x+2=0x+2x-1-2=0,x+2x-3=0,∴x+2=0,x-3=0,解得x1=-2,x2=32(23-24九年级上·山西太原·期中)用适当的方法解下列一元二次方程:(1)x2+4x-2=0;(2)x x+3=5x+15.【答案】(1)x1=6-2,x2=-6-2(2)x1=-3,x2=5【分析】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)利用配方法解方程;(2)先移项,再利用提公因式法解方程.【详解】(1)解:移项,得x2+4x=2,配方,得x2+4x+4=2+4,x+22=6,两边开平方,得x+2=±6,所以,x1=6-2,x2=-6-2;(2)解:原方程可变形为:x x+3=5x+3,x x+3-5x+3=0,x+3x-5=0,x+3=0或x-5=0,所以,x1=-3,x2=53(23-24九年级下·山东泰安·期末)用适当的方法解下列方程(1)3x2=54;(2)x+13x-1=1;(3)4x2x+1=32x+1;(4)x2+6x=10.【答案】(1)x1=32,x2=-32(2)x1=-1+73,x2=-1-73(3)x1=-12,x2=34(4)x1=-3+19,x2=-3-19【分析】(1)方程整理后,利用直接开平方法求解即可;(2)方程整理后,利用求根公式法求解即可;(3)方程利用因式分解法求解即可;(4)方程利用配方法求解即可.【详解】(1)解:方程整理得:x2=18,开方得:x=±32,解得:x1=32,x2=-32;(2)解:方程整理得:3x2+2x-2=0,这里a=3,b=2,c=-2,∵△=22-4×3×(-2)=4+24=28>0,∴x=-2±276=-1±73,解得:x1=-1+73,x2=-1-73;(3)解:方程移项得:4x(2x+1)-3(2x+1)=0,分解因式得:(2x+1)(4x-3)=0,所以2x+1=0或4x-3=0,解得:x1=-12,x2=34;(4)解:配方得:x2+6x+9=19,即(x+3)2=19,开方得:x+3=±19,解得:x1=-3+19,x2=-3-19.【点睛】此题考查了解一元二次方程-因式分解法,公式法,直接开平方法,配方法,熟练掌握根据方程的特征选择恰当的解法是解本题的关键.4(23-24九年级上·海南省直辖县级单位·期末)用适当的方法解下列方程.(1)(x+2)2-25=0;(2)x2+4x-5=0;(3)2x2-3x+1=0.【答案】(1)x1=3,x2=-7(2)x1=1,x2=-5(3)x1=12,x2=1【分析】(1)利用平方差公式,可以解答此方程;(2)利用因式分解法解方程即可;(3)利用因式分解法解方程即可.【详解】(1)解:(x+2)2-25=0,(x+2-5)(x+2+5)=0,∴x-3=0或x+7=0,解得x1=3,x2=-7;(2)解:x2+4x-5=0,x-1x+5=0,∴x-1=0或x+5=0,解得x1=1,x2=-5;(3)解:2x2-3x+1=0,2x-1x-1=0,∴2x-1=0或x-1=0,解得x1=12,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【题型7用指定方法解一元二次方程】1(23-24九年级下·山东日照·期末)用指定的方法解下列方程:(1)4(x-1)2-36=0(直接开方法)(2)x2+2x-3=0(配方法)(3)(x+1)(x-2)=4(公式法)(4)2(x+1)-x(x+1)=0(因式分解法)【答案】(1)x1=4,x2=-2;(2)x1=1,x2=-3;(3)x1=3,x2=-2;(4)x1=-1,x2=2.【分析】(1)直接利用开方法进行求解即可得到答案;(2)直接利用配方法进行求解即可得到答案;(3)直接利用公式法进行求解即可得到答案;(4)直接利用因式分解法进行求解即可得到答案;【详解】解:(1)∵4x-12-36=0∴(x-1)2=9,∴x-1=±3,∴x1=4,x2=-2;(2)∵x2+2x=3,∴x2+2x+1=4,∴(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3;(3)∵x2-x-6=0,∴△=1-4×1×(-6)=25,∴x=1±252=1±52,∴x1=3,x2=-2;(4)∵2x+1-x x+1=0∴(x+1)(2-x)=0,∴x+1=0或2-x=0,∴x1=-1,x2=2.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.2(23-24九年级下·山东烟台·期中)用指定的方法解方程:(1)x2-4x-1=0(用配方法)(2)3x2-11x=-9(用公式法)(3)5x-32=x2-9(用因式分解法)(4)2y2+4y=y+2(用适当的方法)【答案】(1)x1=5+2,x2=-5+2(2)x1=11+136,x2=11-136(3)x1=3,x2=92(4)y1=12,y2=-2【分析】本题考查了解一元二次方程,正确掌握相关性质内容是解题的关键.(1)运用配方法解方程,先移项再配方,然后开方即可作答.(2)先化为一般式,再根据Δ=b2-4ac算出,以及代入x=-b±Δ2a进行化简,即可作答.(3)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.(4)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.【详解】(1)解:x2-4x-1=0移项,得x2-4x=1配方,得x 2-4x +4=1+4,即x -2 2=5∴x -2=±5解得x 1=5+2,x 2=-5+2;(2)解:3x 2-11x =-93x 2-11x +9=0Δ=b 2-4ac =121-4×3×9=121-108=13∴x =11±136解得x 1=11+136,x 2=11-136;(3)解:5x -3 2=x 2-95x -3 2-x 2-9 =05x -3 2-x -3 x +3 =0x -3 5x -3 -x +3 =x -3 4x -18 =0则x -3=0,4x -18=0解得x 1=3,x 2=92;(4)解:2y 2+4y =y +22y 2+4y -y +2 =02y y +2 -y +2 =02y -1 y +2 =0∴2y -1=0,y +2=0解得y 1=12,y 2=-2.3(23-24九年级上·新疆乌鲁木齐·期中)用指定的方法解方程:(1)12x 2-2x -5=0(用配方法)(2)x 2=8x +20(用公式法)(3)x -3 2+4x x -3 =0(用因式分解法)(4)x +2 3x -1 =10(用适当的方法)【答案】(1)x 1=2+14,x 2=2-14(2)x 1=10,x 2=-2(3)x 1=3,x 2=0.6(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.【详解】(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=(-8)2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点睛】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.4(23-24九年级上·河北邯郸·期中)按指定的方法解下列方程:(1)x 2=8x +9(配方法);(2)2y 2+7y +3=0(公式法);(3)x +2 2=3x +6(因式分解法).【答案】(1)x 1=9,x 2=-1.(2)x 1=-3,x 2=-12.(3)x 1=-2,x 2=1.【分析】(1)先把方程化为x 2-8x +16=25,可得x -4 2=25,再利用直接开平方法解方程即可;(2)先计算△=72-4×2×3=49-24=25>0,再利用求根公式解方程即可;(3)先移项,再把方程左边分解因式可得x +2 x -1 =0,再化为两个一次方程,再解一次方程即可.【详解】(1)解:x 2=8x +9,移项得:x 2-8x =9,∴x 2-8x +16=25,配方得:x-42=25,∴x-4=5或x-4=-5,解得:x1=9,x2=-1.(2)解:2y2+7y+3=0,∴△=72-4×2×3=49-24=25>0,∴x=-7±254=-7±54,∴x1=-3,x2=-12.(3)解:x+22=3x+6,移项得:x+22-3x+2=0,∴x+2x-1=0,∴x+2=0或x-1=0,解得:x1=-2,x2=1.【点睛】本题考查的是一元二次方程的解法,掌握“配方法,公式法,因式分解法解一元二次方程”是解本题的关键.【题型8用换元法解一元二次方程】1(23-24九年级下·浙江杭州·期中)已知a2+b2a2+b2+2-15=0,求a2+b2的值.【答案】3【分析】先用换元法令a2+b2=x(x>0),再解关于x的一元二次方程即可.【详解】解:令a2+b2=x(x>0),则原等式可化为:x(x+2)-15=0,解得:x1=3,x2=-5,∵x>0,∴x=3,即a2+b2=3.a2+b2的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意a2+b2为非负数是本题的关键.2(23-24九年级下·安徽合肥·期中)关于x的方程x2+x2+2x2+2x-3=0,则x2+x的值是()A.-3B.1C.-3或1D.3或-1【答案】B【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.设x2+x=t,则此方程可化为t2+2t-3=0,然后用因式分解法求解即可.【详解】解:设x2+x=t,则此方程可化为t2+2t-3=0,∴t-1t+3=0,∴t-1=0或t+3=0,解得t1=1,t2=-3,∴x2+x的值是1或-3.∵x2+x=-3,即x2+x+3=0,Δ=12-4×1×3=-11<0方程无解,故x2+x=-3舍去,∴x2+x的值是1,故选:B.3(23-24九年级上·广东江门·期中)若a+5ba+5b+6=7,则a+5b=.【答案】1或-7【分析】本题主要考查解一元二次方程,设a+5b=x,则原方程可变形为x x+6=7,方程变形后运用因式分解法求出x的值即可得到结论.【详解】解:设a+5b=x,则原方程可变形为x x+6=7,整理得,x2+6x-7=0,x-1x+7=0,x-1=0,x+7=0,∴x=1,x=-7,即a+5b=1或-7,故答案为:1或-7.4(23-24九年级上·山东临沂·期中)利用换元法解下列方程:(1)2x4-3x2-2=0;(2)(x2-x)2-5(x2-x)+4=0.【答案】(1)x1=2,x2=-2(2)x1=1+172,x2=1-172,x3=1+52,x4=1-52【分析】(1)根据换元思想,设y=x2,则y=2或y=-12,由此即可求解;(2)设y=x2-x,则y=4或y=1,由此即可求解.【详解】(1)解:(1)设y=x2,则原方程化为2y2-3y-2=0,∴y=2或y=-12,当y=2时,x2=2,∴x1=2,x2=-2,当y=-12时,x2=-12,此时方程无解,∴原方程的解是x1=2,x2=-2.(2)解:设y=x2-x,则原方程化为y2-5y+4=0,∴y=4或y=1,当y=4时,x2-x=4,∴x1=1+172,x2=1-172,当y=1时,x2-x=1,∴x3=1+52,x4=1-52.∴原方程的解是x1=1+172,x2=1-172,x3=1+52,x4=1-52.【点睛】本题主要考查换元思想解高次方程,掌握我一元二次方程的解法是解题的关键.【题型9解含绝对值的一元二次方程】1(23-24九年级上·陕西榆林·阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2-3|x|-10=0.解:分两种情况:①当x≥0时,原方程化为x2-3x-10=0解得x1=5,x2=-2(舍去);②当x<0时,原方程化为x2+3x-10=0,解得x3=-5,x4=2(舍去).综上所述,原方程的解是x1=5,x2=-5.请参照上述方法解方程x2-|x+1|-1=0.【答案】x1=2,x2=-1【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当x+1≥0,即x≥-1时,原方程化为x2-x+1-1=0,解得x1=2,x2=-1;②当x+1<0,即x<-1时,原方程化为x2+x+1-1=0,解得x3=0(舍去),x4=-1(舍去).综上所述,原方程的解是x1=2,x2=-1.【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.2(23-24九年级上·内蒙古赤峰·期中)解方程x2+2|x+2|-4=0.【答案】x1=0,x2=-2【分析】对x+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合x的取值范围最终确定答案即可.【详解】解:①当x+2≥0,即x≥-2时,方程变形得:x2+2(x+2)-4=0∴x2+2x=0∴x(x+2)=0∴x1=0,x2=-2;②当x+2<0,即x<-2时,方程变形得:x2-2(x+2)-4=0∴x2-2x-8=0∴(x+2)(x-4)=0∴x1=-2(舍去),x2=4(舍去)∴综上所述,原方程的解是x1=0或x2=-2.【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.3(23-24九年级下·安徽滁州·阶段练习)解方程x2-22x+3+9=0.【答案】x1=1,x2=3【分析】分x≥-32与x<-32,化简绝对值得到一元二次方程,解一元二次方程即可求解.【详解】当2x+1≥0,即x≥-32时,原方程可化为:x2-2(2x+3)+9=0整理得:x2-4x+3=0解得:x1=1,x2=3当2x+1<0,即x<-32时,原方程可化为:x2+2(2x+3)+9=0整理得x2+4x+15=0∵Δ=42-4×1×15=-44<0,∴此方程无实数解,综上所述,原方程的解为:x1=1,x2=3【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.4(23-24九年级上·山西太原·阶段练习)解方程x2-|x-5|-2=0【答案】x1=-1+292,x2=-1-292【分析】根据题意分x-5≥0和x-5<0两种情况,分别解方程即可.【详解】解:①当x-5≥0时,即x≥5时,原方程化为x2-x+5-2=0,即x2-x+3=0,a=1,b=-1,c=3,∴Δ=b2-4ac=-12-4×1×3=-11<0,∴原方程无解,②当x-5<0时,即x<5时,原方程化为x2+x-5-2=0,即x2+x-7=0,a=1,b=1,c=-7,∴Δ=b2-4ac=12-4×1×-7=29>0x=-1±292×1解得:x1=-1+292,x2=-1-292.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【题型10配方法的应用】1(23-24九年级上·河北沧州·期中)【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵y+22≥0,∴y+22+4≥4∴当y =-2时,y 2+4y +8的最小值是4.(1)【类比探究】求代数式x 2-6x +12的最小值;(2)【举一反三】若y =-x 2-2x 当x =________时,y 有最________值(填“大”或“小”),这个值是________;(3)【灵活运用】已知x 2-4x +y 2+2y +5=0,则x +y =________;(4)【拓展应用】如图某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为15m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,栅栏的总长度为24m .当BF 为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)3(2)-1;大;1(3)1(4)当BF =4m ,矩形养殖场的总面积最大,最大值为48m 2.【分析】本题主要考查了配方法的应用,熟练掌握配方法是解题的关键:(1)把原式利用配方法变形为x -3 2+3,再仿照题意求解即可;(2)把原式利用配方法变形为-x +1 2+1,再仿照题意求解即可;(3)把原式利用配方法变形为x -2 2+y +1 2=0,再利用非负数的性质求解即可;(4)设BF =xm ,则CF =2BF =2xm ,则BC =3xm ,进而求出AB =24-3x 3m ,则S 矩形ABCD =3x ⋅24-3x 3=-3x -4 2+48,据此可得答案.【详解】(1)解:x 2-6x +12=x 2-6x +9 +3=x -3 2+3,∵x -3 2≥0,∴x -3 2+3≥3,∴当x =3时,x 2-6x +12的最小值为3;(2)解:y =-x 2-2x=-x 2-2x -1+1=-x+12+1,∵x+12≥0,∴-x+12≤0,∴-x+12+1≤1,∴当x=-1时,y=-x2-2x有最大值,最大值为1,故答案为:-1;大;1;(3)解:∵x2-4x+y2+2y+5=0,∴x2-4x+4+y2+2y+1=0,∴x-22+y+12=0,∵x-22≥0,y+12≥0,∴x-22=y+12=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1;(4)解:设BF=xm,则CF=2BF=2xm,∴BC=3xm,∴AB=24-3x3m,∴S矩形ABCD =3x⋅24-3x3=-3x2+24x=-3x-42+48,∵x-42≥0,∴-3x-42≤0,∴-3x-42+48≤48,∵AD=BC=3x≤15,∴0<x≤5,∴当x=4时,S矩形ABCD最大,最大值为48,∴当BF=4m,矩形养殖场的总面积最大,最大值为48m2.2(2023·河北石家庄·一模)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B-A的最大值是0B.B-A的最小值是-1C.当B=2A时,x为正数D.当B=2A时,x为负数【答案】B【分析】利用配方法表示出B-A,以及B=2A时,用含n的式子表示出x,确定x的符号,进行判断即可.【详解】解:∵A=x2+6x+n2,B=2x2+4x+n2,∴B-A=2x2+4x+n2-x2+6x+n2=2x2+4x+n2-x2-6x-n2=x2-2x=x-12-1;∴当x=1时,B-A有最小值-1;当B=2A时,即:2x2+4x+n2=2x2+6x+n2,∴2x2+4x+n2=2x2+12x+2n2,∴-8x=n2≥0,∴x≤0,即x是非正数;故选项A,C,D错误,选项B正确;故选B.【点睛】本题考查整式加减运算,配方法的应用.熟练掌握合并同类项,以及配方法,是解题的关键.3(23-24九年级上·四川攀枝花·期中)已知三角形的三条边为a,b,c,且满足a2-10a+b2-16b+89= 0,则这个三角形的最大边c的取值范围是()A.c>8B.5<c<8C.8<c<13D.5<c<13【答案】C【分析】先利用配方法对含a的式子和含有b的式子配方,再根据偶次方的非负性可得出a和b的值,然后根据三角形的三边关系可得答案.【详解】解:∵a2-10a+b2-16b+89=0,∴(a2-10a+25)+(b2-16b+64)=0,∴(a-5)2+(b-8)2=0,∵(a-5)2≥0,(b-8)2≥0,∴a-5=0,b-8=0,∴a=5,b=8.∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.4(23-24九年级下·浙江宁波·期中)我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例如:已知x可取任何实数,试求二次三项式x2+2x+3的最小值.解:x2+2x+3=x2+2x+1+2=(x+1)2+2;∵无论x取何实数,都有(x+1)2≥0,∴(x+1)2+2≥2,即x2+2x+3的最小值为2.【尝试应用】(1)请直接写出2x2+4x+10的最小值______;【拓展应用】(2)试说明:无论x取何实数,二次根式x2+x+2都有意义;【创新应用】(3)如图,在四边形ABCD中,AC⊥BD,若AC+BD=10,求四边形ABCD的面积最大值.【答案】(1)8;(2)见解析;(3)25 2【分析】(1)利用配方法把2x2+4x+10变形为2(x+1)2+8,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到x2+x+2=x+122+74,则可判断x2+x+2>0,然后根据二次根式有意义的条件可判断无论x取何实数,二次根式x2+x+2都有意义;(3)利用三角形面积公式得到四边形ABCD的面积=12⋅AC⋅BD,由于BD=10-AC,则四边形ABCD的面积=12⋅AC⋅10-AC,利用配方法得到四边形ABCD的面积=-12(AC-5)2+252,然后根据非负数的性质解决问题.【详解】解:(1)2x2+4x+10=2x2+2x+10=2x2+2x+1-1+10=2(x+1)2+8,∵无论x取何实数,都有2(x+1)2≥0,∴(x+1)2+8≥8,即x2+2x+3的最小值为8;故答案为:8;(2)x2+x+2=x+122+74,∵x+122≥0,∴x2+x+2>0,∴无论x取何实数,二次根式x2+x+2都有意义;(3)∵AC⊥BD,。
中考数学压轴题之一元二次方程(中考题型整理,突破提升)及答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.4.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴732±∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x 2﹣2x+34=0, ∴x 1=12,x 2=32. 当12为腰时,12+12<32, ∴12、12、32不能构成三角形; 当32为腰时,等腰三角形的三边为32、32、12, 此时周长为32+32+12=72. 答:当m=2时,△ABC 的周长为72. (2)若△ABC 为等边三角形,则方程有两个相等的实数根,∴△=(﹣m )2﹣4(m 2﹣14)=m 2﹣2m+1=0, ∴m 1=m 2=1.答:当△ABC 为等边三角形时,m 的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.5.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1.经检验:x=15或x=1都是原方程的解.∴原方程的解是x=15或x=1.【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.6.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.7.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.8.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.9.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴x=2b a-± ∴x1x 2.。