一元二次方程应用题经典题型汇总

合集下载

一元二次方程应用题经典题型汇总含答案

一元二次方程应用题经典题型汇总含答案

一元二次方程应用题经典题型汇总含答案利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,解这个方程,得x=,即x≈6.6.(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9如图4所示,在△ABC中,∠C=90?/SPAN>,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为∠C=90?/SPAN>,所以AB===10(cm).(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ 的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角=8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8-x)2+(6+x)2=102,整理,得2x2-4x=0,解这个方程,得x1=0(舍去),x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB =100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC -(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n (n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去). 所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得+=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x =16,答这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FG⊥BC于G,过点A作AK⊥BC 于K.则可得,FG=×4,所以S△BEF=BE·FG=-x2+x (7≤x≤10).(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.(3)不存在.假设存在,显然有S△BEF∶S多边=1∶2,形AFECD即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数n,使P2=5P1?若存在,为P2,问是否存在偶数..请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

九年级数学:一元二次方程应用题典型题型归纳

九年级数学:一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳(一)传播与握手问题(病毒、细胞分裂等)1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。

2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。

3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。

4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。

5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。

2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。

3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总认真阅读题目,分析题意,学会分解题目,从而找到的条件和未知问题,必要时可以通过画图、列表等方法来帮助理顺与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的几大典型题目,举例说明. 一、面积问题: 例1:如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余局部进展绿化,要使绿化面积为7644米2,那么道路的宽应为多少米?设道路的宽为x 米,那么可列方程为〔 〕A .100×80-100x-80x=7644B .〔100-x 〕〔80-x 〕+x2=7644C .〔100-x 〕〔80-x 〕=7644D .100x+80x=356二、增长率问题 : 〔变化前的基数a ,增长率x ,变化的次数n ,变化后的基数b ,关系:a 〔1+x 〕n =b 〕 例2:恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额到达了193.6万元,求这两个月的平均增长率.三、商品价格问题例3:某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件。

假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?四、储蓄问题例4:王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行〞,到期后将本金和利息取出,并将其中的500元捐给“希望工程〞,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.〔假设不计利息税〕五、情景对话类例5:春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.六、动点问题:例6:如下图,一个长为10m的梯子斜靠在墙上,梯子的顶端距离地面8m,如果梯子顶端下滑1m,那么〔1〕底端滑动的距离是多少?〔2〕梯子顶端下滑多少米正好等于底端后滑的距离?七、趣味问题例7:一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没方法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?各类题型变式练习1、用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,那么可列方程为〔〕A、x〔20+x〕=64B、x〔20﹣x〕=64C、x〔40+x〕=64D、x〔40﹣x〕=642、,那么根据题意可列方程为〔〕A. B. C. D.3、要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,方案安排21场比赛,问应邀请多少个球队参加比赛?A、5个B、6个C、7个D、8个4、某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,那么5月份的产值是〔〕A.〔a-10%〕〔a+15%〕万元B.a〔1-10%〕〔1+15%〕万元C.〔a-10%+15%〕万元D.a〔1-10%+15%〕万元5、市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?6、游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数一样,增加了多少行多少列?7、18.一元二次方程解应用题将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

一元二次方程应用题经典题型汇总含答案

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n -1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,解这个方程,得x=,即x≈6.6.(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC中,∠C=90?/SPAN>,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为∠C=90?/SPAN>,所以AB===10(cm).(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角=8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x)2+(6+x)2=102,整理,得2x2-4x=0,解这个方程,得x1=0(舍去),x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11 如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A 出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB =100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n (n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得+=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FG⊥BC于G,过点A作AK⊥BC于K.则可得,FG=×4,所以S△BEF=BE·FG=-x2+x(7≤x≤10).(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD=1∶2,即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而文档鉴赏将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

一元二次方程应用题经典题型汇总含答案解析

一元二次方程应用题经典题型汇总含答案解析

z一元二次方程应用题经典题型汇总一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n -1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,解这个方程,得x=,即x≈6.6.(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC中,∠C=90?/SPAN>,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为∠C=90?/SPAN>,所以AB===10(cm).(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角=8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x)2+(6+x)2=102,整理,得2x2-4x=0,解这个方程,得x1=0(舍去),x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11 如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A 出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB =100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n (n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得+=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FG⊥BC于G,过点A作AK⊥BC于K.则可得,FG=×4,所以S△BEF=BE·FG=-x2+x(7≤x≤10).(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD=1∶2,即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而专业资料整理分享将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.完美WORD格式编辑。

一元二次方程应用题典型题型汇总

一元二次方程应用题典型题型汇总

一元二次方程应用题典型题型归纳(一)传播与握手问题1. 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了 个人。

2. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出 小分支。

3. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有 个队参加比赛。

4. 参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有 个队参加比赛。

5. 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6. 一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?7. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题1、-=实际数基数增长率基数2、平均增长率公式:b x a =±2)1( 其中a 是增长(或降低)的基础量,x 是平均增长(或降低)率,b 是增长(或降低)的数量。

相关测试题:1. 青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为 。

2. 某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是 。

3. 某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

4. 某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.6.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.7.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程( )A. 500(12)x +=720B. 2500(1)720x+= C. 2500(1)720x += D. 2720(1)500x -=8.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.9、某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?(三)商品销售问题:(关键词:标价、售价、打折、销量等)售价—进价=利润 单件利润×销售量=总利润 单价×销售量=销售额1. 某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X 销售量P ,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2. 某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

一元二次方程经典题型汇总

一元二次方程经典题型汇总

一元二次方程经典题型汇总将一元二次方程化为完全平方形式,然后两边开平方根,得到方程的解。

2、因式分解法:将一元二次方程化为两个一次因式的乘积形式,然后根据乘积为零的性质求解。

3、配方法:通过添加或减少一个适当的常数,将一元二次方程化为完全平方形式,然后利用完全平方公式求解。

4、公式法:利用求根公式,直接求解一元二次方程的解。

三、例题解析1、用直接开平方法求解方程x2+6x+9=0.解:将方程变形为(x+3)2=0,然后两边开平方根,得到x=-3.所以方程的解为x=-3.2、用因式分解法求解方程x2-5x+6=0.解:将方程因式分解为(x-2)(x-3)=0,然后根据乘积为零的性质得到x=2或x=3.所以方程的解为x=2或x=3.3、用配方法求解方程2x2-5x+2=0.解:为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。

可以发现,2x2-5x+2=2(x-1)(x-2)+2,所以方程可以化为2(x-1)2=0.然后利用完全平方公式,得到x=1或x=2.所以方程的解为x=1或x=2.4、用公式法求解方程3x2-4x+1=0.解:根据求根公式,方程的解为x=[4±√(16-4*3*1)]/(2*3),化简可得到x=1/3或x=1.所以方程的解为x=1/3或x=1.四、练题1、用直接开平方法求解方程2x2-12x+18=0.2、用因式分解法求解方程x2+7x+10=0.3、用配方法求解方程x2+4x-5=0.4、用公式法求解方程x2-2x+1=0.5、求解方程2x2-5x-3=0的解法有哪些?分别求出方程的解。

答案:1、将方程变形为x2-6x+9=0,然后利用直接开平方法,得到x=3.所以方程的解为x=3.2、将方程因式分解为(x+5)(x+2)=0,然后根据乘积为零的性质,得到x=-5或x=-2.所以方程的解为x=-5或x=-2.3、为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。

(完整版)一元二次方程应用题经典题型汇总含答案

(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总列一元二次方程解应用题中遇到的常见的典型题目,举例说明.一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得12(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x =6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为12n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解 设该单位这次共有x 名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x -25)]x =27000.整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30.当x =45时,1000-20(x -25)=600<700,故舍去x 1;当x 2=30时,1000-20(x -25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700如果人数不超过25人,人均旅游费用为1000元.八、等积变形例8将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=23×18×15,即x2-34x+180=0,解这个方程,得x =344362,即x≈6.6.(2)设扇形半径为r,则3.14r2=23×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.图2QP CBA图4图3九、动态几何问题例9 如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解 因为∠C =90°,所以AB =22AC BC +=2268+=10(cm ).(1)设x s 后,可使△PCQ 的面积为8cm 2,所以 AP =x cm ,PC =(6-x )cm ,CQ =2x cm. 则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半. 则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻. 说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角22106 =8(m ).(1)若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x )2=102,整理,得x 2+12x -15=0,解这个方程,得x 1≈1.14,x 2≈-13.14(舍去),所以梯子顶端下滑1m ,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m 时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x )2+(6+1)2=100.整理,得x 2-16x +13=0.解这个方程,得x 1≈0.86,x 2≈15.14(舍去).所以若梯子底端水平向外滑动1m ,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m 时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x )2+(6+x )2=102,整理,得2x 2-4x =0,解这个方程,得x 1=0(舍去),x 2=2.所以梯子顶端向下滑动2m 时,底端向外也滑动2m.说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11 如图5所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D 和小岛F 相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F 位于D 的正南方向,则DF ⊥BC .因为AB ⊥BC ,D 为AC 的中点,所以DF =12AB =100海里,所以,小岛D 与小岛F 相距100海里. (2)设相遇时补给船航行了x 海里,那么DE =x 海里,AB +BE =2x 海里,EF =AB +BC -(AB +BE )-CF =(300-2x )海里.在Rt △DEF 中,根据勾股定理可得方程x 2=1002+(300-2x )2,整理,得3x 2-1200x +100000=0.F E DC B A图5解这个方程,得x1=200-10063≈118.4,x2=200+10063(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7. (2)S 1=n 2+(12-n )[n 2-(n -1)2]=-n 2+25n -12.①当n =2时,S 1=-22+25×2-12=34,S 2=12×12-34=110. 所以S 1∶S 2=34∶110=17∶55. ②若S 1=S 2,则有-n 2+25n -12=12×122,即n 2-25n +84=0, 解这个方程,得n 1=4,n 2=21(舍去). 所以当n =4时,S 1=S 2.所以这样的n 值是存在的.说明 求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm ,则另一段为(20-x )cm.图6则根据题意,得24x⎛⎫⎪⎝⎭+2204x-⎛⎫⎪⎝⎭=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得24y⎛⎫⎪⎝⎭+2204y-⎛⎫⎪⎝⎭=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac ≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28. 过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K .则可得,FG =125x×4, 所以S △BEF =12BE ·FG =-25x 2+245x (7≤x ≤10). (2)存在.由(1)得-25x 2+245x =14,解这个方程,得x 1=7,x 2=5(不合题意,舍去),所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7. (3)不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2,即(BE +BF )∶(AF +AD +DC )=1∶2.则有-25x 2+165x =283, 整理,得3x 2-24x +70=0,此时的求根公式中的b 2-4ac =576-840<0, 所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分.说明 求解本题时应注意:一是要能正确确定x 的取值范围;二是在求得x 2=5时,并不属于7≤x ≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:FE DC B A 图7K G图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n =5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

一元二次方程的应用题分类题型汇总

一元二次方程的应用题分类题型汇总

一元二次方程的应用(设未知数——找等量关系——求解——检验)一、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。

(1)当日产量为多少时每日获得的利润为1750元?(2)若可获得的最大利润为1950元,问日产量应为多少?二、行程问题路程=速度*时间相遇路程=速度和*相遇时间追及问题=速度差*追及时间顺水速度=船速(静水中的速度)+ 水流速度逆流速度=船速(静水中的速度)—水流速度1、甲乙二人分别从相聚20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米?2、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.3、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自前进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多少时间。

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总同学们知道,学习了一元二次方程的解法以后,就会经常遇到解决与一元二次方程有关的生活中的应用问题,即列一元二次方程解应用题,不少同学遇到这类问题总是左右为难,难以下笔,事实上,同学们只要能认真地阅读题目,分析题意,并能学会分解题目,各个击破,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助我们理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的十大典型题目,举例说明.一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.(x+0.1+x+1.4+0.1)·x=1.8,整理,得则根据题意,得12x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选n(n-手的角度各自统计了一次,因此实际比赛总局数应为121)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游. 说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m )图1 如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700如果人数不超过25人,人均旅游费用为1000元.(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=23×18×15,即x2-34x+180=0,解这个方程,得x =344362,即x≈6.6.(2)设扇形半径为r,则3.14r2=23×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.图2QP CBA图4图3九、动态几何问题例9如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为∠C=90°,所以AB=22+=1068AC BC+=22(cm).(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得12·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得12(6-x)·2x=12×12×6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角22=8(m).106(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x -15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m ,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m 时,底端向外也滑动x m. 则根据勾股定理,列方程 (8-x )2+(6+x )2=102,整理,得2x 2-4x =0,解这个方程,得x 1=0(舍去),x 2=2.所以梯子顶端向下滑动2m 时,底端向外也滑动2m. 说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11 如图5所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给F E D C B A 图5船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C 的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=12AB=100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-10063≈118.4,x2=200+10063(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.图6①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.×122,即n2-②若S1=S2,则有-n2+25n-12=1225n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得24x⎛⎫⎪⎝⎭+2204x-⎛⎫⎪⎝⎭=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得24y⎛⎫⎪⎝⎭+2204y-⎛⎫⎪⎝⎭=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14如图7,在等腰梯形ABCD中,AB=DC=5,AD =4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求此时BE 的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28. 过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K . 则可得,FG =125x ×4, 所以S △BEF =12BE ·FG =-25x 2+245x (7≤x ≤10). (2)存在.由(1)得-25x 2+245x =14,解这个方程,得x 1=7,x 2=5(不合题意,舍去),所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7.(3)不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2, 即(BE +BF )∶(AF +AD +DC )=1∶2.则有-25x 2+165x =283, 整理,得3x 2-24x +70=0,此时的求根公式中的b 2-4ac =576-840<0, FE D C B A 图7 KG所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个…数正方形边长 2 4 6 8 …n(偶数)黑色小正方形个…数(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。

一元二次方程应用题七大题型

一元二次方程应用题七大题型

一元二次方程应用题七大题型
1. 求解物体运动距离
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。

求物体运动的距离。

公式:距离 = (1/2) 加速度时间²
2. 求解物体最终速度
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。

求物体最终速度。

公式:最终速度 = 加速度时间
3. 求解物体运动时间
题型:一个物体从静止开始运动,最终速度为 v,加速度为 a。

求物体运动的时间。

公式:时间 = 最终速度 / 加速度
4. 求解物体加速度
题型:一个物体从静止开始运动,运动时间为 t,最终速度为v。

求物体加速度。

公式:加速度 = 最终速度 / 时间
5. 求解运动物体速度
题型:一个物体从静止开始运动,在 t1 时刻速度为 v1,在
t2 时刻速度为 v2。

求物体在 t3 时刻的速度。

公式:速度 = (最终速度 - 初始速度) / (最终时间 - 初始
时间)
6. 求解运动物体加速度变化率
题型:一个物体的加速度从 a1 变化到 a2,时间间隔为Δt。

求加速度的变化率。

公式:加速度变化率 = (最终加速度 - 初始加速度) / 时间间隔
7. 求解运动物体速度变化率
题型:一个物体的速度从 v1 变化到 v2,时间间隔为Δt。

求速度的变化率。

公式:速度变化率 = (最终速度 - 初始速度) / 时间间隔。

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳This manuscript was revised by the office on December 22, 2012一元二次方程应用题典型题型归纳(一)传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。

2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。

3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。

4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。

5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。

2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。

3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.3.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳一传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人;2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支;3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛;4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛;5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学6.7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人8.9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台二平均增长率问题变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为 ;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是 ;3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率;4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.三商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.3.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且R、P与x的关系式分别为R=500+30X,P=170—2X;1当日产量为多少时每日获得的利润为1750元2若可获得的最大利润为1950元,问日产量应为多少4.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元5.6.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元;为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存;经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件;要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元7.8.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克;为了促销,该经营户决定降价销售;经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克;另外,每天的房租等固定成本共24元;该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元9.6. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出350-10a件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件每件商品应定价多少四面积问题判断清楚要设什么是关键1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,两条直角边的长分别是 ;2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,斜边的长是 ;3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,菱形的周长是 ;结果保留小数点后一位4.为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为米,宽为米;5.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm2,则原正方形的边长为 cm.6.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,所截去的小正方形的边长是 ;7.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了是元钱8.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为是 ;9.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙墙长18m,另三边用木栏围成,木栏长35m;①鸡场的面积能达到150m2吗②鸡场的面积能达到180m2吗如果能,请你给出设计方案;如果不能,请说明理由;3若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用五动态几何问题例9 如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s 的速度移动.1如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米2点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.趣味问题一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗。

人教版九年级数学上册一元二次方程应用题题型总结经典

人教版九年级数学上册一元二次方程应用题题型总结经典

人教版九年级数学上册一元二次方程应用题题型总结经典初中数学试卷金戈铁骑整理制作一元二次方程应用题题型总结经典一、增长率问题变化前数量×(1x)n=变化后数量例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率1.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

2.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?二、商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。

(1)当日产量为多少时每日获得的利润为1750元?(2)若可取得的最大利润为1950元,问日产量应为多少?3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?4.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。

为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。

经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。

中考数学一元二次方程应用题经典题型汇总

中考数学一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总一元二次方程解应用题中遇到的常见的十大典型题目,举例说明.一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得12(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解 设共有n 个选手参加比赛,每个选手都要与(n -1)个选手比赛一局,共计n (n -1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为12n (n -1)局.由于每局共计2分,所以全部选手得分总共为n (n -1)分.显然(n -1)与n 为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n (n -1)=1980,得n 2-n -1980=0,解得n 1=45,n 2=-44(舍去).答 参加比赛的选手共有45人.说明 类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解 设该单位这次共有x 名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x -25)]x =27000.整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30. 当x =45时,1000-20(x -25)=600<700,故舍去x 1; 当x 2=30时,1000-20(x -25)=900>700,符合题意. 答:该单位这次共有30名员工去天水湾风景区旅游.说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700如果人数不超过25人,人均旅游费用为1000八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m )(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路. (2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解 都能.(1)设小路宽为x ,则18x +16x -x 2=23×18×15,即x 2-34x +180=0, 解这个方程,得x =344362,即x ≈6.6. (2)设扇形半径为r ,则3.14r 2=23×18×15,即r 2≈57.32,所以r ≈7.6. 说明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.图2Q PC BA 图4图3解 因为∠C =90°,所以AB =22AC BC +=2268+=10(cm ).(1)设x s 后,可使△PCQ 的面积为8cm 2,所以 AP =x cm ,PC =(6-x )cm ,CQ =2x cm. 则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2. (2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半. 则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻.说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m. (1)若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2)若梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角22106-=8(m ).(1)若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m. 则根据勾股定理,列方程72+(6+x )2=102,整理,得x 2+12x -15=0, 解这个方程,得x 1≈1.14,x 2≈-13.14(舍去), 所以梯子顶端下滑1m ,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m 时,设梯子顶端向下滑动x m. 则根据勾股定理,列方程(8-x )2+(6+1)2=100.整理,得x 2-16x +13=0. 解这个方程,得x 1≈0.86,x 2≈15.14(舍去).所以若梯子底端水平向外滑动1m ,则顶端下滑约0.86m. (3)设梯子顶端向下滑动x m 时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x )2+(6+x )2=102,整理,得2x 2-4x =0, 解这个方程,得x 1=0(舍去),x 2=2.所以梯子顶端向下滑动2m 时,底端向外也滑动2m.说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形. 十一、航海问题例11 如图5所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D 和小岛F 相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F 位于D 的正南方向,则DF ⊥BC .因为AB ⊥BC ,D 为AC 的中点,所以DF =12AB =100海里,所以,小岛D 与小岛F 相距100海里.(2)设相遇时补给船航行了x 海里,那么DE =x 海里,AB +BE =2x 海里,EF =AB +BC -(AB +BE )-CF =(300-2x )海里.在Rt △DEF 中,根据勾股定理可得方程x 2=1002+(300-2x )2,整理,得3x 2-1200x +100000=0.解这个方程,得x 1=200-10063≈118.4,x 2=200+10063(不合题意,舍去). 所以,相遇时补给船大约航行了118.4海里.说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD 的边长为12,划分成12×12个小正方形格,将边长为n (n 为整数,且2≤n ≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n ×n 的纸片正好盖住正方形ABCD 左上角的n ×n 个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n -1)×(n -1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD 的右下角为止.请你认真观察思考后回答下列问题:F EDC B A图5(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=12×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得24x⎛⎫⎪⎝⎭+2204x-⎛⎫⎪⎝⎭=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,图6答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm ,则另一段为(20-y )cm.则由题意得24y ⎛⎫ ⎪⎝⎭+2204y -⎛⎫ ⎪⎝⎭=12,整理,得y 2-20y +104=0,移项并配方,得(y -10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2)小问也可以运用求根公式中的b 2-4ac 来判定.若b 2-4ac ≥0,方程有两个实数根,若b 2-4ac <0,方程没有实数根,本题中的b 2-4ac =-16<0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10.点E •在下底边BC 上,点F 在腰AB 上.(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积; (2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求此时BE 的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28. 过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K . 则可得,FG =125x-×4, 所以S △BEF =12BE ·FG =-25x 2+245x (7≤x ≤10). (2)存在.由(1)得-25x 2+245x =14,解这个方程,得x 1=7,x 2=5(不合题意,舍去), 所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7. (3)不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2, 即(BE +BF )∶(AF +AD +DC )=1∶2.则有-25x 2+165x =283, 整理,得3x 2-24x +70=0,此时的求根公式中的b 2-4ac =576-840<0,所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分.FE DC B A 图7K G说明 求解本题时应注意:一是要能正确确定x 的取值范围;二是在求得x 2=5时,并不属于7≤x ≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 … n (奇数) 黑色小正方形个数…正方形边长 2 4 6 8 … n (偶数) 黑色小正方形个数…(2)在边长为n (n ≥1)的正方形中,设黑色小正方形的个数为P 1,白色小正方形的个数为P 2,问是否存在偶数..n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n 时,黑色正方形的个数为1、5、9、13、2n -1(奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形的个数为4、8、12、16、2n (偶数).(2)由(1)可知n 为偶数时P 1=2n ,所以P 2=n 2-2n .根据题意,得n 2-2n =5×2n ,即n 2-12n =0,解得n 1=12,n 2=0(不合题意,舍去).所以存在偶数n =12,使得P 2=5P 1.说明 本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.图8。

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳(一)传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。

2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。

3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。

4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。

5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻20XX年平均每公顷产7200公斤,20XX年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。

2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。

3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。

4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程应用题经典题型汇总认真阅读题目,分析题意,学会分解题目,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的几大典型题目,举例说明.一、面积问题:例1:如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=356二、增长率问题:(变化前的基数a,增长率x,变化的次数n,变化后的基数b,关系:a(1+x)n=b)例2:恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.三、商品价格问题例3:某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件。

若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?四、储蓄问题例4:王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)五、情景对话类例5:春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?六、动点问题:例6:如图所示,一个长为10m的梯子斜靠在墙上,梯子的顶端距离地面8m,如果梯子顶端下滑1m,那么(1)底端滑动的距离是多少?(2)梯子顶端下滑多少米正好等于底端后滑的距离?七、趣味问题例7:一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?各类题型变式练习1、用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()A、x(20+x)=64B、x(20﹣x)=64C、x(40+x)=64D、x(40﹣x)=642、某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为()A. B. C. D.3、要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?A、5个B、6个C、7个D、8个4、某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元5、市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?6、游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?7、18.一元二次方程解应用题将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?8.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?9、如图1,A,B,C,D为矩形的4个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s 的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动(1) P,Q两点从出发开始到几秒时四边形PBCQ的面积为33平方厘米?(2)P,Q两点从出发开始到几秒时,点P和点Q距离是10cm一元二次方程应用题经典题型汇总认真阅读题目,分析题意,学会分解题目,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的几大典型题目,举例说明.一、面积问题:例1:如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=356二、增长率问题:(变化前的基数a,增长率x,变化的次数n,变化后的基数b,关系:a(1+x)n=b)例2:恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解 设这两个月的平均增长率是x .,则根据题意,得200(1-20%)(1+x )2=193.6,即(1+x )2=1.21,解这个方程,得x 1=0.1,x 2=-2.1(舍去).三、商品价格问题例3:某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件。

若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? 设每件应降价x 元,由题意可列方程为(40-x )(30+2x )=1200 ,解得x 1=0 ,x 2=25 , 当x=0 时,能卖出30 件; 当x=25 时,能卖出80件,根据题意,x=25 时能卖出80 件,符合题意,不降价也能盈利1200元,符合题意,因为要减少库存,所以应降价25 元,四、储蓄问题例4:王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解 设第一次存款时的年利率为x .则根据题意,得[1000(1+x )-500](1+0.9x )=530.整理,得90x 2+145x -3=0.解这个方程,得x 1≈0.0204=2.04%,x 2≈-1.63.由于存款利率不能为负数,所以将x 2≈-1.63舍去.五、情景对话类例5:春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游? 设该单位这次共有x 名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人. 则根据题意,得[1000-20(x -25)]x =27000. 整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30.当x =45时,1000-20(x -25)=600<700,故舍去x 1;当x 2=30时,1000-20(x -25)=900>700,符合题意.六、动点问题: 例6:如图所示,一个长为10m 的梯子斜靠在墙上,梯子的顶端距离地面8m ,如果梯子顶端下滑1m ,那么(1)底端滑动的距离是多少?(2)梯子顶端下滑多少米正好等于底端后滑的距离?七、趣味问题例7:一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解 设渠道的深度为x m ,那么渠底宽为(x +0.1)m ,上口宽为(x +0.1+1.4)m.则根据题意,得12(x +0.1+x +1.4+0.1)·x =1.8,整理,得x 2+0.8x -1.8=0. 解这个方程,得x 1=-1.8(舍去),x 2=1. 所以x +1.4+0.1=1+1.4+0.1=2.5. 答 渠道的上口宽2.5m ,渠深1m.各类题型变式练习1、用一条长40cm 的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm ,则可列方程为( )A 、x (20+x )=64B 、x (20﹣x )=64C 、 x (40+x )=64D 、 x (40﹣x )=642、某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为( )A. B. C.D.如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元. 如果人数不超过25人,人均旅游费用为1000元.3、要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?A、5个B、6个C、7个D、8个4、某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元5、市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?解:设每次降价的百分率为x%,依题意得200(1-x%)²=1286、游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列7、18.一元二次方程解应用题将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

相关文档
最新文档